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Understanding the spatial structure of genetic diversity provides insights into a populations’ genetic status and enables assessment
of its capacity to counteract the effects of genetic drift. Such knowledge is particularly scarce for the snow leopard, a conservation
flagship species of Central Asia mountains. Focusing on a snow leopard population in the Qilian mountains of Gansu Province,
China, we characterised the spatial genetic patterns by incorporating spatially explicit indices of diversity and multivariate analyses,
based on different inertia levels of Principal Component Analysis (PCA). We compared two datasets differing in the number of loci
and individuals. We found that genetic patterns were significantly spatially structured and were characterised by a broad
geographical division coupled with a fine-scale cline of differentiation. Genetic admixture was detected in two adjoining core areas
characterised by higher effective population size and allelic diversity, compared to peripheral localities. The power to detect
significant spatial relationships depended primarily on the number of loci, and secondarily on the number of PCA axes. Spatial
patterns and indices of diversity highlighted the cryptic structure of snow leopard genetic diversity, likely driven by its ability to
disperse over large distances. In combination, the species’ low allelic richness and large dispersal ability result in weak genetic
differentiation related to major geographical features and isolation by distance. This study illustrates how cryptic genetic patterns
can be investigated and analysed at a fine spatial scale, providing insights into the spatially variable isolation effects of both
geographic distance and landscape resistance.
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INTRODUCTION
Improving knowledge about species’ demographic and evolu-
tionary histories is increasingly important to landscape and spatial
genetics. In particular, conservation measures can be strength-
ened by identifying patterns of allelic differentiation in spatially
complex and dynamic environments (Storfer et al. 2010; Balkenhol
et al. 2016). Spatial patterns in genetic diversity result from the
interacting processes of migration, dispersal and reproduction (i.e.,
gene flow), and are highly influenced by the nature of the
intervening landscape mosaic (Cushman et al. 2006, 2013).
Heterogeneous environmental patterns of factors that limit
movement affect the dispersal abilities of organisms and produce
spatial patterns in genetic diversity and genetic differentiation
(Cushman et al. 2012, 2013; Landguth et al. 2010, 2012).
Under spatially limited dispersal, population genetic theory

predicts that differentiation would increase with increased
geographic distance, creating isolation-by-distance (IBD) patterns
(Wright 1943). In such situations, individuals living in close
proximities to each other will present genetic spatial autocorrela-
tion, that is, they will be more genetically similar than those living
further apart, as a consequence of their genetic neighbourhood
size (NS), an area in which gene flow is high relative to drift
(Wright 1946; e.g., Kuhn et al. 2017). In heterogeneous

environments, the effective distance between individuals as a
function of the movement cost between them is usually most
strongly related to genetic differentiation, in a process commonly
termed isolation-by-resistance (IBR; e.g., Cushman et al. 2006; Shirk
et al. 2017a).
To identify spatial patterns and modes of isolation, methods

designed to detect barriers or clusters of sub-populations have
been widely adopted in conservation genetics (Blair et al. 2012;
Guillot et al. 2009; Schwartz and McKelvey 2008). However, these
methods are only reliable when obvious barriers to gene flow are
present, and the populations can be unequivocally identified as
distinct (François and Durand 2010).
Spurious breaks and clusters can become more apparent in

populations separated by IBD or IBR (Guillot et al. 2009; Schwartz
and McKelvey 2008; François and Durand 2010; Cushman and
Landguth 2010). This is of particular concern when populations or
individuals are distributed over a continuous area, without
obvious obstacles to movement (Guillot et al. 2009; Cushman
et al. 2015), and inference of patterns is difficult without
accounting explicitly for the spatial autocorrelation of allele
frequencies (Jombart et al. 2008a; Wagner and Fortin 2012).
Methods that account for spatial autocorrelation in the

distribution of genetic observations offer valuable tools to dissect
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patterns of genetic autocorrelation at multiple spatial scales
(Jombart et al. 2009; Wagner and Fortin 2012). These methods
often rely on a spatial weighting matrix (SWM), which represents a
weighted connection network expressing the links between
spatial units (Dray et al. 2006; Bauman et al. 2018a, 2018b). While
SWMs can be purely mathematical objects to test for IBD for
example, they have also been shown to be valuable tools to
incorporate ecological knowledge or landscape hypotheses of
impediment to movement to optimise the detection of spatial
patterns (Dray et al. 2006; Bauman et al. 2018a; Benone et al.
2020). Moran’s eigenvector maps (MEM; Dray et al. 2006) is a
spatial eigenvector-based method that generates spatial eigen-
functions proportional to Moran’sIcoefficient of autocorrelation by
diagonalising a doubly-centred SWM (details in Dray et al. 2006;
Bauman et al. 2018a). They are a powerful tool to optimally detect
non-random spatial patterns ranging from simple linear gradients
to complex irregular fine-scaled patterns (Dray et al. 2006). These
spatial variables have proved to be accurate tools to study genetic
or species composition patterns, when used in regression or
constrained ordination methods (Legendre et al. 2015; Manel et al.
2010; Peres-Neto et al. 2006; Bauman et al 2018c), and have been
increasingly applied in genetics studies (Manel et al. 2010; Galpern
et al. 2014; Dalongeville et al. 2018; Breyne et al. 2014). These
spatial methods are particularly suited to identify cryptic genetic
patterns and can serve as a proxy for unmeasured landscape
factors (Jombart et al. 2009; Wagner and Fortin 2016; Galpern et al.
2014).
In the context of correlative landscape genetics inferences,

metrics of distance derived from Principal Component Analysis
(PCA) eigenvectors have been recommended to detect significant
landscape-gene relationships (Shirk et al 2017b). Their use,
however, is contingent upon the identification of the number of
axes and proportion of inertia that captures the spatial variance in
the dataset (Shirk et al. 2017b). Concurrent to the adoption of
PCA-based genetic distances in link-based landscape genetics
analyses (Shirk et al. 2017b; Burgess and Garrick 2020; Savary et al.
2021), the use of ordination axes as response variables in node-
based regression techniques using MEM has also been shown to
successfully remove redundant genetic information, while captur-
ing meaningful variation (Dalongeville et al. 2018; Forester et al.
2016; Breyne et al. 2014; Guerrero et al. 2018). However, in both
methodological approaches, the selection of the retained PCA
eigenvectors often appears arbitrary, with some exceptions
(Forester et al. 2016).
We therefore suggest that assessing which ordination axes can

