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In the past decade, the high throughput and low cost of sequencing/genotyping approaches have led to the accumulation of a
large amount of data from genome-wide association studies (GWASs). The first aim of this review is to highlight how post-GWAS
analysis can be used make sense of the obtained associations. Novel directions for integrating GWAS results with other resources,
such as somatic mutation, metabolite-transcript, and transcriptomic data, are also discussed; these approaches can help us move
beyond each individual data point and provide valuable information about complex trait genetics. In addition, cross-phenotype
association tests, when the loci detected by GWASs have significant associations with multiple traits, are reviewed to provide
biologically informative results for use in real-time applications. This review also discusses the challenges of identifying interactions
between genetic mutations (epistasis) and mutations of loci affecting more than one trait (pleiotropy) as underlying causes of cross-
phenotype associations; these challenges can be overcome using post-GWAS analysis. Genetic similarities between phenotypes
that can be revealed using post-GWAS analysis are also discussed. In summary, different methodologies of post-GWAS analysis are
now available, enhancing the value of information obtained from GWAS results, and facilitating application in both humans and
nonhuman species. However, precise methods still need to be developed to overcome challenges in the field and uncover the
genetic underpinnings of complex traits.
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INTRODUCTION
One of the powerful and widely used methods to detect
associations between phenotypes and genetic variants is the
genome-wide association study (GWAS), which analyzes genetic
variants in common diseases. This method has been proved useful
through an extreme increase in published GWAS results over time
from its introduction (~2008) to the present (MacArthur et al.
2017). Some studies have recently reviewed novel techniques and
methodologies for data pre-processing and GWAS methodologies,
which increase the power of the analysis and help achieve
accurate results from GWAS (Mortezaei and Tavallaei 2021; Tam
et al. 2019).
Although GWASs can identify disease mechanisms, leveraging

the wealth of GWAS-implicated loci and inferring truly causal
variants is the main bottleneck that leads to gaps between genetic
studies and therapeutic applications (Schaid et al. 2018). To close
these gaps, post-GWAS pipelines have been developed (Box 1).
Based on cell culture-based experiments and biological post-
GWAS functional studies, candidate causal variants can be
identified, and genetic variants in haplotypes associated with
diseases can be defined. Post-GWAS analysis can identify genes
functionally related to specific diseases and more quickly connect
the functional part of the genome with clinical applications (Lin
et al. 2018); for instance, the post-GWAS analysis helped gain new
insight into causal germline variants and their impact on the

aetiology of prostate cancer and translate genetic variants into
therapeutic and clinically meaningful results (Farashi et al. 2019).
Meta-analysis of GWASs can be performed to increase the

power of association detection by analyzing more genomic
variants in human and nonhuman species. For example, to
discover flavor-associated single-nucleotide polymorphisms
(SNPs) in tomatoes, a meta-analysis of GWASs was performed.
The results of this analysis indicated that in comparison with
traditional cherry tomatoes, in modern cultivation, the majority of
alleles associated with high sugar levels have been lost. Such
results can provide new insight into the genetics of tomato flavor
and how to control it (Zhao et al. 2019a). Further, the results of
GWAS meta-analysis for multiple myeloma in human has
identified suggestive novel risk alleles that could better capture
disease risk in individuals (Du et al. 2020).
In post-GWAS analysis, another applicable technique is cross-

phenotype association analysis, which refers to cases when loci or
genes have significant associations with multiple traits. One of the
limitations of quantitative trait analysis approaches, such as GWAS,
is the challenge of identifying epistasis and pleiotropy. Epistasis
refers to the influence of genetic mutations on other mutations,
and pleiotropy refers to a phenomenon in which a single locus can
control multiple phenotypic characteristics. Epistasis can cause
pleiotropy, and pleiotropy is known to be an underlying cause of
cross-phenotype associations (Polster et al. 2016).
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This review considers the challenges of detecting truly causal
variants from GWAS, identifying the functions of identified loci,
and understanding the contributions of most identified loci to the
pathogenesis of complex traits and the subsequent application of
post-GWAS analysis techniques to overcome these challenges.
Then, different post-GWAS integrative and cross-phenotype
association analysis methods, considering epistasis and pleiotropy,
that can provide valuable information from GWAS results, are
discussed. The post-GWAS study design is indicated in Fig. 1.
In addition, Box 1 summarizes the objectives and types of the

post-GWAS method reviewed in this paper and key post-GWAS
methods, including LD score regression, genetic correlations, and
polygenic risk scores (PRSs), are discussed in Box 2.

CAUSALITY DETECTION
According to the American College of Medical Genetics and
Genomics, a genetic variant is causative if it is involved in a
specific phenotype development. These phenotypes can be
human diseases, behaviors, morphology (e.g., height), economic

Box 1. Post-GWAS analysis methods

The post-GWASs are commonly used follow-up methods to discover risk loci applying GWAS signals’ sophisticated interpretation. There exist some challenges that can be
filled using post-GWAS analysis methods. For example, post-GWAS analysis can be used to leverage GWAS-implicated loci’s wealth, and to identify the functions of significant
SNPs. A genetic variance’s fraction can be explained with an expression quantitative trait locus (eQTL) in gene expression phenotype. In such analysis, association tests are
performed between gene expression levels and genetic variation markers (Nica et al., 2013). In addition, post-GWAS integrative analysis can be applied to integrate
cofunctional genes, clinical findings, somatic mutations, eQTL data, and metabolite-transcript correlations with GWAS results (Gallagher and Chen-Plotkin, 2018).

Gaps Post-GWAS method Aim

Gaps between genetic
studies and therapeutic applications

Post-GWAS causality detection To infer truly causal variants, and the functions of identified loci

Gaps between genetic variations with their
biological roles
and functions

Post-GWAS integrative analysis Combining GWAS results and comparing them to identify
contribution of identified loci to the pathogenesis of complex traits

Loci or genes can have significant associa-
tions with multiple traits

Post-GWAS cross-phenotype
association

Boost the power of GWASs, identifying epistasis and pleiotropy

Similarities between phenotypes Post-GWAS phenotypic
comparison

Compare phenotypes within and between species,
understand disease prognosis and its treatment

Fig. 1 Post-GWAS study design. One set of study is shown in large circle. Significant SNPs detected from the GWAS results can be causative
variants, shown in small area, or those in LD with causals for which functional annotations are required, shown in another area. The post-
GWAS integrative analysis, shown in the next circles below others, combining GWAS results with somatic or transcriptomic data, can be used
to boost the GWAS power. Such analysis and its results for each phenotype can be used in cross-phenotype associations and phenotypic
comparisons, using another set of study shown in different labeled circle.
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success, and also behavioral, functional, and productive pheno-
types in plants and animals (Richards et al., (2015)). It is possible
that a pathogenic variant is not causative; this can happen when
nonfunctional and benign variants are involved in the patho-
genesis of the patient’s phenotype. Based on the genomic
architecture, the density of genotype data, selection signals, and
genotyping technologies including SNP array designs either to
include SNPs inside known genes or not, GWAS can identify the
causative loci or those in linkage disequilibrium (LD) with them.
Common tag SNPs can identify causal variants, their variance
proportion, and their true effect size to help account for the
missing heritability in GWAS (Boudellioua et al. 2017). Compar-
ing gene-phenotype associations with patient phenotypes, a
method called PhenomeNET Variant Predictor (PVP) was
developed; this approach considers patients’ phenotypic simila-
rities to rank potential candidate genes and facilitate causal

variant identification. PVP merely depends on the phenotypes of
the modeled organism. It is only applicable when variants are in
known disease genes, and it does not provide information
regarding oligogenic or digenic inheritance. DeepPvP (Boudel-
lioua et al. 2019) and OligoPVP (Boudellioua et al. 2018) are
developed methods that can be employed for PVP, which is
useful for causal variant detection of complex traits. The
performance of PVP has been evaluated by the previous study
on congenital Hypothyroidism (CH) for potentially pathological
variant detection, which analyzes a series of exomes in the
UK10K dataset when the results indicate likely causative variants
(Boudellioua et al. 2017).
To examine the effect of causal variants on a specific disease,

