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Abstract

The US Food and Drug Administration (FDA) has been actively promoting the use of real-world 

data (RWD) in drug development. RWD can generate important real-world evidence reflecting the 

real-world clinical environment where the treatments are used. Meanwhile, artificial intelligence 

(AI), especially machine- and deep-learning (ML/DL) methods, have been increasingly used 

across many stages of the drug development process. Advancements in AI have also provided 

new strategies to analyze large, multidimensional RWD. Thus, we conducted a rapid review of 

articles from the past 20 years, to provide an overview of the drug development studies that use 

both AI and RWD. We found that the most popular applications were adverse event detection, 

trial recruitment, and drug repurposing. Here, we also discuss current research gaps and future 

opportunities.

Introduction

Drug development is the process of bringing a new drug molecule into clinical practice; 

in its broadest definition, it includes all stages from the basic research of finding a 

suitable molecular target to large-scale Phase III clinical studies that support the commercial 

launch of the drug to post-market pharmacosurveillance and drug-repurposing studies [1,2]. 

During the drug development process, chemical entities that have the potential to become 

therapeutic agents are identified and thoroughly tested, and the entire process is lengthy 

and costly. It is estimated that, for every new drug brought to the market, it typically costs 

billions of US dollars and >10 years of work [3,4]. Therefore, strategies that can facilitate 

and accelerate the drug development process are of high interest.

Recently, the FDA has been actively promoting the use of RWD for drug development 

[5,6]. The term ‘RWD’ refers to data collected from sources outside of conventional 
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research settings, including electronic health records (EHRs), administrative claims, and 

billing data, among others [5–7]. These RWD often contain detailed patient information, 

such as disease status, treatment, treatment adherence and outcomes, comorbidities, and 

concurrent treatments that are tracked longitudinally. The information generated from RWD 

can provide important real-world evidence to inform therapeutic development, outcomes 

research, patient care, safety surveillance, and comparative effectiveness studies [8]. More 

importantly, the use of RWD allows clinical researchers and regulatory agencies to 

answer questions more efficiently, saving time and money while yielding answers that are 

generalizable to the broader population. Over the past decade, there has been an increased 

uptake of EHR systems in the USA. These technological advances and policy changes in 

the USA have created a fertile ground with increasing opportunities to use RWD to facilitate 

drug development. Thus, the FDA has provided guidance on the use of EHR data in clinical 

investigations [5] as well as guidance on incorporating RWD into regulatory submissions to 

the FDA [9].

By contrast, the field of AI, including ML/DL, has moved from largely theoretical studies 

to real-world applications thanks to both the exponential growth of computing power 

and advances in AI methods [10]. AI has been widely used in many stages of the drug 

development process to identify novel targets [11], increase understanding of disease 

mechanisms [12], and develop new biomarkers [13], among others. Many pharmaceutical 

companies have begun to invest in resources, technologies, and services, especially in 

generating and assembling data sets to support research in AI and ML/DL, and many of 

those data sets are from RWD sources. There is an emerging need for an overview of 

the intersection between AI and RWD in current drug development studies to describe the 

current trends, identify existing research gaps, and provide insights into potential future 

directions. Thus, we conducted a rapid review summarizing published articles related to the 

intersection of AI, RWD, and drug development over the past 20 years. Our specific aims 

were to identify current trends in using AI and RWD in drug development studies and, 

subsequently, any challenges and opportunities?

Literature search

Definations of drug development, AI, and RWD

The drug development process, according to the FDA’s definition [14], has four stages: 

(i) drug discovery: the discovery of new therapeutic agents through the understanding of 

disease mechanisms and properties of molecular compounds (or other technologies); (ii) 

preclinical research: laboratory and animal testing to answer questions about the safety of 

the new drug targets; (iii) clinical research: different stages of clinical trials to test the 

new drug on humans to assess its safety and efficacy; and (iv) postmarketing research: 

pharmacosurveillance and comparative effectiveness studies.