identify significant spatial structures is essential to generating reliable
landscape genetics conclusions. As species differ in their demographic
traits (Shirk et al. 2017b; Hein et al. 2021) and in their genetic diversity
(Landguth et al. 2012), we would expect patterns to be sensitive to
the strength of the genetic signal embedded in the analysed loci
(Shirk et al. 2017b; Landguth et al. 2012). Understanding how different
PCA components can identify and describe spatial genetic patterns,
and how a trade-off in the number of markers versus the number of
samples influences such detectability (e.g. Hein et al. 2021; Landguth
et al. 2012) is therefore crucial.
Species exhibiting cryptic genetic patterns, resulting from low

genetic diversity, low population densities and high dispersal
ability, could particularly benefit from the dimensionality reduc-
tion of a PCA (Shirk et al. 2017b). One such species is the snow
leopard (Panthera uncia), occurring in the mountains of Central
Asia and subject to population declines across its range (McCarthy
et al. 2017). Despite the well-established importance of genetic
surveys for species conservation (Frankham 2005), information on
the genetic diversity of snow leopard populations remains scarce
(Weckworth 2021). With the exceptions represented by two broad-
scale genetic analyses (Janecka et al. 2017; Korablev et al. 2021),
genetics studies on snow leopard are usually limited in spatial
extent and sample size (e.g., Janecka et al. 2008; Karmacharya

et al. 2011; Aryal et al. 2014). The few studies that have described
spatial genetic structure at a local spatial scale have inferred
clusters of individuals coming from disconnected study areas
(Shrestha and Kindlmann 2020; Zhang et al. 2019), possibly
yielding spurious patterns due to sample biases (Schwartz and
McKelvey 2008; Oyler-McCance et al. 2013).
Range-wide and landscape-specific connectivity information for

this species remains limited (Riordan et al. 2016; Li et al. 2020;
Shrestha and Kindlmann 2020), with little known regarding the
relationships between snow leopard genetic diversity and land-
scape characteristics. Thus, in the context of existing and
emerging threats to populations (McCarthy et al. 2017), it is
important to assess the genetic status of local populations, and
understand landscape features that impede connectivity, poten-
tially causing isolation and resulting in decreased genetic diversity
or inbreeding depression (Frankham 2005; Weckworth 2021).
With this study we aim to quantify the spatial genetic patterns in

a snow leopard population from Gansu, China, comparing two
different datasets, with different numbers of loci and alleles. We
summarise genetic information using PCA, and use derived
principal components, at several levels of retained variance, as
dependent variables to test for spatial genetic structures. We also
use spatially explicit diversity indices calculated on the extent of
Wright’s neighbourhood size (Shirk and Cushman 2011, 2014), and
assess how these indices varied in the different sampling sub-
localities. This approach complements population genetic analyses,
as it enables identification of discontinuities and rapid changes in
diversity indices across space, which, in turn, can help to identify
demographic hypotheses in relation to the observed spatial
patterns of allele distributions (e.g., Ruiz-Gonzalez et al. 2015).
We aim to answer the following questions:

(1) Are there significant spatial autocorrelation genetic patterns
within a snow leopard population inhabiting an apparently
continuous landscape, and how do these relate to local
variability of genetic diversity indices?

(2) In the case of an absence of detectable genetic spatial
patterns, can the latter be due to the species dispersal
capacity, the extent of allelic diversity, or the apparent
homogeneity and continuity of the landscape?

(3) In the presence of genetic spatial structures, to what extent
does the structure detection depend on the number of loci/
individuals, and the content of PCA variance used as
response variable?

METHODS
Study area
All study areas were in Gansu Province, China (Fig. 1), in which a total of
seven surveys were conducted between 2014 and 2017 (Supplementary Fig.
S1). Specifically, we surveyed the localities of Yanchiwan National Nature
Reserve (YCW) in Subei Mongolian Autonomous County, and parts of the
Qilianshan National Nature Reserve (QLS) in Sunan Yugur County. YCW,
established in 1982 and upgraded at the National level in 2006, has a total
area of ~13,600 km2, and elevations ranging from 2600 to 5483m above sea
level (a.s.l.), with wide valleys found from 3000 to 4200m a.s.l. YCW is
composed of alpine cold desert, alpine meadow grassland, wetland, and
desert ecosystems. QLS was established in 1988, encompassing an area of
19,872 km2, and has elevations ranging between 2300 and 5564m a.s.l. The
landcover is composed mainly of large areas of shrubs and alpine grasslands.
Forests are found at elevations from 2300 to 3000m a.s.l., with spruce, aspen
and birch trees being the dominant species. The two reserves are located at
the intersection of two eco-regions, characterised by particular vegetation
and abiotic environments. Specifically, YCW is in the Kunlun alpine desert arid
region, in the plateau sub-cold zone, and QLS lies in the Qilian coniferous
forest and steppe semi-arid region, in the plateau temperate zone (Wu et al.
2003). Efforts by the local and national government authorities to join these
two reserves and create the Qilianshan National Park (50,200 km2) were
initiated in 2018 (Atzeni et al. 2020).
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Sample collection
In YCW, we collected snow leopard faecal samples in the mountain ranges
of Shule Nan Shan, Yema Nan Shan, Danghe Nan Shan (Fig. 1). In QLS,
collection was conducted in the management areas of Qifeng, Long-
changhe and Sidalong (Fig. 1). We surveyed a total extent of 4850 km2,
with a maximum inter-site distance of ~400 km, considering the two
outermost sampling sites. We conducted line transects to collect scats
believed to belong to snow leopard, using 50mL plastic centrifuge tubes
containing ~30mL of silica gel drying agent (Janecka et al. 2008). In the
field, samples were stored in dark, dry, and cool conditions, and
immediately stored at −20 °C upon arrival at laboratory facilities.