Mendelian randomization (MR) is a suitable approach. The name
MR comes from Mendel’s law of independent assortment when an
individual’s genotype is formed randomly during segregation
(Grover et al. 2017). In recent years, diverse MR methodologies
have been developed, and the selection of an appropriate method
depends on considering a combination of conditions such as data
availability, number of SNPs, and correlations between SNPs. For
example, two-stage least squares, limited information maximum
likelihood, inverse variance weighted, MR-Egger, weighted median
regression, multivariable MR, Bayesian MR, structural mean
models, and generalized methods of moments are different MR
strategies that provide causal estimates for genetic instruments
(Kou et al. 2020). There are also some R packages, such as
TwoSampleMR and PathD, and a STATA package called MRrobust
for MR analysis (Davis et al. 2018). One previous study has
employed MR in osteoporosis for causal variant inference and
potential risk factor detection. Horizontal pleiotropy, LD, popula-
tion stratification, trait heterogeneity, the complexity of associa-
tion, dynastic effects, clinical period effects, selection bias, and
weak instrument bias are some limitations of MR that can make it
more complicated (Kou et al. 2020).
On the other hand, propensity score approaches are conditional

probability assignments that can be applied in population-based
genetic association studies to obtain valid estimates and address
confounders such as disease and patient characteristics or genetic
ancestry. For example, the combination of principal components
and propensity scores (PCAPS) can be used to address con-
founders due to population stratification. The advantage of using
PCAPS is the ability to detect true associations and reduce false-
positive findings in GWASs by capturing and summarizing the
variability in principal component analysis. PC can be carried out
on GWAS results using EIGENSOFT software, whose predictions in
the logistic model can be employed in PCAPS estimation.
Compared to other PCA methods, PCAPS can correctly identify
false-positive results. PCAPS has been examined as a practical and
innovative way for testicular cancer to correct GWAS population
stratifications and false-positive identification (Zhao et al. 2018).
One of the other developed methods is the propensity score
adjustment method (PSAM), which uses estimated propensity
scores to adjust for the influences of epistasis or correlations. This
method tests for single locus associations and uses genetic variant
interactions or correlations to adjust for their effects and account
for the missing heritability. The PSAM methodology starts with
SNP subset selection and estimation of propensity scores and
disease associations for each SNP. Next, univariate logistic
regression is used for each SNP, and stepwise multivariate logistic
regression is performed using the logit model. Without increasing
the model complexity, the PSAM can increase the power of
logistic regression tests for single-point association analysis when
accounting for factors such as missing heritability. PSAM can be
employed to determine treatment and outcome association.
Furthermore, some treatment and outcome spurious associations
caused by covariant confounders can be removed using PSAM.
Seven simulated data types were used to evaluate the PSAM
performance, and the result indicated a 15% improvement in the

Box 2. LD score regression, genetic correlations, and polygenic risk
scores

Due to hardly identifying mechanistic insight toward statistical risk associations,
PRS is related to a specific disorder and each individual, using GWAS data to
provide genetic burden’s quantitative index and disease risk prediction
confidently. PRS can be computed for each individual as the sum of risk alleles’
effect on a particular phenotype. In post-GWAS analysis, only significant and
statistically robust variants are used for PRS due to being more likely to contribute
to trait variation. On the other hand, using biological processes and pathways for
variation selection can be used to construct PRS. A combination of multiple
variants’ effect size in PRS form provides useful indicators beyond clinical
information to help patients and clinicians pinpoint risk assessments by identifying
individuals at high risk (Pierce et al., 2020). Using PRS for associated variants with
bone mineral density showed falls, prior fractures, and age independence. Also,
bone loss assessment using PRS showed its association with postmenopausal age
(Nguyen and Eisman, 2020).
Based on non-European ancestry, the lack of evidence leads to many challenges

in individual PRS to translate it from normal distribution’s percentile to a disease risk
lifetime. Among psychiatric disorders, a piece of evidence indicated that there are
nearly identical schizophrenia’s genetic basis across Europeans and East Asia (Lewis
and Vassos, 2020). In post-GWAS analysis like heritability estimation and genetic risk
score construction, having true effect sizes is beneficial. A software package,
“Tractor”, has been presented before to accurately estimate ancestry-specific effect
size. In addition, having different levels of polygenicity in admixed cohorts, Tractor
can be used to arrive at more accurate results for post-GWAS analysis (Atkinson
et al., 2021). This method uses local ancestry inference (LAI) in RFmix-v2 software for
data harmonization and downstream analysis. LAI was validated in African-
Americans when properly-being performed. In addition, the Tractor has been
evaluated using simulations for different effect sizes across ancestries, different
disease prevalence, or admixture fractions.
The inflated distribution of GWAS test statistics can be due to polygenicity or biases

like population stratification and cryptic relatedness. In order to distinguish between
polygenicity signals and bias inflations, their contributions can be quantified by LD
score regression when considering LD and test statistic’s relationship. This analysis
can be performed using LD score against GWAS and regressing X^2-statistic to
estimate confounding bias’s meaningful contribution to the test statistic inflation. This
approach has been successfully applied to the GWAS results of different phenotypes
indicating its correlation factor of meta-analysis for GWAS (Bulik-Sullivan et al., 2015).
One of the applications of LD score regression is an estimation of signal enrichment
considering the functional annotation of SNP categories. For this purpose, initially
using data from 1000 genome, or GenoSkyline annotation, LD scores for annotation
stratification were jointly computed by the LD score regression for seven tissue types.
The results indicated that with GWAS strong signals and large sample sizes, the LD
score regression works better (Lu et al., 2016).
Correlation between additive genetic effects of two phenotypes is called genetic

correlation, which can quantify genetic similarities and provide information about
complex traits with polygenic genetic architecture. Genetic correlation is an
informative matrix containing genotype data from GWAS based on a linear mixed
model. The genetic correlation has quickly become a popular and routine
procedure in the post-GWAS field, providing insights into the complex trait’s
genetic etiology. In the last few years, this procedure was implemented in large-
scale published GWAS. For example, the genetic correlation between brain
disorders indicated that neurological disorders, e.g., ischemic stroke, Parkinson’s
disease, and Alzheimer’s, are more distinct from each other in comparison to
psychiatric disorders, like bipolar and schizophrenia having correlated genetic risks
(Anttila et al., 2018). Cross-trait LD score regression (LDSC) is a post-GWAS method
in estimating genetic correlation using GWAS summary statistics. By using LDSC,
genetic correlations among 30 complex traits like cardiovascular diseases,
neuropsychiatric disorders, cancer, immune disease, metabolic and anthropometric
traits have been successfully estimated (Guo et al., 2021).
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power of disease association identification compared to other
methods. Afterward, the results of performing PSAM for rheuma-
toid arthritis and immunity have identified significant associated
SNPs (Rai et al. 2018). One limitation of propensity score
approaches is that they do not ensure balance in unmeasured
and confounders and cannot substitute for randomization. The
methods that are mentioned for causality detection, along with
their applications and limitations, are explained in Table 1.