The definition of AI methods is less clear and varies in computer science and informatics 

literature. In this rapid review, we chose the definition ‘the use of complex algorithms 

and software to emulate human cognition in the analysis of complicated medical data, and 

analyse the relationships between prevention or treatment techniques and patient outcomes.’ 

[15] To be more concrete, the specific AI-related methods we considered include ML and 
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DL (a subbranch of ML), which are in general accepted by different research communities 

as AI tasks [16].

In terms of RWD, the FDA defines RWD as ‘the data relating to patient health status 

and/or the delivery of health care routinely collected from a variety of sources’, which 

include patient EHRs and claims data, as well as other patient-generated health data, 

such as those generated in home-use care settings and data from mobile devices that 

can inform health status [7,8]. Here, because we aim to understand RWD that can be 

used to support drug development, we focus on RWD sources that provide clinical data 

not collected in interventional, controlled, experimental clinical research settings [e.g., 

randomized controlled trials (RCTs)], which include data generated not only from the 

delivery of routine care (e.g., EHR, claims databases, or disease registries) but also from 

study designs that can generate RWD (e.g., observational studies and pragmatic clinical 

trials) [17]. We exclude RWD that are generated from personal devices, such as smartphones 

and activity trackers.

Eligibility criteria

The inclusion criteria for our review were: (i) studies using RWD as data sources; (ii) studies 

using AI methods for statistical analysis or data mining; and (iii) studies focused on the 

development of drugs. As a rapid review, we first focused on identifying existing review 

articles.

Search strategy and study selection

We performed a literature search through PubMed to identify relevant review articles 

published until July 1, 2020. In our search strategy, we considered different combinations 

of search keywords dictated by the definitions of RWD, AI, and drug development that we 

chose to focus on. Our search query included three distinct sets of keywords for RWD, 

AI, and different stages of the drug development process, respectively. For completeness, 

we included keywords such as ‘natural language processing’ in the AI keywords, because 

state-of-the-art models for these NLP tasks are often ML/DL methods. The full search query 

and the complete list of keywords are in Table S1 in the supplemental information online.

Following best practice for rapid reviews [18,19], we first restricted our search to identify 

existing review articles for inclusion. We then manually identified the specific AI and 

RWD applications described in these reviews. Next, based on the identified applications, 

we performed a second round of literature search to look for their detailed approaches, 

including data source, data type, and analytical methods used. Figure 1 summarizes the 

overall search and screening process.

Current progress in the literature

In the first round of literature search, a total of 23 review articles were identified; among 

them, 16 met our inclusion criteria. Based on these review papers, we first highlight the key 

steps in the drug development process and then summarize the identified research topics in 

each step (Fig. 2a). We then summarize the applications that used RWD (Fig. 2b) and AI + 

RWD (Fig. 2c) to address these research questions.
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Drug development process and applications of real-world data

The first step in the drug development process is the discovery of potential therapeutic 

agents, where researchers investigate the interactions among different molecules, genes, and 

proteins, and then identify which molecules have high potential with the goal of finding 

novel targets, biomarkers, and compounds [14]. Some of these goals can be achieved using 

RWD applications. For example, in a recent review paper [17], Singh et al. identified 20 

studies that used RWD to facilitate drug discovery and clinical research. Among them, 

16 identified or validated new phenotypes, disease markers, and biomarkers for patient 

identification and stratification.

The next step is preclinical testing, which includes both in vitro and in vivo testing. In this 

stage, the safety of drug molecules is tested in test tubes, living cell cultures, and animal 

models. This is a crucial step because the drug development can only move into human trials 

with extensive data on safety in preclinical research. In the review papers we included, there 

were no studies identified for this stage.

After the preclinical testing, once the Investigational New Drug (IND) application is 

approved, drug development moves into clinical research stages. There are three phases 

of clinical studies before the drug can be submitted for marketing approval. The key 

issue that needs to be addressed in this step is to evaluate both the safety and efficacy 

of the new agents in the target human population [20]. RCTs are still the gold standard 

to generate clinical evidence; however, RWD have become an important data source for 

RCTs to understand how the developed treatments are being used in real-world settings. For 

example, Lai et al. examined the impact of using EHRs for clinical research recruitment in a 

review of 13 research articles [21]. They found that the automation in screening and patient 

identification could contribute to higher recruitment yield and reduced workload.