Overview of genetic methods
The approaches used to generate snow leopard consensus genotypes are
detailed in Supplementary Appendix 1 and summarised here. After DNA
extraction, we identified carnivore species using methods described in Bai
et al. (2018). We conducted individual identification using eleven snow
leopard-specific microsatellite loci (Janecka et al. 2008, 2017), and
employed the Quality Index criterion (QI; Miquel et al. 2006) to increase
the reliability of the consensus genotypes. We clustered the profiles using
allelematch (Galpern et al. 2012) to find unique multi-locus genotypes
(hereafter GEN11). We then subset samples whose consensus was reached
immediately after the first three replicates, identified unique individuals as
before, and selected unique multi-locus genotypes to amplify further
sixteen microsatellite loci (Janecka et al. 2017), totalling 27 loci (hereafter
GEN27). This approach thus yielded two sets of samples, one composed of
more individuals genotyped at a number of loci typically employed in non-
invasive population genetics studies (GEN11), and the other composed of a
higher-quality-DNA restricted pool of individuals (GEN27), allowing a more
extensive genotyping and improving the trade-off between genetic profile
reliability and investment of economic resources.

Summary statistics of genetic diversity
For both datasets, the number of alleles (AN) and effective number of
alleles (AE) were summarised using GenAlEx 6.51b2 (Peakall and Smouse
2006, 2012). The software INEst 2 (Chybicki and Burczyk 2009) was used to
calculate observed (HO) and unbiased expected (HE) heterozygosity,

adjusted estimates of observed (HO) and expected (HE) heterozygosity,
and inbreeding coefficient (FIS= 1− (HO/HE)), accounting for the probabil-
istic presence of null alleles, dependent on a probabilistic genotyping
failure rate. A full ‘nfb’ model, consisting in the probabilistic estimation of
inbreeding coefficient (f), null alleles (n) and genotyping failures (b), was
run for both datasets using 1,000,000 total cycles and 100,000 burn-in
cycles. Global Hardy–Weinberg equilibrium was calculated using an exact
test in GENEPOP (Rousset 2008) with 10,000 dememorizations, 100 batches
and 10,000 iterations per batch, whilst per-locus exact tests were estimated
using the R package pegas (Paradis 2010), with 10,000 Monte Carlo
permutations.

Genetic profile ordination
An ordination in reduced space was implemented using PCA (Pearson 1901)
on both datasets to summarize the overall variability among individuals in
uncorrelated synthetic axes. Allele frequencies were centred and scaled
(Jombart et al. 2009) using the function scaleGen in adegenet (Jombart 2008b),
and missing allelic information was replaced with mean values (Jombart 2017).
Initially, eigenvalues were converted to percentages of total variation, and then
used to create four PCA objects for each of the GEN11 and GEN27 datasets,
retaining the number of axes explaining ~25, 50, 75, and 100% of the total
genetic inertia (hereafter PCA_25, PCA_50, PCA_75 and PCA_100). The
significance of PCA axes was tested using the broken stick model (Jackson
1993) (functions bstick in the vegan package (Oksanen et al. 2019) and
PCAsignificance in BiodiversityR (Kindt and Coe 2005)).

Spatially explicit indices of genetic diversity based on
Wright’s genetic neighbourhoods
To explore the range of spatial autocorrelation in the snow leopard genetic
profiles, we tested the relationships between genetic datasets, Euclidean
and resistance distances through the spatially explicit approach imple-
mented in spatial Genetic Diversity (sGD, Shirk and Cushman 2011, 2014), an
approach that overcomes bias due to Wahlund’s effect (Wahlund 1928)
occurring when indices are inferred at an extent greater than local
population structure, and which addresses the non-transitive continuous
structure of the snow leopard population (Shirk and Cushman 2011, 2014;
Cushman et al. 2015).

Fig. 1 Map of study areas and genetic datasets used in this study. The upper figure shows sub-localities names and County-level
administrative divisions. Lower figures represent the locations of the uniquely identified individuals, divided by macro-collection area
(Yanchiwan, YCW; Qilianshan, QLS). Borders represent a portion of the newly established Qilianshan National Park (QLSNP).
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The resistance surface in this analysis adopted the best model for this
study area from Atzeni et al. (2020), which used a model selection
approach based on the MaxEnt algorithm (Phillips et al. 2006), and found
that grassland extent, landscape aggregation and fine-scale topographic
position index were the main predictors of snow leopard detection in this
landscape.
The habitat suitability surface from Atzeni et al. (2020) was converted to

a resistance layer through a negative exponential transformation (Mateo-
Sánchez et al. 2015; Wan et al. 2019), to assign higher resistance to
movement only to low suitability pixels, in the form of

R ¼ 100 �1xHSð Þ;

where HS represents habitat suitability scores.
The resistance surface was rescaled from 1 to 20 in spatialEco (Evans

2020), and the original cell size (90m) was increased to 200m to reduce
the computational time (Supplementary Fig. S2), but was of fine-enough
resolution to avoid losing important landscape characteristics, thereby
having a negligible overall effect on pairwise cost-distances (Cushman and
Landguth 2010). Pairwise Euclidean and resistance distances were
calculated through the distmat function in sGD (Shirk and Cushman 2011).
sGD calculates effective population size (NE) at different radii, adopting

the Burrow’s method based on linkage disequilibrium implemented in
NeEstimator (Do et al. 2014). NE represents an important parameter in
genetics, as it reflects the rate at which populations lose genetic diversity
as a function of selection and genetic drift (Charlesworth 2009; Shirk and
Cushman 2014), and it is closely related to the risk of extinction, especially
in small populations (Neel et al. 2013).
In their simulations, Shirk and Cushman (2014) noted that when the