FUNCTIONAL ANNOTATIONS
In the identification of disease-associated genetic variants,
although the GWAS method is powerful, it cannot directly address
genetic association signals, which are a set of variants within a
locus that can influence target genes and are associated with a
complex trait (Cannon and Mohlke 2018). To address such
problems, post-GWAS analysis is performed by predicting the
genes identified from reported GWAS variants that are most likely
to be associated with the disease (Gallagher and Chen-Plotkin
2018). The post-GWAS analysis can use eQTL (Box 1), genetic and
ontology data and co-functional gene networks to predict disease-
related genes. The post-GWAS analysis can also consider
associations between promoters and regulatory elements to
predict disease-related genes distal or proximal to regulatory
elements or GWAS signals. Such post-GWAS analysis can identify
disease genes and then score such variants to prioritize the most
likely signals (Broekema et al. 2020). For example, in a case study
of Alzheimer’s disease, post-GWAS analysis identified 131 highly
scored putative risk genes among 552 candidate genes (Lin et al.
2018). Furthermore, pathway analysis and Gene Ontology (GO)
(The Gene Ontology Consortium 2019) terms, mammalian
phenotypes (Weng and Liao 2010), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways (Kanehisa et al. 2017) can
be combined to analyze such results and identify the most likely
candidate genes. Post-GWAS pathway analysis has been success-
fully employed to identify novel risk pathways and biological
mechanisms of type 2 diabetes (Liu et al. 2017).
On the other hand, fine-mapping approaches can be applied for

variants, which are usually combinations of functional annotations
and statistics. Such studies usually include genotyping arrays for
studying specific SNPs, statistical approaches for the detection of
causal SNPs, and functional annotations (Osgood and Knight 2018).

Usually, genes close to GWAS-identified SNPs are assumed to be
high-risk genes, and distant genes are ignored. For instance,
integrated post-GWAS analysis of schizophrenia has been
performed to address such problems and identify distant disease
risk genes by regulatory elements (Lin et al., (2016).
Within a locus, independent association signals can be

determined using fine-mapping approaches that involve stepwise
conditional analysis involving targeted re-sequencing (Salomon
et al. 2016) and imputation (Howie et al. 2012). Then, a creditable
set can be defined using a posterior probability with a Bayesian
approach. Next, the functional annotations of the creditable set
can be determined using National Institute of Health (NIH)
roadmap studies (Romanoski et al. 2015) or the Encyclopedia of
DNA Elements (ENCODE) (ENCODE project consortium 2012). For
example, in type 1 diabetes, 50 susceptibility loci were examined
using a Bayesian fine-mapping approach (Onengut-Gumuscu et al.
2015); For instance, a Bayesian approach has been successfully
used to detect significant loci associated with 22 traits in the
Kaiser cohort (Majumdar et al. 2018).
Overall, the value of the generated data is strongly related to

the selected tissue or cell type. Genome editing based on
clustered regulatory interspaced short palindromic repeats
(CRISPR) is another approach for identifying causal variants by
introducing deletion/insertion mutations in a locus (Cong et al.
2013). For example, this approach was successfully applied in a
study on Parkinson’s disease (Soldner et al. 2016). In addition, a
GWAS-identified locus can be edited to match orthologues of
other loci. In such approaches, to identify important gene
regulatory regions, genome editing can make precise changes,
such as SNP mutations, to identify important gene regulatory
regions (Bauer et al. 2013).
Usually, causal variants coincide with regions associated with

transcription factor (TF) binding sites of chromatin interactions or
histone modification and open chromatin (Rivandi et al. 2018).
Data on the locations of DNA methylation, open chromatin,
histone modification, TF binding sites, DNA expression and other
regulatory features are publicly available from ENCODE (https://
www.encodeproject.org/) (ENCODE Project Consortium 2012),
the NIH roadmap epigenomics project (Zhou et al. 2015), the
FunctiSNP R package (http://www.bioconductor.org/packages/
release/bioc/html/FunciSNP.html) (R Core Team 2012), Regulo-
meDB (http://www.regulomedb.org/) (Boyle et al. 2012) and

Table 1. Methods in causality detection.

Methods Application Explanation limitations

PhenomeNET Variant
Predictor (PVP)

Comparing gene-phenotype
associations with patient
phenotypes

DeepPvP (Boudellioua et al., 2019),
OligoPVP (Boudellioua et al., 2018),
applications of PVP for diseases like
oligogenic diseases (Boudellioua et al.,
2017)

PVP is only useful when variants are in
known disease genes, providing
information about oligogenic or digenic
inheritance.

Mendelian
randomization

Examine the effect of causal
variants on a specific disease

Two-stage least squares, limited
information
16 maximum likelihood, inverse variance
weighted, MR-Egger, weighted median
regression,
17 multivariable MR, Bayesian MR,
structural mean models, and generalized
methods of moments, TwoSampleMR and
PathD R packages, MRrobust STATA
package (Kou et al, 2020; Davis et al, 2018;
Kou et al., 2020)

Depending on SNP correlations, number of
SNPs, data availability, horizontal
pleiotropy, LD, population stratification,
trait heterogeneity, complexity of
association, dynastic effects, clinical period
effects, selection bias, weak
instrument bias

Propensity score
approaches

Address
confounders such as disease
and patient characteristics or
genetic ancestry

Principal components and propensity
scores, propensity score adjustment
method (PSAM) (Rai et al., 2018)

Not ensuring balance in unmeasured and
confounders, not substitutes for
randomization.

For the detection of causal variants, some methods are explained their applications and limitations.

Z. Mortezaei and M. Tavallaei

488

Heredity (2021) 127:485 – 497

https://www.encodeproject.org/
https://www.encodeproject.org/
http://www.bioconductor.org/packages/release/bioc/html/FunciSNP.html
http://www.bioconductor.org/packages/release/bioc/html/FunciSNP.html
http://www.regulomedb.org/


HaploReg (http://archive.broadinstitute.org/mammals/haploreg/
haploreg.php) (Ward and Kellis 2011). Inferring the mechanism
of causal variants is complicated because GWAS-identified loci
may regulate multiple RNAs or target genes. To address this
challenge, information about gene expression and chromatin
interaction, regulatory data and bioinformatics developments can
be useful (Rivandi et al. 2018).
Enrichr (http://amp.pharm.mssm.edu/Enrichr) is a comprehen-

sive resource containing a collection of gene sets and their
biological knowledge to further analyze GWAS results. The
number of annotated gene sets in Enrichr is more than 180,184
(Kuleshov et al. 2016). Moreover, another web-based platform that
can be used for GWAS results’ functional annotation and genetic
causal variants’ prioritization is FUMA, http://fuma.ctglab.nl. It
provides adequate insight into the genetic variants’ biological
implications by combining biological data repositories and tools
(Watanabe et al., (2017)). In addition, being training on eQTL fine-
mapping, Expression Modifier Score (EMS) is a genomic score
method used to predict regulatory effects of variants on gene
expression and could leverage epigenetic marker prediction.
Among other genomic score methods, the EMS has higher
prediction accuracy and is useful for regulatory variant prioritiza-
tion. Initially, score bins were predicted for that method, and then
the fraction was calculated for positively labeled samples to scale
the output score and derive EMS. EMS has been validated and
used preferably to QTLs statistical fine-mapping. Then using the
UK Biobank (UKBB) dataset (Bycroft et al. 2018) for hematopoietic
traits, the Finucane lab, https://www.finucanelab.org/, used the
EMS to prioritize putative causal variants of non-coding regions
(Wang et al. 2021).
One of the most important challenges in the field of GWAS is

that most significant SNPs identified through GWASs fall outside
of coding regions; thus, the function and contribution of most loci
to the pathogenesis of complex diseases are largely unknown
(Mortezaei et al. 2017). Thus, it is critical to understand the
biological functions, roles and disease effects of genetic variants.
The detection of functional genetic variants in non-coding
elements is discussed in Box 3.