After a drug is available on the market, the drug developers are required to submit regular 

reports detailing adverse events (AEs) associated with the drug [14]. In addition to AE 

reporting, observational studies and pragmatic clinical trials are also conducted using RWD 

to evaluate the safety of the drug in real-world settings. For pharmacosurveillance, RWD has 

gained significant attention in recent years. For example, in 2012, Warrer et al. conducted 

a review on studies that used text-mining techniques on narrative documents to investigate 

AEs [22], where only seven studies were identified. In a more recent review by Luo et al. 
in 2017 on the same topic, 48 studies were identified [23]. These studies showed that text­

mining techniques, ranging from simple free-text searching to more advanced ML/DL-based 

natural language processing (NLP) methods, can be powerful in AE detection, given that 

AEs are more extensively documented in EHR narratives.

Applications of AI methods using RWD in the drug development process

Across the different drug development stages, few studies used AI on RWD, and most were 

found in the clinical or postmarketing stage. Three main types of study used AI on RWD 

(Fig. 2c): trial recruitment optimization, AE detection, and drug repurposing. Therefore, we 

conducted a second literature search focusing on individual research studies of these three 

main applications (Fig. 1). Similar to the first literature search, we screened all studies on 
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these three topics using keywords related to AI and RWD, as detailed earlier. A total of 

65 research studies were included after title/abstract and full-text screening. In Table 1, we 

summarize these studies into subcategories with examples [24–28]. In Figure 3, we show 

the increasing trend of studies that use AI methods with RWD in the drug development 

process over the past 15 years. Overall, we observed a steady increase in the total number 

of studies. In particular, the number of studies focusing on AE detection has exploded and 

many focused on using NLP methods to extract AE from free-text narratives, likely because 

of advances in DL-based NLP methods that achieved state-of-the-art performance [29]. 

Nevertheless, we also observed more studies that tried to leverage AI methods on RWD for 

optimizing clinical trial recruitments. Moreover, clinical drug repurposing has emerged as a 

new application area in the drug development process.

Figure 4 summarizes the numbers and percentages of different data sources, data types, 

and AI methods being used in the 65 studies. Given the overwhelming number of studies 

used AI-driven NLP methods, we separated NLP studies from other ML/DL studies. State­

of-the-art NLP methods often leverage ML and DL approaches such as BERT [29,30]. 

Overall, EHR data were the most popular data source, especially unstructured clinical notes. 

Consequently, a large number of studies have focused on developing or using NLP methods. 

Among the 55 studies on AE detection, 41 (74.5%) were NLP related. Some studies 

developed a NLP system to extract information from clinical notes to identify AEs related 

to the administration of medication. For example, Yang et al. developed a Long Short-Term 

Memory (LSTM)-based DL model to detect medication, AEs, and their relations from 

clinical text [31]. In other studies, the AEs and associated attributes (e.g., severity) extracted 

from the NLP pipeline were further fed into a downstream model to assess association 

between AEs and other health outcomes. For example, Zhang et al. first used NLP to 

identify patients who had AEs related to statin therapy, and then examined the relationship 

between continuation of statin therapy and incidence of death and cardiovascular events 

among these patients [32]. Meanwhile, most studies on recruitment optimization (75% of 

studies included) also utilized clinical notes from EHR data, and attempted to identify 

eligible populations for trials using information extracted from NLP. For example, Spasic et 
al. used an NLP system that combined rule-based knowledge infusion and ML algorithms 

to analyze longitudinal patient records to determine whether the corresponding patients met 

given eligibility criteria for clinical trials [33]. Finally, of the two articles on clinical drug 

repurposing [34,35], one used NLP methods. In work by Xu et al., automated informatics 

methods, including NLP, were used on EHR data to identify patient cohorts and medication 

information [34]; the authors then assessed whether metformin is a potential drug that can 

be repurposed to cancer treatment. In the other clinical drug-repurposing study, Kuang et al. 
developed a ML-based drug repurposing approach, called baseline regularization, to predict 

the effects of drugs on different physical measurements, such as fasting blood glucose 

[35], to identify potential repurposing. Although there is a wealth of literature on drug 

repurposing using EHRs, few studies have used advanced AI methods, with most using 

traditional statistical approaches, such as Cox regression [36].