extent of breeding approaches 2σ (the circular radius defining the outer
extent of Wright’s neighbourhood, NS), the ratio between NE:NS
approaches unity. We selected this criterion to define NS in our two
datasets, based on alleles with at least 10% frequency (Shirk and Cushman
2014). Breaks of 25 km were used for the Euclidean distance scenario
(hereafter referred to as geo scenario), and 100,000 cost unit breaks for the
resistance distance scenario (referred to as res scenario), equivalent to
roughly 20 km of dispersal in optimal habitat.
We expected to observe discrepancies between the two datasets related

to sample size, especially involving the resistance scenarios. Thus, as the
datasets differ only in the number of loci, given that the dispersal capacity
of the species is constant across the datasets, we relied on the GEN11
dataset (more individuals) for the definition of the neighbourhood sizes,
constraining GEN27 to those thresholds to allow full comparability, as the
same neighbourhood size must be used to compare between analyses. We
predicted missing values in the calculation of indices using the package
missForest (Stekhoven 2013), to allow a complete representation of all
indices on the study area for the two datasets. The random forests
machine learning algorithm was run for maximum 10 iterations of 1000
forests each.

Spatial analysis with Moran’s eigenvector maps
The spatial structures of snow leopard genotypes were analysed using
Moran’s Eigenvectors Maps (MEM) (Dray et al. 2006). MEM are flexible and
powerful eigenvector-based methods that generate a spectral decom-
position of a set of spatial coordinates allowing to model multi-scale spatial
structures. MEM are generated from a spatial weighting matrix (SWM),
consisting of the Hadamard product of a connectivity and a weighting
matrix that define which objects are connected and how connections are
weighted, for example as a decreasing function of distance (Dray et al.
2006; Bauman et al. 2018a, b).
Two key steps in MEM are the selection of a SWM among a set of

candidate matrices (Bauman et al. 2018a), and the definition of a subset of
spatial eigenvectors to be further used as spatial predictors within the
selected SWM (Bauman et al. 2018b). We optimised these selections on the
basis of six SWMs built from two contrasted graph-based connection
schemes (minimum spanning tree (MST) and Delaunay triangulation (DEL)),
and one distance-based SWM, connecting all neighbours within a distance
inferior to the smallest distance maintaining all sites connected (i.e., the
longest edge of the MST graph (ND_max.edge.mst)). To weight connec-
tions along the edges of these SWMs, we tested a linear function and a
concave-up function with an exponent of 0.25, yielding a total of six SWM
candidates. The two weighting functions were calculated both from the
Euclidean and the resistance distances, totalling two sets of six SWMs
(SWMgeo and SWMres, respectively). To find the most supported
topologies, we used built-in syntax of the function listw.candidates in

adespatial (Dray et al. 2020) to generate SWMgeo candidates, and created
ad-hoc code to create SWMres candidates. These were then fed into the
function listw.select of the same package to find the most supported SWM
and subset of spatial predictors within it. The presence of spatial structures
in the genetic profiles was tested on the whole set of MEM associated with
positive autocorrelation structures for each SWM separately, using 9999
permutations and adjusted p values for multiple tests (Bauman et al.
2018a). If a SWM captured significant spatial patterns in the genetic
data, we performed a spatial eigenvector selection using the forward
selection procedure with double stopping criterion (Blanchet et al. 2008).
The SWM and subset of spatial eigenvectors (MEMgeo and MEMres, for
Euclidean and landscape resistance scenarios, respectively) yielding the
highest adjusted R2 were selected, an approach shown to produce the
highest accuracy and power (Bauman et al. 2018a, b).
We assessed significance of each redundancy analysis (RDA, Wollenberg

1977) axis through the marginal method (Legendre et al. 2011)
implemented in the function anova.cca in vegan, using 999 permutations.
We ran the same RDAs as above using the pcaiv function in ade4 (Dray and
Dufour 2007), to display the fitted scores on the constrained RDA axes. All
analyses were performed in the R statistical environment (R Core Team
2021; R code provided as Supplementary Appendix 3).

RESULTS
Species identification, genotyping, and clustering
A total of 475 faecal samples were collected, of which 230 were
identified as snow leopards. In the interest of space, we provide
full details in Supplementary Appendix 1.

Summary statistics of genetic diversity
Both datasets confirmed low allelic diversity of the population (AN
= 4.364 and 4.259; AE= 2.627 and 2.536 for GEN11 and GEN27,
respectively). The population was consistent with HWE assump-
tions (p values= 0.124 and 0.937 for GEN11 and GEN27,
respectively), showing only one locus deviating from HWE
expectations in both datasets (PUN132). Snow leopards in Gansu
were characterised by a low inbreeding coefficient (FIS equal to
0.033 and 0.011 in GEN11 and GEN27, respectively) and by
intermediate values of heterozygosity in both datasets. Corrected
estimates of these indices, accounting for inbreeding coefficients
and null alleles, were consistent with empirical observations, due
to the extremely low average rates of null alleles in both datasets
(Supplementary Tables S1 and S2).

Non-spatial methods - ordination
In the two datasets (GEN11 and GEN27), the amounts of variance
explained by the PCAs (25, 50, 75 and 100%) were approximately
achieved by 3, 7, 13, 37 axes and 3, 8, 15, 33 axes, respectively. No
significant axes were found by the broken stick models in GEN27,
while the first three were identified in GEN11 (Supplementary Fig.
S3). There was a clinal degree of overlap along the first three
principal components in both datasets, considering genotype
location (YCW and QLS), that became more marked when the
number of loci was reduced (GEN11) (Fig. 2). The clinal pattern of
genetic diversity was well represented by the first PC axis in both
datasets, suggesting a contact zone in the area of Shule Nan Shan
(Fig. 3). The subsequent two principal components highlighted
finer scale differences, especially in the localities of Shule Nan
Shan and Qifeng, with the two extremes of the sampled area
progressively more differentiated as the inertia of the axes was
reduced. Colorplots of the first three PCA axes however did not
clearly identify clines or structures (Supplementary Fig. S4).