POST-GWAS INTEGRATIVE ANALYSIS
GWAS results can be compared with prior findings to get more
valuable genetic results which can be used for real-world medical
applications. For GWAS summary-level data, a comprehensive
collection can be assessed using the GWAS Central database (Beck,
Shorter T (2019)) or GWAS database (GWASdb) (http://jjwanglab.
org/gwasdb) (Lin et al., (2016)) to obtain access to unified and
combined data. GWAS Central is a collection of metadata and
GWAS summary-level data from many sources, including the Open
Access Database of Genome-wide Association Results (Johnson
and O’Donnell 2009) and the National Human Genome Research
Institute-European Bioinformatics Institute (NHGRI-EBI) (Buniello
et al. 2019), published or unpublished GWAS data, etc. One of the
advantages of using GWAS Central is that all available summary-
level data in that database are available for use, rather than limiting
the data to only results with significant p-values (Beck, Shorter T
(2019)). In comparison with GWAS Central, in GWASdb, there is a
larger number of GWAS publications that studied population-
specific traits (Lin et al., (2016)).
Integrating GWAS results with other resources, such as clinical

findings, co-functional genes, somatic mutations, metabolite-
transcript correlation, and eQTL data, can provide valuable
information about the genetics of quantitative traits (Wang et al.
2016). For example, network-based integrative analysis of GWAS
biological signals with networks of co-functional genes provided
an opportunity to augment GWAS findings and detect highly
probable candidate genes in association with quantitative traits in
Arabidopsis thaliana (Lee and Lee 2018). Integrative analysis has

also been applied to combine GWAS findings with a network of
metabolite-transcript correlations for Arabidopsis. This strategy can
be used to identify gene-metabolite associations and discover
novel genes in relation to the metabolites (Wu et al. 2016).
Applying large-scale integrative analysis of GWAS data with
methylation QTLs could also identify multiple disease-specific
genes and pathways and provide novel insight into their genetic
mechanisms (Zhao et al. 2017). In addition, the integration of
GWAS results with epigenomic data can be achieved by applying
the GWAS3D database for the identification of genetic variants
with the ability to affect regulatory elements such as enhancers
and promoters. Evaluation of GWAS3D was successfully performed
for plasma low-density lipoprotein cholesterol to prioritize
regulatory variants (Li et al. 2013).
It has been shown that integrative analysis that links genetic

variations with their biological roles and functions is important
and useful in genetic prediction. Integrative analysis of GWAS
results has revealed some genes in association with obesity-
related phenotypes, considering their contribution to the regional
fat distribution (Ahn et al. 2019). In addition, in previous studies,
some hub genes in relation to milk yield in Mediterranean
buffaloes were found using co-expression network analysis and
GWAS data (Deng et al. 2019).

GERMLINE VARIANTS AND SOMATIC MUTATIONS
Single-cell analysis can e.g., be employed for studies of cancer, as
a disease caused by uncontrolled invasiveness and proliferation
and somatic mutations (Ren et al. 2018). For instance, somatic
single nucleotide variants on bone marrow were discovered

Box 3. Functional genetic variants in non-coding elements

Functional genetic variants can be detected using the previously published
methods RegulomeDB (Boyle et al, 2012) and HaploReg (Ward and Kellis, 2011). To
identify functional genetic variants, RegulomeDB uses manual annotation and
computational prediction, and HaploReg provides a combination of genome
annotation with provided haplotype blocks. Functional genetic variants detected
by a GWAS in non-coding elements can be identified and screened quickly and
directly using the integrated transcriptome and epigenome analysis (iTEA)
proposed by Meng et al. (2018) and tested with type 2 diabetes data. In such
analyses, GWAS results are combined with genetic transcription data and genome-
wide maps of chromatin features. Then, using text-mining approaches such as
clustering, automated classification, coauthorship visualization, and meta-search
engines (Przybyla et al, 2016), the results can be further validated. For example,
using the iTEA technique, it has been discovered that the expression of IGF1, a
gene associated with the risk of diabetes, can be functionally regulated by the
rs35767 SNP. This result has also been validated by searching previous
experiments results to investigate the effect of rs35767 on IGF1 using adult
DNA samples from the European population. The results of such experiments
indicated IGF1 replication and rs35767 association in two independent European
cohorts with over 1400 participants (Mannino et al., 2013).
Mainly, post-GWAS analysis reveals causal variants’ post-transcriptional regulatory

effects by examining non-coding RNAs (ncRNAs) such as microRNAs and long
ncRNAs (Hou and Zhao, 2013). SNPs significantly associated with complex traits that
are located in non-coding regions of the genome likely cause changes in the
expression levels of genes. Then, to analyze significant SNPs in non-coding regions,
the affected genes must be characterized on the basis of the ways that they can
affect the manifestation, progression or initiation of a specific disease (Giral et al,
2018). One challenge in such studies is the existence of more than one target gene
whose expression is influenced by significant SNPs. In such cases, putative causal
genes are usually chosen based on their proximity to elements that regulate their
expression levels, the degree to which their expression is affected and their function
(Farashi et al, 2019).
Then, for functional investigation and to prioritize genes, in post-GWASs, a

pathway analysis strategy can be used. Different methodologies for pathway
analysis, such as ingenuity pathway analysis (IPA) () (Kramer et al, 2014) can be used
to shorten the list of candidate genes. When genes have not been assigned to a
specific pathway, GO analysis (The Gene Ontology Consortium, 2019) can be used
to identify genes that are involved in several pathways. For example, gene-set
enrichment analysis was performed previously on dairy cattle and revealed some
functionally associated genes and their related pathways (Xiang et al. 2020). For
prostate cancer, post-GWAS IPA was applied to identify the genes’ relevant
pathways (Farashi et al., 2019).
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performing enhanced whole-genome sequencing (Petti et al.
2019). In addition, somatic mutations can be caused by mosaic
chromosomal alterations of specific tissues using genome re-
sequencing or array genotyping data. As an illustration, it has
been previously identified that the risk of elevated hematological
cancer is ten times more in individuals with mosaicism
chromosomal alterations (Loh et al. 2018). Another study
employed SNP-array data from UK Biobank to detect mosaic
chromosomal alterations of blood cancer (Loh et al. 2020).
For an analysis of prostate cancer, 305 individuals with