Chen et al. Page 5

Drug Discov Today. Author manuscript; available in PMC 2021 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Current trends in AI methods on RWD in drug development research

We identified 16 review articles related to the use of AI methods on RWD published over the 

past 20 years and an increasing number of original studies in three main application areas: 

AE detection, recruitment optimization, and drug repurposing.

The most common application area that used AI on RWD was for AE detection, primarily 

focusing on using NLP on unstructured clinical notes from EHR. The reasons for such a 

rising popularity are twofold: (i) the abundance of textual information in RWD, especially 

EHRs; and (ii) the rapid advancement in NLP methods, especially those new DL-based 

models with state-of-the-art performance. In fact, >80% of the clinical information in 

EHR is documented in free-text [37], which makes text mining an ideal tool. EHRs have 

been particularly useful for investigating AEs and other therapeutic effects because of 

their continuous and longitudinal nature of clinically relevant outcomes and medication 

exposures.

We also identified several studies that focused on recruitment optimization and drug 

repurposing. These tasks are suitable for the use of AI and RWD because: (i) the 

extensive collections of RWD provide sufficient sample sizes to identify individuals 

who meet recruitment criteria; (ii) the longitudinal detailed medical histories of patients 

captured in these RWD sources make it possible for researchers to identify drugs that 

might be effective for indications other than the primary use; (iii) AI and data-driven 

approaches could potentially minimize the selection bias because they do not rely on 

researchers’ predetermined assumptions, and, thus, are able to identify novel associations 

that were previously unknown; and (iv) modern AI methods are capable of handling the 

high dimensionality and complexity of RWD as well as the complex combinations and 

interactions of RWD variables.

Challenges and future directions

Challenges of using AI and RWD in the drug development studies

First, one major challenge is the quality of the data in many RWD sources. For example, 

information heterogeneity has been reported in EHRs because clinicians do not always 

document the care in the same way [38]. Such variance makes it difficult to extract the 

same information (e.g., outcome measures) consistently. Other data-inconsistency issues, 

such as missing data and selection bias, also present significant challenges to researchers 

because data collection in real-world settings is usually heterogeneous and unstandardized. 

Second, most of the studies we identified focused on prediction or classification tasks and 

often overemphasized model performance rather than learning the casual effects [39,40]. 

Furthermore, most of these existing studies do not integrate a priori causal knowledge to 

guide the learning process and, as a result, no causal relationship can be estimated. Third, 

the transportability and interpretability of these studies also need to be further assessed. 

External validations using independent sources to ensure the findings are representative and 

generalizable are recommended, but such validation studies are often difficult to execute 

for multiple reasons, including: (i) sharing of individual-level clinical data remains difficult 

because of not only ethical and legal issues, but also market competition concerns; and 
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(ii) the lack of standardization and harmonization across the different data sources (e.g., 

inconsistent outcome measures), making replication studies unattainable.

Nevertheless, significant advancements have also been made to tackle these challenges. 