Spatially explicit neighbourhood-based diversity indices
The threshold at which the ratio NE:NS approached unity based on
Euclidean distances was 100 km in both datasets. In the resistance
distance scenario, a threshold of 400,000 cost units was identified
in GEN11, and 1.2 million cost units in GEN27 loci (Supplementary
Fig. S5). Since the use of a single threshold was needed to
explicitly compare results between the two analyses, we
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Fig. 3 Principal Component Analysis (PCA) patterns. Principal component (PC) scores relative to the first three PCA axes in the two datasets.
GEN27= 34 individuals typed at 27 loci; GEN11= 49 individuals typed at 11 loci.

Fig. 2 Scatterplot of the first three principal component (PC) axes in the two genetic datasets. GEN27= 34 individuals typed at 27 loci;
GEN11= 49 individuals typed at 11 loci.
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constrained this threshold in GEN27 to be the same as GEN11,
similar to the threshold identified in the Euclidean distance
scenario, amounting a distance of 80 km-equivalent circa.
All the estimated average neighbourhood-based indices

remained similar within the two datasets across scenarios
(Table 1). In GEN11 (Fig. 4), both scenarios showed higher
average number of alleles per locus and higher NE in the centre of
the sample distribution, with progressively lower values at the
periphery. Patterns of FIS differed slightly between the scenarios.
For Euclidean distance (GEN11geo), both edges of the study area
presented the lowest values. Considering distances based on
movement cost (GEN11res), only the easternmost locality
displayed the lowest values, while the central localities presented
FIS values slightly higher than the westernmost edge (Fig. 4).
Higher values of heterozygosity (HO) were observed in the QLS
portion of the study area in both scenarios. Spatially explicit
indices for the GEN27 dataset (Fig. 5) were mostly concordant
with those described above, especially with regard to number of
alleles and NE (lower at either edge). Heterozygosity patterns in
GEN27 were also higher in the QLS region, and FIS estimates were

generally lower on the eastern portion of the study area,
compared to the central part (Fig. 5).

Spatial analysis - spatial weighting matrices and canonical
ordination
Significant genetic spatial patterns were systematically present for
both distance and resistance scenarios at all PCA inertia fractions
in GEN27, and only at PCA_25 in GEN11 (Table 2; Supplementary
Table S3). Usually, GEN27 sets were described by a distance-based
network with a sole exception relative to PCA_75 in SWMgeo,
while a graph-based connection scheme was always selected
by PCA_25 in GEN11 (Table 2). The two scenarios possessed
approximately the same explanatory power, with slightly higher
values for SWMres in GEN27 and SWMgeo in GEN11 (Table 2).
Spatial genetic structures identified in both modes of isolation
were generally weak. The proportion of genetic diversity
explained by eigenvectors was remarkably low when considering
the full genetic variance of GEN27, and remained relatively low
even when the content of PCA inertia was reduced in both
datasets (Table 2). All the sets retrieved no more than four

Table 1. Spatially explicit indices of genetic diversity calculated at the neighbourhood radius for which the ratio between effective population size
(NE) and neighbourhood size (NS) approached 1 (100 km in geo scenario, 400,000 cost-units in res scenario; see main text).

Spatially explicit diversity indices

Set/scenario AN HO HE HWE FIS NE

GEN27geo Average 3.706 0.523 0.543 0.641 0.035 26.377

SD 0.477 0.005 0.005 0.088 0.002 11.131

GEN27res Average 3.798 0.523 0.54 0.623 0.036 30.973

SD 0.442 0.009 0.005 0.082 0.002 14.055

GEN11geo Average 3.909 0.553 0.587 0.496 0.063 27.973

SD 0.531 0.02 0.02 0.161 0.023 15.315

GEN11res Average 3.97 0.559 0.589 0.509 0.054 30.445

SD 0.541 0.023 0.023 0.144 0.014 13.028

Values are averages and standard deviations obtained after prediction of missing values through random forest machine learning methods.
AN number of alleles per locus, HO and HE observed and unbiased expected heterozygosity, HWE Hardy–Weinberg equilibrium p value, FIS inbreeding
coefficient.

Fig. 4 Indices of genetic diversity calculated on GEN11 dataset at the neighbourhood radius identified by the Ne:Ns ratio in the
Euclidean distance (geo) and resistance distance (res) scenarios. An number of alleles, Ho Observed heterozygosity, Fis inbreeding
coefficient, Ne effective population size.
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significant eigenvectors (Supplementary Table S4). Significant RDA
axes were always three for PCA variance equal to, or above 50%,
and no more than two for the PCA_25 fractions in both GEN27
and GEN11 (Supplementary Table S5).

Major spatial patterns of snow leopard genetic diversity in
Gansu
We only describe results relative to the full content of information
(PCA_100) in the GEN27 dataset, as the patterns were concordant
across all PCA inertia fractions (Supplementary Appendix 2,
Supplementary Figs. A2.1–A2.3).
The main spatial pattern based on both RDAres and RDAgeo

was a major division between the geographic locality of YCW and
that of QLS. We observed admixed allelic patterns in the area of
Shule Nan Shan (Fig. 6). The first axis in both RDAs found some
degree of differentiation in the westernmost portion of Danghe
Nan Shan mountain.
The second RDAres axis also highlighted the broad geographi-

cal division, suggesting clines in the areas of Shule and Qifeng,
and from Shule to Yema/Danghe. In contrast, the second RDAgeo
clustered individuals from Yema and Danghe Nan Shan, revealed a
north-south gradient in Shule Nan Shan, and clearly distinguished
Qifeng from the other localities in QLS.
The third RDAres and third RDAgeo axes both differentiated

snow leopards at either edge of the sampling area. Overall, they
both described clinal patterns within QLS (RDAres) or between
QLS and YCW (RDAgeo). Shule Nan Shan was a linkage area in
which genetic patterns peculiar to Danghe, Yema and Qifeng
admixed (Fig. 6).
Clinal patterns in YCW were evident in the colorplot of the first

three significant RDA axes (GEN27 PCA_100; Supplementary
Appendix 2, Supplementary Figs. A2.5 and A2.6). While RDAres
would suggest a weak, but more marked structuring in YCW,
RDAgeo tended to describe this area as a continuum, with
individuals at the western edge of Danghe Nan Shan always more
differentiated. Both scenarios suggested a weak transition zone
extending from Danghe Nan Shan to Qifeng and differentiating
the cline between Longchanghe and Sidalong through augmen-
ted colour contrast (Supplementary Appendix 2, Supplementary
Figs. A2.5 and A2.6).