aggressive tumors and 52 control samples were selected from
the Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research
Network et al. 2013). In addition, 61 germline variants in
association with prostate cancer were downloaded from the
GWAS catalogue database (Welter et al. 2014), and information
about somatic mutations was obtained from Catalogue of Somatic
Mutations in Cancers (COSMIC) (Tate et al. 2018). Then, possible
genetic cooperation and oncogenic interactions between germ-
line variants and somatic mutations were investigated. Then, for
enrichment analysis of germline and somatic mutations, IPA can
be used (Kramer et al. 2014). The results highlighted the power of
post-GWAS integrative analysis to determine the biological
context of aggressive prostate cancer (Mamidi et al. 2019).
Another study by Wu et al. (2019) integrated germline and
somatic mutations for carcinogenesis-related gene identification
in triple-negative breast cancer. As a result, 237 genes were
discovered that were functionally related to germline and somatic
mutations. These functionally related germline and somatic
mutations can be used for prognostic marker identification and
the development of prevention strategies (Wu et al. 2019).
In addition, using gene expression data, germline and somatic

mutation information has been integrated, and 124 common
genes associated with prostate cancer have been identified. In this
study, to gain insight into the biological function of germline and
somatic mutations, molecular networks of differentially expressed
genes were generated and biological pathway analyses were
performed using IPA (Kramer et al. 2014). The results of such
analyses can be used to discover interactions between germline
and somatic mutations and the putative functional bridges
between them (Mamidi et al. 2019). In addition, the results of
such studies can demonstrate that the somatic evolution of
tumors can be affected by germline variants. The existence of
germline and somatic mutation interactions can indicate the
existence of some cooperation between such mutations, although
the mechanism of such interactions has not been investigated,
and more research is required (Jia and Zhao 2016).
Relations among germline variants, somatic mutations, and

genetic drug targets of complex human disorders can be
employed to provide new insights into complex human
diseases. The genetic findings of such studies can be translated
into clinical applications (Chen et al. 2019). For example, such
integrative analyses of the genetics of cancer (Ung et al. 2016)
and the genetics of neurodegenerative diseases (NDs) (Morte-
zaei et al. 2019) have been reported. These studies can help
identify genetic modules with clinical roles in the initiation,
development, and treatment of complex human disorders, such
as cancer or NDs.
In such studies, a directed functional interactome, node classes

of germline variants, somatic mutations and drug targets for
complex human diseases were combined, and the relative
positions of the node classes were identified by network analyses.
For the created node classes containing germline variants, somatic
mutations and drug targets, the genetic functional interactions
were downloaded from the Reactome database (http://www.
reactome.org/pages/download-data/) (Jassal et al. 2019). As
indicated in Fig. 2, through integration of germline variants,
somatic mutations, and drug targets via network-based analysis,
the hierarchical structure of the networks was also evaluated to

compare the roles and importance of elements in those biological
networks. As a result, all such studies revealed that drug targets
are the most important factors functionally influencing others,
followed by somatic mutations and germline variants (Mortezaei
et al. 2019; Ung et al. 2016).
Proteins that bound to drugs in nonhuman studies were shown

to have some homologs in humans, identified as potential drug
targets in humans and retrieved from the Protein Data Bank (PDB)
database (wwPDB Consortium 2019). Somatic and germline
mutations also occur in nonhuman species such as animals and
plants. It has been demonstrated previously that the rate of
somatic mutations is higher than that of germline mutations in
animals such as mice, and the rates of both kinds of mutations are
higher than those of mutations in humans. In plants, somatic
mutations occur during mitotic cell division in gametophytes or
sporophytes, and gametic mutations occur during meiosis (Milhol-
land et al. 2017). Considering similarities or differences between
genetic drug targets and germline or somatic mutations in
humans and nonhuman species, such integration analysis, can be
performed for all kinds of species.

GWAS AND TRANSCRIPTOMIC DATA
Integrating GWAS and eQTL data provided novel susceptibility
genes in relation to obesity and some clues for studies of their
mechanisms (Liu et al. 2018). GWAS data can also be integrated
with eQTL and protein-protein interaction data to detect disease-
associated genes and prioritize candidate genes. With such
studies, one can go beyond GWAS, eQTL, and protein-protein
interaction approaches (Wang et al. 2018). When integrating
GWAS with transcriptome data on complex traits, estimation of
the causal effects of gene expression can be performed by
applying the MR approach. Transcriptome-wide Mendelian
randomization (TWMR) is a multivariable MR approach integrating
GWAS summary-level data with eQTLs to estimate the causal
effects of gene expression on complex traits. Previously, TWMR
has been successfully applied to assess gene expression’s causal
associations with 43 complex traits (Porcu et al. 2019).
A previously conducted study analyzed GWAS results using

regulatory datasets, such as eQTL, to identify causal variants (Lin
et al. 2018). Another study concentrated on integrating GWAS
results with eQTL data for disease gene identification, and then
the strength of candidate genes was scored using ontology
datasets (Peat et al. 2020). Another study combined GWAS results
with eQTL data to identify Alzheimer’s disease-associated genes
and prioritize significant SNPs (Zhao et al. 2019b). Functional
enrichment analysis of SNPs and eQTL-based SNP ontology
platforms have been constructed before, which is helpful to
identify significant SNPs in association with complex diseases,
such as neurodegenerative disease (Li et al. 2016).
From the genotype-tissue expression (GTEx) consortium, eQTL

data were downloaded and integrated with GWAS summary
statistics for body mass index to identify signals with the same
causal variants. The results of such analyses are tissue specific,
which indicates that different tissues and molecular mechanisms
are involved (The GTEx Consortium 2013). Another study
integrated GWAS data with eQTL data from 44 tissues selected
from the GTEx project. In that study, regulatory variations were
used to assess GWAS tissue specificity and to discover causal
genes in multiple tissues. Several approaches have been used for
such integrative analysis to identify genetic variations of different
diseases. These approaches include heritability analysis, enrich-
ment analysis, linking contributions of tissue-specific eQTLs, and
true positive rate estimation (Mortlock et al. 2020). Then, in such
studies and for all tested GWAS tissues, Bonferroni correction was
used to assess significant GWAS-trait pairs. Finally, a gene-set
enrichment analysis was used to test for GWAS and eQTL target
genes. For instance, to identify potential risk alleles and causal
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genes, eQTL has been applied on gene expression, genotype data
from the GTEx project for colon tissue, and TCGA data for
colorectal tumor tissue (Loo et al. 2017).

CROSS-PHENOTYPE ASSOCIATIONS
It has also been demonstrated that detected loci or genes can
have significant associations with multiple traits, referred to as
cross-phenotype associations (Li et al. 2017). Some cross-
phenotype association tests can be used to boost the power of
GWASs. For example, multiple GWASs have demonstrated
associations of a gene desert on chromosome 8p24 with chronic
lymphocytic leukemia and colon, breast, prostate, bladder and
ovarian cancers (Turnbull et al. 2010). Other studies have
demonstrated that a functional variation of the PTPN22 gene is
associated with systemic lupus erythematosus, type 1 diabetes,
Graves’ disease and rheumatoid arthritis (Solovieff et al. 2013).
Statistical methods for detecting cross-phenotype associations

have been broadly classified into univariate and multivariate
analyses (Box 4) (Broadaway et al. 2016). For example, multivariate
analysis of variance (MANOVA) can be used in regression of
multiple phenotype analysis (Yang et al. 2019). One of the
methods that can be applied in this direction is Fisher’s combined
P value method (Li and Zhu 2017). In addition, a linear mixed

model can be used for multivariate analysis. Table 2 summarizes
some properties, including the advantages/disadvantages of using
univariate vs. multivariate approaches (Saccenti et al. 2014). In
cases where the phenotypes are non-normally distributed or
categorical, cross-phenotype analysis can be performed using
modifications of original regression, generalized estimating
equations and the Bayesian framework (O’Reilly et al. 2012). There
exist some multi-phenotype methods, such as MV-BIMBAM
software (Shim et al. 2015) for multivariate association analysis,
which uses a Bayesian model comparison, and multivariate-linear
mixed model (MV-LMM), which can be used for related
phenotypes. For MV-LMM, two types of optimization algorithms
can be used: an expectation-maximization (EM) algorithm
followed by a Newton-Raphson (NR) algorithm, which combines
the stability of EM with the faster convergence of NR (Zhou and
Stephens 2014). As an illustration, multivariate, univariate, and
bivariate analyses have been successfully performed on a
European population of 43,870 cardiovascular and neurological
diseases (Zhang et al. 2019).
The phenome-wide association study (PheWAS) (Box 4)

approach can be used to investigate cross-phenotype associa-
tions, to demonstrate genetic architecture in relation to genes and
pleiotropy (when one locus affects more than one trait or
phenotype) and for diagnosis (Bush et al. 2016). In network

Fig. 2 Integrative network analysis. A network of germline variants from GWAS results, with networks of somatic mutations and genetic
drug targets, was used to create an integrated network containing germline variants, somatic mutations and genetic drug targets. Then, the
results of integrative genetic analysis performed using hierarchical network analysis and network centralities were used to identify novel
candidate genes important in the pathogenesis of complex diseases. As an example, the results of such an analysis used to assess the
importance of gene mutations in cancer and neurodegenerative diseases in humans is shown. The integrative genetic analysis shows that
somatic mutations in relation to cancer or neurodegenerative diseases in human beings have strong, independent effects on their genetic
drug targets, which can be used for individual treatments.

Z. Mortezaei and M. Tavallaei

491

Heredity (2021) 127:485 – 497



analyses (Box 4), SNP-SNP interaction networks from GWASs have
been constructed graphically, and the BridGE approach (Fang
et al. 2017) was applied to identify single or multiple biological
pathways enriched for that interaction; For example, SNP-SNP
interaction analysis has been performed for cardiovascular risk in
autoimmune diseases, which helped classify them into more
associated groups (Perrotti et al. 2017).When BridGE searches for
within/between or hub pathway models, the results of such
pathway-level interaction analysis can provide useful information
about increasing or decreasing the risk of related diseases (Wang
et al. 2017); For instance, significant interactions have been
identified between type 2 diabetes, Parkinson’s disease, breast
cancer, prostate cancer, and schizophrenia by widely applying
BridGE successfully (Fang et al. 2019). There are some limitations
in this kind of network analysis. These limitations include
phenotypic differences across studies and limited individual-
level phenotype or genotype information from networks of
summary statistics. These limitations were addressed in a study
by Verma et al. (2019) in which a single-source, electronic health
record (EHR) (Agrawal and Prabakaran 2020) was used for specific
definitions of phenotypes and an individual genotyping platform
was applied. Finally, the results of 31,017 PheWASs were used to
create a disease-disease network (DDN). For example, DDNs have
been successfully constructed to identify genetic similarities
between diseases, such as rheumatoid arthritis, type 1 diabetes,
and multiple sclerosis (Verma et al. 2019).
Electronic health record (EHR)-based PheWASs can be used to

identify cross-phenotype associations, construct DDNs on the
basis of shared associations and understand genetic similarities
between diseases. An EHR-based comprehensive PheWAS has
been performed to provide the landscape of associations
across diseases and quantitative traits (Verma et al. 2018). The
results of such analyses revealed previously reported associa-
tions between type 1 diabetes, morbid obesity and a primary
hypercoagulable state (Wellcome Trust Case Control Consor-
tium 2007). In addition, a large number of genetic variants
indicated strong connections between autoimmune disorders
such as type 1 diabetes, psoriasis, rheumatoid arthritis and
multiple sclerosis. This indicates that even if different types of
tissues are affected in each autoimmune disorder, they all
share similar genetic components via shared genetic pathways
(Tettey et al. 2015).

DDNs are bipartite networks that can be constructed and
visualized using Gephi software (https://gephi.org), in which
statistical packages can be used as plug-ins for network analysis.
In the analysis of DDNs, one of the key goals is the identification
of strongly linked diseases within and between disease classes
and the identification of meaningful connections. In addition,
integrating genetic functional knowledge with association
results can broaden our understanding of biologically relevant
findings (Halu et al. 2019). Then, DDNs and epigenetic knowl-
edge can be integrated to examine tissue-specific changes
(Verma et al. 2019).
Network analysis, such as community detection, can also be

applied to extract subnetworks of diseases that are biologically
relevant. There are various community-detection techniques, such
as Louvain’s method (Blondel et al. 2008), that use Gephi software
(Bastian et al. 2009) for subnetwork detection. For such analysis,
only SNPs in the enhancers of specific tissues were considered. As
a result, the liver has been found to have the largest number of
associated diseases, such as hyperlipidemia, essential hyperten-
sion, chronic non-alcoholic diseases, cardiovascular diseases,
morbid obesity and cirrhosis of the liver (Verma et al. 2019).
Network analysis can be extended to include associations
between EHR clinical laboratory measures and genetic variants
to conduct large studies based on gene-trait associations. Another
study by Verma et al. (2018) used RNA-Seq data from the roadmap
epigenome for genetic association periodization based on gene
expression measures. This study first calculated the correlation
between gene expression and chromatin state, generated a gene
expression measurement matrix and finally performed regression
analysis between chromatin model binary measures and gene
expression. This type of analysis can be applied to improve the
understanding of the effects of genetic variations on phenotypes
when explorations beyond those of protein-coding regions are
possible. Epigenetic knowledge helps identify associated diseases
and their biological relevance in the context of cross-phenotype
associations (Gonzalez-Serna et al. 2020). The cross-phenotype
methods are discussed further and classified in Box 4.
Using principal component-based methods for cross-phenotype

associations in flies, some regulatory loci have been identified that
jointly associate with multiple metabolic pathways. In addition,
the cross-phenotype association test in Drosophila was used to
detect metabolism-related genes. These results can be applied for

Box 4. Cross-phenotype association methods

Methods used to detect cross-phenotype associations can be univariate, multivariate, PheWAS, and network analysis. Univariate analysis initially tests for associations between
each phenotype and the genotypes and then combines the results with the results of other univariate analyses. Such analyses can provide an opportunity to compare multiple
GWAS datasets using meta-analysis (Li and Zhu, 2017). An alternative method for analyzing cross-phenotype associations is a multivariate approach. Such analyses can
improve the statistical power of association analysis of multiple phenotypes within a cohort. In this kind of analysis, phenotypes correlated with several components can be
studied at the same time. Most multivariate analyses require phenotype and genotype information for each individual and assume normal distributions of the phenotypes in
order to apply a multivariate regression framework (Ray and Chatterjee, 2020). It has been shown that SNPs associated with a specific trait from one GWAS may be evaluated
for their associations in other GWASs as well. This paradigm is called a PheWAS, which can identify novel genetic risk factors as well as validate previous GWAS findings
(Rivandi et al, 2018). Additionally, network analysis linking genetic variants with diseases can provide useful information about relations between diseases. Some techniques
used for cross-phenotype associations and their classifications are mentioned as follows.