DISCUSSION
Spatially heterogeneous genetic diversity indices
Genetic variation tends to be clinal and to vary locally when
individuals are distributed over continuous areas (Chambers 1995).
These variations also depend on differential patterns of landscape
connectivity and habitat availability that create genetic structuring
(Shirk and Cushman 2011, 2014; Jackson and Fahrig 2016). The
relationships between higher genetic variation and habitat amount
have been well documented in population genetics (Frankham 1996;
Jackson and Fahrig 2016) and landscape genetics (Hearn et al. 2019;
Macdonald et al. 2018; Bothwell et al. 2017). Availability of habitat
resources and landscape continuity increase the amount of gene flow,
the effective population size, and overall genetic diversity (Frankham
1996; Shirk and Cushman 2014; Bruggeman et al. 2010). Therefore,
local variations in NE in heterogeneous landscapes are driven by local
population sizes, which in turn are dependent on habitat amount and
connectivity (Shirk and Cushman 2014; Jackson and Fahrig 2016;
Frankham 1996).
In line with these assumptions, we observed higher NE and

allelic richness in the central localities of Shule and Qifeng (Figs. 4
and 5), two areas found to harbour extensive suitable snow
leopard habitats (Atzeni et al. 2020), and to be characterised by
higher densities of individuals compared to the other localities
analysed in this study (Wang Jun, unpublished data; Alexander
et al. 2016).
When populations are genetically structured, there is a

theoretical expectation for a decrease in NS and NE from the
centre to the edge of a distribution (Shirk and Cushman 2014).
However, the lower values in Longchanghe and Sidalong may also
be influenced by the lower number of genotyped individuals.
Since the distribution of snow leopards is continuous (Atzeni et al.
2020), the current status of knowledge does not allow us to
determine whether the estimated NE and allelic number patterns
reflect true demographic processes or are the effect of the
sampling scheme employed in this study. However, consistent
with Shirk and Cushman (2014), the lower NE and allele numbers
in Yema and Danghe correspond with lower snow leopard
abundance in these sub-areas, compared to the two core central
areas (Wang Jun, personal observation), a pattern driven by
landscape and habitat characteristics (Atzeni et al. 2020).

Fig. 5 Indices of genetic diversity calculated on GEN27 dataset at the neighbourhood radius identified by the Ne:Ns ratio in the
Euclidean distance (geo) and resistance distance (res) scenarios. An number of alleles, Ho Observed heterozygosity, Fis inbreeding
coefficient, Ne effective population size.
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We found higher levels of inbreeding in the two core areas,
compared to the periphery (Figs. 4 and 5). In simulation scenarios
and in empirical datasets, Shirk and Cushman (2011, 2014)
postulated that lower NS and NE at the edges of a species
distribution can drive unrelated individuals to travel larger
distances to mate (see also Shirk et al. 2020), resulting in an
increase in heterozygosity and decrease in inbreeding coefficient.
Furthermore, lower populations in peripheral areas might also
drive populations inwards, causing the apparent increase in FIS in
the core areas (Shirk and Cushman 2014).
Recently, Shirk et al. (2020) explored the effects of gene flow

from unsampled demes on the genetic composition and spatial
variation of indices of the contiguous population of interest.
They suggested that admixture penetrating from unsampled
individuals would produce more divergence compared to less
admixed individuals near the core of the sampling area. In our
context, this phenomenon likely resulted in higher FIS values at
the centre of the sample distribution, and in lower values
especially at the eastern edge, confirming evidence of genetic
influence from snow leopard in the remaining portion of the
Qilian mountains, and likely accounting for most of the
observed genetic patterns seen in this study.
The theoretical expectation for these FIS patterns may also be

supported by kin structure and philopatric behaviour, a trait that
has been recently observed in snow leopards (Johansson et al.
2021), and postulated to create structuring at regional level
(Korablev et al. 2021). As higher kin structure is associated with
connected habitats and increased gene flow (Dharmarajan et al.
2014), it is possible that areas outside the central localities
represent sink habitats, characterised by lower availability of
resources and composed mostly of individuals dispersing from
sampled and unsampled core localities, presenting low family
structure and more genetic divergence.

Spatial structures of snow leopard genetic diversity in Gansu
The clinal pattern of differentiation (Figs. 2 and 3) did not support
the existence of groupings in these areas, contradicting recent
suggestions (Zhang et al. 2019). Examination of PCA axes
(Supplementary Fig. S4) indicated the high dispersal capacity of
these animals (McCarthy et al. 2005; Johansson et al. 2018),

implying a limited role of the landscape in creating strong
localised patterns of allele frequencies (Table 2).
However, RDA with MEM revealed that snow leopard genetic

diversity was significantly spatially structured, albeit weakly (Table
2). Overall, the main division was between Yema and Danghe in
YCW, and the entire QLS portion, with clinal patterns emerging at
finer spatial scale, describing an extensive contact zone in Shule
Nan Shan (Fig. 6; Supplementary Appendix 2). The differentiation
of samples at either edge of the study area suggests the need for
additional survey efforts along the whole Qilian mountains, and
west of YCW in the Altun mountains.
The evidence generated by MEM analyses complements the

patterns observed in spatial variation of diversity indices from sGD
analysis (Figs. 4 and 5). Admixture in the core areas stresses the
importance of these two structurally connected localities for overall
landscape connectivity, especially at a transition zone between eco-
regions (Wu et al. 2003). Shule and Qifeng, due to their favourable
habitat characteristics, contained more individuals and received
migrants from peripheral areas, creating a hotspot of genetic diversity
in the northwestern portion of the Qilian mountains.
The spatial variability of patterns is indicative of non-isotropic clinal