Method Kind of analysis Technique

Fisher’s combined p value Univariate Meta-analysis (Li and Zhu, 2017)

MANOVA Multivariate Regression (Yang et al., 2019)

Linear mixed model Multivariate Linear modeling (Saccenti et al., 2014)

MV-BIMBAM PheWAS Bayesian model and multivariate-linear mixed model (Shim et al, 2015)

SNP-SNP interaction Network analysis Graphical network (Fang et al, 2017)

BridGE Network analysis pathway-level interaction analysis (Wang et al, 2017)

Disease-disease network analysis Network analysis Graphical network (Verma et al., 2019)

Louvain’s method Network analysis community-detection technique (Blondel et al. 2008)
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genotype-to-phenotype mapping of metabolic traits. In addition,
in Drosophila, cross-phenotype association mapping has been
used to examine starvation resistance, glucose content and body
weight (Nelson et al. 2016). This study applied phenotype
measurements from the Drosophila Genetic Reference Panel and
the SMAT R package (Schifano et al. 2013) for the given traits.
These analyses revealed significant associations between trigly-
ceride levels, starvation resistance and CG7560 and cht12 loci. In
cross-phenotype tests using enriched association signals, starva-
tion resistance revealed associations with genes enriched in
ventral cord development and glucose content. These results
illustrated that characters affecting the central nervous system are
associated with hyperactivity during starvation.
On the one hand, the Enhancing Neuroimaging Genetics through

Meta-analysis (ENIGMA) consortium started more than ten years
ago, aiming to study neuroimaging genetics on a large scale. Such
analysis used more than 50,000 individuals to indicate robustly
associated genetic markers with brain function and structure. The
analysis results were identified in more than 200 loci having
significant association with brain variations. Afterward, ENIGMA
applied multivariate methods to fulfill quantifying challenges in
brain networks’ complex relationships. In addition, the cross-
disorder groups of ENIGMA used multiple genomic data to answer
transdiagnostic questions. For this group, an exemplar approach is
examining brain organization for psychiatric disorder patients with
first-degree unaffected relatives (Thompson et al. 2020).

EPISTASIS AND PLEIOTROPY
Epistasis refers to a case in which genetic mutations are influenced
by the presence or absence of other genetic mutations. Therefore,
the expression of genes in a locus is altered by another locus. In
such a case, at different loci, multiple genes interact with each other
to affect a trait. Epistasis effects are known to be one of the factors
underlying missing heritability. This is because epistasis can reveal
genetic interactions and provide insights for complex genotype and
phenotype mapping that cannot be achieved from association
studies. Within gene regulatory networks and biological pathways,
the result of physical interactions between biomolecules is called
biological epistasis. On the other hand, genotype and phenotype
relationships summarized using mathematical modeling and their
deviations from additivity are called statistical epistasis. Therefore,
biological epistasis and statistical epistasis provide two different
perspectives and are consistent with strategies such as gene-gene,
SNP-SNP, and protein-protein interactions (Slim et al. 2018).
On the other hand, pleiotropy is a phenomenon where a single

locus influences or controls multiple phenotypic characteristics. The
pleiotropy is known as an underlying cause of cross-phenotype
associations. In other words, cross-phenotype associations are more
general than the pleiotropy capable of occurring in biological
pleiotropy, phenotypic causal relationships, spurious associations,

study design, and confounder biases. In genetic epidemiologic
studies, cross-phenotype associations are often incorrectly inter-
preted as pleiotropy examples, while pleiotropy is the only possible
cross-phenotype association explanation. Therefore, a careful
dissection of cross-phenotype associations is necessary for the
detection of true pleiotropic loci. Both mentioned univariate and
multivariate methods in the “Cross-phenotype association” section
are pleiotropy informed considering cross-phenotype correlations
(Salinas et al. 2017).
The ubiquity and the relation of pleiotropy with human effect

size can be examined using the GWAS catalog as a comprehensive
database (Welter et al. 2014). It has been found that nearly half of
the genes in that database are associated with more than one
disease, and that number will continue to increase. In addition, in
the UniProt database, ~12% of protein-coding genes were
identified as pleiotropic (The UniProt Consortium 2018). In the
case of pleiotropy, in which a gene is associated with more than
one phenotype, the genes are likely to be involved in many
biological processes and to have a strong phenotypic effect. In
quantitative trait analyses such as GWASs, one of the limitations is
the inability to detect epistasis and pleiotropy (Polster et al. 2016).
Since pleiotropy depends on genetic interactions, epistasis can

cause pleiotropic variation at a locus. This is because the way
genes affect more than one trait depends on their interactions
with other genes. Therefore, for the evolution of pleiotropy,
genetic variations caused by epistasis are necessary. In all types of
organisms, such as plants, viruses, bacteria, and humans, previous
studies have identified epistasis and pleiotropy. For example, it
has been identified that in human immunodeficiency virus (HIV)
infection and multiple drug resistance, epistasis and pleiotropy
play fundamental roles (Polster et al. 2016). The pleiotropy that
explains genetic variants contributing to multiple traits is known
as an underlying cause of cross-phenotype associations. In other
words, cross-phenotype associations are more general than the
pleiotropy that can occur in biological pleiotropy, phenotypic
causal relationships and spurious associations. Both the univariate
and multivariate methods mentioned in the “Cross-phenotype
association” section are pleiotropy informed considering cross-
phenotype correlations (Salinas et al. 2017).
Modeling of discoveries from GWASs can be performed using

effect direction meta-analysis (EDME) for pleiotropy quantification.
EDME has been applied in cattle to discover trait variation and
better understand the biology of complex traits. In that study,
EDME of GWASs on cows and dairy bulls was performed to
discover pleiotropic variants, their related affects and the biology
behind each complex trait (Xiang et al. 2020).

PHENOTYPIC COMPARISONS
Following the GWAS and cross-phenotype association analysis
approach, a study by Gu et al. (2019) concentrated on genetic

Table 2. Univariate vs. multivariate analysis.