structures. Where gene flow is reduced by the effect of the landscape
matrix, local densities decrease as a result of diminished functional
connectivity (Kaszta et al. 2019, 2020). For example, Ruiz-Gonzalez
et al. (2015) explored the spatial genetic structure of pine and stone
martens in northern Spain. Their findings revealed complex clinal
structures, with steeper differentiation corresponding to the bound-
aries of the identified clusters, likely driven by high landscape
heterogeneity and fragmentation affecting gene flow. In our context,
although our findings do not support the existence of discrete
population units, we postulate that lower landscape connectivity in
YCWmight produce more differentiation over short distances, leading
to the main genetic division observed in the data (Fig. 6;
Supplementary Appendix 2). This results in an area of more rapid
changes within a continuous genetic gradient (Fig. 6; Supplementary
Appendix 2).

Strength and significance of patterns
Although significantly structured, spatial patterns were found to
be relatively weak. This low spatial signal in the snow leopard

Table 2. Most supported Spatial Weighting Matrices (SWM) and significant spatial functions retained (N. var) in each topology for each level of PCA
inertia in the two sets.

Scenario Set PCA SWM R2Adj p value N.var R2Adj.select

Resistance distance GEN27 100 ND.max.edge.mst_up 0.0755 0.0006 4 0.0687

75 ND.max.edge.mst_up 0.1246 0.0006 4 0.1131

50 ND.max.edge.mst_up 0.1922 0.0006 4 0.1633

25 ND.max.edge.mst_up 0.2871 0.0024 3 0.2462

GEN11 100 NONE

75 NONE

50 NONE

25 Delaunay_up 0.2268 0.0494 4 0.1588

Euclidean distance GEN27 100 ND.max.edge.mst_up 0.0721 0.0006 4 0.0610

75 Delaunay_lin 0.1118 0.0149 4 0.1072

50 ND.max.edge.mst_up 0.1822 0.0012 4 0.1417

25 ND.max.edge.mst_up 0.2852 0.0012 3 0.2187

GEN11 100 NONE

75 NONE

50 NONE

25 Delaunay_up 0.2289 0.0482 4 0.1681

R2Adj refers to the global adjusted R2, while R2Adj.select indicates the adjusted R2 obtained using the selected spatial functions.
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genetic profiles may be attributable first to a combination of the
inherent low genetic diversity and the high dispersal capacity of
this species, and secondarily to limited sample sizes. Recently,
Hein et al. (2021) demonstrated that demographic histories are
among the most influential factors determining the strength of
adjusted R2 in MEM-based genetic analyses. The authors also
illustrated that low sample sizes (in this paper represented by
the number of nodes in the topologies) generally diminish the
strength of the spatial signals. Our observations imply that, for
the extent analysed in this study, neither geographical distance
alone nor the landscape matrix are sufficiently strong constraints
to drive the emergence of strong, localised spatial genetic
patterns (Cushman et al. 2013), given snow leopards’ ecology
(Fig. 6; Supplementary Appendix 2).
Dispersal capacity of the species and the permeability of the

landscapes are key parameters driving the signal-to-noise ratio in
landscape genetics (Cushman et al. 2013; Shirk et al. 2017b, 2020).
In this study, we explored the effect of the landscape matrix
through an exponential transformation of a habitat model (Wan
et al. 2019; Supplementary Fig. S2). Although this is a common
practice in study of dispersal and/or landscape genetics (Zeller
et al. 2018), additional work to optimise landscape resistance
based on genetic differentiation (e.g., Shirk et al. 2010; Castillo
et al. 2014; Shirk et al. 2017a) is necessary to improve the reliability
of inferences regarding landscape effects on genetic diversity and
genetic structure, given that habitat relationships often correlate
poorly with patterns of genetic diversity and genetic differentia-
tion (e.g., Wasserman et al. 2010).
Much emphasis has been previously given to the utility of

resistance distances to weight the edges of SWMs (Bauman et al.
2018a; Galpern et al. 2014). We found that using either distance
type produced comparable values of adjusted R2 for each of the

PCA inertia fractions in the two datasets (Table 2), which could
either suggest that other influential factors may determine the
strength of spatial genetic structures (Hein et al. 2021; Shirk et al.
2017b), or that the response variables studied here are weakly
structured at the range of spatial scales detectable by our
sampling design. Further work will be necessary to gain better
insight into the benefits of incorporating alternative landscape
hypotheses in SWMs (Wagner and Fortin 2016).

Differences between datasets
Contrasting results were obtained from the different datasets in
their ability to identify spatial structures and to describe finer
scale genetic variation (consistent with Landguth et al. 2012).
Hein et al. (2021), argued that the strength of the spatial
structure is not affected by decreasing number of loci, and
contrasted their observations to previous landscape genetics
findings which demonstrated that correlations between genetic
and ecological distances are sensitive to the number of loci and
the level of polymorphism (Landguth et al. 2012; Oyler-McCance
et al. 2013). These divergent conclusions might be resolved given
that they are based on different analytical approaches and
different questions: one seeking to ascertain whether there is
significant genetic structure (and resulting spatial autocorrela-
tion patterns), while the other attempting to find a landscape
scenario creating those patterns. Our results partly agree with
Hein et al. (2021)’s observations, and partly with those of
Landguth et al. (2012) (e.g., stronger relationships in the dataset
with more loci), but emphasise the importance of analysing the
proportion of the allelic information which captures the spatial
variation (e.g., Shirk et al. 2017b). In fact, even datasets with
limited genetic resolution can describe significant spatial genetic
variation (Hein et al. 2021), particularly when PCA analysis was

Fig. 6 Redundancy analysis (RDA) patterns. Significant axes for the landscape resistance scenario (RDAres) and Euclidean distance scenario
(RDAgeo), in the set at 27 loci (GEN27), PCA variance equal to 100%.
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used to retain meaningful portions of genetic variance while
reducing the effect of random variation unrelated to spatial
genetic structure (e.g., Shirk et al. 2017b; Table 2).
Ordination axes as response variables in RDA and partial RDA

are increasingly applied in spatial genetics studies (e.g.
Dalongeville et al. 2018; Guerrero et al. 2018; Breyne et al.
2014). This is because ordination methods can distil the
meaningful genetic variation in each dataset, avoiding the
inclusion of unnecessary axes capturing mostly noise (Patterson
et al. 2006; Shirk et al. 2017b). In link-based analyses, Shirk et al.
(2017b) recommended that under the most challenging condi-
tions for detection of landscape genetics patterns (i.e., low
sample size and high dispersal ability), including additional PCA
axes would improve the accuracy of inferences regarding the
processes driving genetic diversity. However, this appears to be
related to the variability of allelic information contained in a
given dataset, in which case adding further variance does not
improve accuracy (Shirk et al. 2017b). These observations seem
also to apply to other analytical frameworks, as in this study. Our
results highlight the importance of other explorations of the
utility and the behaviour of MEM in analysing landscape variation
in genetic patterns. The circumstances in which detection of
patterns will be enabled or inhibited, at varying number of
ordination axes (e.g. Landguth et al. 2012; Forester et al. 2016),
needs to be carefully inspected across a wide array of possible
factors, represented by demographic histories, number of
markers, genetic variability, sample sizes (i.e., nodes in the
network), and possibly alternative landscape resistance hypoth-
eses (e.g., Landguth et al. 2012; Cushman et al. 2013).

Implications for snow leopard research and conservation
The connection between the number of genetic markers, the
genetic signal and their power to describe significant patterns
has practical implications in studies of spatial genetic diversity.
Theoretically, a small subset of loci can suffice to identify either
spatial structures (Hein et al. 2021) or the generating landscape
processes in link-based analyses (e.g., Short-Bull et al. 2011;
Landguth et al. 2012). Given the slow progress of snow leopard
genetic research (Weckworth 2021), to date no studies, besides
this one, have produced a comprehensive description of local
allelic diversity to guide further genetic surveys. As it is not
possible to ascertain in advance the quality of samples, the
number of reliable profiles, and the degree of polymorphism,
studies limited in extent should proceed iteratively, ascertaining
first whether the loci chosen for individual identification are
enough to capture meaningful and significant spatial variation.
This of course depends on the exploration of the variance
expressed by ordination axes which is representative of the
whole information contained in the datasets (Forester et al. 2016;
Shirk et al. 2017b).
If patterns are undetectable, then evaluating the interplay

between the number of markers and PCA variance, together with
the adoption of the spatial methods applied in this study, will help
researchers clarify whether there is in fact no spatial genetic
pattern, or if the lack of detected structure may be related to
insufficient data, be it sample size (Hein et al. 2021), number of
markers (Landguth et al. 2012; Oyler-McCance et al. 2013), genetic
variation, or their interaction (Landguth et al. 2012). Landscape
genetics inferences regarding the landscape process that have
generated spatial genetic patterns are highly susceptible to the
interaction between sample size, number of markers and allelic
richness (Landguth et al. 2012; Oyler-McCance et al. 2013).
Ongoing work is revealing that analyses of few loci produce less
ecologically accurate inferences for snow leopard genetic
structure (Atzeni et al. submitted), which has a larger effect than
that of sample size of genotyped individuals (Atzeni et al.
submitted; Landguth et al. 2012). Future directions in landscape
and spatial genetics might fruitfully evaluate relationships

between the strength of a spatial signal and the accuracy of
landscape genetics inferences, ideally using a simulation approach
that controls the pattern-process relationships (e.g., Landguth and
Cushman 2010; Landguth et al. 2012). These observations are
generalisable to other highly vagile species for which cryptic
genetic patterns are expected.

CONCLUSIONS
This study described the presence of weak spatial genetic
structure in a snow leopard population from Gansu, China,
revealing a principal geographical division between adjacent
mountain ranges coupled with a cline of differentiation coincident
with two admixture localities which were distinctive in their higher
effective population size and allelic diversity.
Overall, spatially explicit indices of diversity, together with

evidence generated through our MEM-based approach, empha-
sised the key importance of two core areas in providing potential
snow leopard population strongholds and source for dispersal in
the northwestern portion of the Qilian landscape.
Our analytical framework combined the detection of genetic

structures with the assessment of the spatial variation of genetic
diversity parameters. This gave us increased power to describe
cryptic patterns of genetic diversity. Our approach represents a
particularly effective strategy to gain insights into the localised
differentiation in continuously distributed populations, provid-
ing a means to explain the nature of inferred spatial structures
through demographic patterns. This enables hypothesis testing
regarding the manner in which the landscape facilitates or
impedes gene flow, which is essential for tailored conservation
strategies.
This study also fills an important knowledge gap in snow

leopard research, providing genetic baseline data for continuously
distributed individuals in an under-studied landscape, at a
relatively high number of microsatellite loci. The results will guide
the design of future surveys to expand spatial genetics inferences
to larger extents, and guide future large-scale correlative land-
scape genetics studies to quantify the effect of landscape
structure on snow leopard gene flow across its range. As research
and conservation efforts for snow leopard become more restricted
to ‘high-quality’ patches (Johansson et al. 2016), it is increasingly
vital to understand genetic structure and the landscape, manage-
ment and other factors that might affect the species’ survival.
Finally, this study raises important methodological questions
regarding the applicability of PCA axes and spatial eigenvector-
based methods such as MEM in landscape genetics, which we
hope will inspire further work to improve our understanding of
gene-environment relationships.

Data archiving
Genotypes and geographic coordinates of snow leopard indivi-
duals in the two datasets cannot currently made available due to
restrictions and directives from the competent authorities of the
Popular Republic of China.
The corresponding author is willing to consider any reasonable

request for data sharing and to gather the necessary permissions
to do so.
R code relative to the calculation of cost distance-weighted

Spatial Weighting Matrices (SWMs), is provided as appendix
material to this manuscript.
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