Univariate approaches Multivariate approaches

Analyzing each phenotype separately, Showing independent phenotype
changes

Availability of subject-level data

Tests to compare different set of samples, combining results to compare,
Correlation procedure is needed

measuring two or more variables for each subject, dealing with
simultaneous relationship among variables

Using variable mean Using mean in addition to covariances or correlations

Needs multiple significant tests Requires genotype and phenotype information

Ease of application, Ease of interpretation, Ease of communication of the
results

Improve statistical power of association signals

Proving complementary results to multivariate analysis Providing complementary results to univariate analysis

Some properties include the advantages and disadvantages of using univariate and multivariate approaches (Saccenti et al., 2014).
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similarities between phenotypes, employing a statistical approach
that is analogous to Fisher’s probability test for a set of SNPs
relating to different molecular traits. Based on this approach, the
similarities between phenotypes can be determined using
functionally related genes and their common molecular mechan-
isms. As an example, in that study, it was found that breast cancer,
prostate cancer, lung cancer, fasting glucose and fasting insulin
were clustered together. It has also been determined that
common molecular underpinnings, such as AMP/GMP signaling,
insulin/NAPDH oxidase/ROS and apoptosis, play important roles in
connecting the mentioned phenotypes (Gu et al. 2019).
GWAS summary-level data is an informative source of pooled

data that can be used to compare phenotypes within and between
species. For example, GWAS Central (Beck, Shorter T (2019)) allows
unified data visualization and interrogation by restricting the
display of risk alleles, and GWASdb (Lin et al., (2016)) integrates
comprehensive resources for data content extension and popula-
tion studies. The inclusion of additional ontologies such as those in
the systematized nomenclature of medicine clinical terms
(SNOMED CT) is an example of the extension of information about
semantic phenotypes that can be applied for future planning (Al-
Hablani 2017). In addition, the reverse GWAS (RGWAS) approach
uses the genetic basis of multiple traits from GWAS results to
classify phenotypes and produce homogeneous subtypes of
samples. RGWAS has two steps: the initial step includes multitrait
GWAS dataset clustering with the regression method, and the
second step is biological assessment between those clusters. The
“rgwas” R package (https://github.com/andywdahl/rgwas) is avail-
able for RGWAS implementation. RGWASs can handle residual trait

correlations, covariates, quantitative traits and mixed binary data.
Propagating first-step uncertainty is not possible using the RGWAS
approach, one of the limitations of this approach that needs to be
considered in the future. For example, RGWAS has been
successfully applied to recover subtypes of stress to depressive
disorder and identify metabolic traits (Dahl et al. 2019).
To understand the biology of diseases, their prognosis and their

treatment, it may be essential to distinguish their subtypes. For
example, different subtypes of breast cancer have been distin-
guished by prognoses, population structure, treatment responses,
and different genetic risk factors (Iqbal et al. 2015). Gene-
environment interactions (Fairfax and Knight 2014), disease
misclassification (The Brainstorm Consortium 2018), and gene-
gene interactions (Fang et al. 2019) create distinct subtypes of
complex diseases.
Phenotypic comparisons can also be performed via post-GWAS

integrative analysis. For example, as shown in Box 5, integrating
germline variants from GWASs with somatic mutations revealed
similarities between cancer and NDs.

CONCLUSIONS
In the last decade, the number of established SNP-trait
associations from GWASs has increased dramatically, but the
determination of causal variants from them remains a major
challenge. Post-GWAS analysis can be used to address such
challenges in the detection of causal variants from GWASs and
to determine their mechanisms of action. On the other hand, it
is critical to understand the biological functions of genetic
variants and how they can affect diseases. This requires
interpreting the functions and contributions of most loci to
the pathogenesis of complex diseases, considering the fact
that most significant SNPs identified through GWASs fall
outside of coding regions. Additionally, to identify functional
genetic variants, GWAS results can be combined with
chromatin features, genome-wide maps and genetic transcrip-
tion data to help overcome challenges in the field.
In addition, integrative analysis of GWAS results with co-functional

genes, clinical findings, eQTL data and metabolite-transcript
correlations can provide valuable information about the genetics
of complex diseases, and such results can be translated into clinical
applications. For example, post-GWAS integrative analysis has
revealed that the somatic evolution of tumors can be affected by
germline variants. Such interactions between germline variants and
somatic mutations can result from cooperation between them. This
interaction mechanism has not been investigated, and further
research is required to answer this question.
On the other hand, the challenges of detecting epistasis and

pleiotropy in quantitative analysis approaches, such as GWASs,
can be overcome using post-GWAS analysis. The pleiotropy
explaining the genetic variants that contribute to multiple traits
is an underlying cause of cross-phenotype associations. It has
also been concluded that in GWASs, focusing on one trait can
result in missing the opportunity to evaluate multiple pheno-
types, especially when cross-phenotype associations exist; in
such cases, phenome-wide data can be used to improve the
statistical power of genetic association studies. Similarities
between phenotypes can be measured from GWAS summary-
level data. The results of such analyses followed by enrichment
analysis can facilitate the development of effective treatment
and prevention options for complex diseases. For example,
GWAS results were used to compare human cancer with NDs,
which indicated that the genetic drug targets for both kinds of
diseases were responsible for initiating signaling cascades.
Another common conclusion from analyses of GWAS results for
both cancer and NDs is that drug targets and somatic mutations
correspond to bottleneck proteins that can transfer signals to the
nucleus. Such a conclusion can be used to develop a framework

Box 5. Cancer and neurodegenerative diseases

Cancer is a disease caused by excessive abnormal cell growth, whereas NDs are
disorders resulting from insufficient cell growth and excessive neuronal cell death.
These kinds of diseases seem quite different, but there is some unusual
epidemiological association between them (Driver, 2014; Freedman et al, 2016).
It has been demonstrated that there are some genes, mechanisms, and pathways
shared between NDs and cancers. For example, Pin1, the ubiquitin proteasome,
DJ-1, and Myc modulator (MM-1) are genes, pathways, and mechanisms
associated with both cancer and NDs (Plun-Favreau et al. 2010).
In addition to studies on the aforementioned similarities between human cancer

and NDs, Ung et al. (2016) and Mortezaei et al. (2019) took advantage of directed
hierarchical network-based post-GWAS genetic integrative analysis to gain novel
insights into the genetic causes of human cancer and NDs by studying the relations
among germline variants, somatic mutations, and drug targets in human cancer and
NDs. As illustrated in Fig. 2, a result of post-GWAS genetic integration analysis of
human cancers and NDs has revealed that the genetic targets of related drugs have
more functional effects on somatic mutations and are closer to these kinds of
alterations than the germline variants. After identifying the cellular component of
each node class, which were germline variants, somatic mutations or drug targets,
in the network of human cancer and ND genes, similar results were obtained. These
findings suggest that for both cancer and NDs, drug targets in the form of
membrane receptors are responsible for initiating signaling cascades. Signals then
propagate through somatic mutations and find GWAS-identified genes in the
nucleus (Klus et al., 2015). Another common conclusion about human cancer and
NDs reached in such post-GWAS genetic integrative analyses is that drug targets
and somatic mutations correspond to bottleneck proteins that can transfer signals
to the nucleus.
In addition, in the mentioned networks of genes related to human cancer or NDs,

it has been shown that drug targets have the greatest magnitude of control
centrality, followed by somatic mutations (Mortezaei et al. 2019; Ung et al. 2016).
These results indicate that drug targets and somatic mutations correspond to driver
genes or loci important for controlling the pathways and functions of other genes.
Therefore, they may be the most effective factors in the treatment of complex
human diseases and for preventing the progression of such diseases. These results
from genetic integrative analysis followed by enrichment analysis can facilitate the
development of effective treatment and prevention options for human cancers and
NDs (Horlings et al, 2015; Reimand and Bader, 2013).
The results of the previous studies illustrated above indicate that network-based

integrative analysis is an important tool for comparing the impacts of genetic
variants on a specific disease and obtaining new insights into disease mechanisms.
Such studies can be used to develop a framework for future studies and apply
network-based methods to uncover the genetic underpinnings of different complex
diseases.
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for future studies and to better understand the genetics of
different complex diseases. The review also discussed and
provided some examples that post-GWAS methods, which can
be used to weight the results, can be performed for humans or
for nonhuman species.
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