First, advances in AI methods, especially in DL, have prompted studies that consider 

heterogeneous data sources and types (e.g., clinical data, imaging, -omics data, and 

knowledge bases, among others) in one coherent model. Li et al. developed a DL model 

based on recurrent neural networks to learn representation and temporal dynamics of 

longitudinal cognitive measures of individual subjects and combined them with baseline 

hippocampal magnetic resonance imaging (MRI) measures to build a prognostic model 

of Alzheimer’s disease dementia progression [41]. Other developments in DL include the 

ability to handle not only the temporal order of clinical events, but also the long-term 

dependencies among the events as well as the time-varying effects of the covariates. For 

example, time-aware LSTM (T-LSTM) incorporates elapsed time information into the 

standard LSTM architecture to handle irregular time intervals in longitudinal EHR data 

[42] to learn disease subphenotypes. BEHRT, a new deep neural sequence transduction 

model for prediction of interpretable personalized risk using EHR data, models the 

temporal evolution of EHR data through utilizing various forms of sequential concept and 

enabled the incorporation of multiple heterogeneous concepts (e.g., diagnosis, medication, 

measurements, and more) to further improve the accuracy of its predictions [43]. In NLP, 

new methods have been developed that can incorporate factual medical knowledge from 

existing ontologies/knowledge bases (e.g., the Unified Medical Language System) to further 

improve the performance of NLP tasks, such as for clinical concept extraction [44].

Second, the use of causal modeling tools in AI, such as causal diagrams, could provide 

important additions to the implementations of causal inference using RWD. Causal 

modeling can also lead to improvements in the interpretability and adaptability of AI 

models in these drug development studies [45]. This concept of causal AI has been applied 

successfully in public health studies, such as the identification of occupational risk factors 

[46,47] and the prediction of diarrhea incidence in children [48], among others, and could be 

used in future drug development research, such as the ‘target trial’ [49] framework aiming 

to establish causal treatment effects using RWD without conducting RCTs. Additionally, the 

emerging of explainable AI (XAI) could help to interpret and understand AI decisions. The 

XAI models use different mechanisms (e.g., feature interaction and importance, knowledge 

distillation, and rule extraction) on top of ML/DL models to generate interpretable outputs, 

such as variable ranking [50], which ultimately help us understand why an AI system makes 

a certain decision. XAI models are particular useful for tasks such as drug repurposing 

because these tasks are generating hypotheses for which plausible explanations are crucial.

Finally, the establishment of large research networks, such as the national Patient-Centered 

Clinical Research Network (PCORnet) [51], Observational Health Data Sciences and 

Informatics (OHDSI) consortium [52], and the Clinical and Translational Service Award 

Accrual to Clinical Trails (CTSA ACT) network [53], facilitate the sharing of RWD. Each 

of these large networks comprises multiple sites across the USA and internationally, and 

the same data infrastructure (i.e., the same ontologies and common data models) are being 

used in each network. RWD from these networks represent a diverse set of patients and 
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institutions and provide the opportunities to conduct large populational studies to understand 

factors that contribute to health and illness in a heterogeneous and real-world setting. 

In addition, de-identification strategies, such as those for automated de-identification of 

massive clinical notes [54], have been widely applied to facilitate data sharing across 

different institutions. Furthermore, privacy-preserving record-linkage tools have showed 

high precisions in linking and deduplicating patient records without sharing of protected 

identifiable information [55]. Although these de-identification strategies might not be 

applicable for every data type, they provide capabilities to facilitate data sharing across 

sites and integration of different data sources.

Future applications

There are several other scenarios where RWD and AI methods might be useful in 

the drug development process. For example, traditionally, clinical trial simulation (CTS) 

studies use computerized simulation methods on virtual populations to test different trial 

designs before resources are invested in conducting the actual clinical trial [56]. CTS 

that incorporates RWD can simulate its virtual populations more realistically. Furthermore, 

recent developments in the ‘target trial’ framework, emulating hypothetical trials with RWD, 

enable us to identify unbiased initiation of exposures and reach an unbiased estimation of the 

casual relationships [49]. Combing the concept of modern trial emulation and the traditional 

CTS approaches, a trial simulation framework with RWD that can systematically test the 

different assumptions of a clinical trial to inform future trial design and produce causal 

results from RWD will be of high interest.

To facilitate the discovery of new drug targets, another emerging trend is the linkage of 

EHRs with other data sources, such as biobanking data, to study drug–phenotype and 

drug– gene interactions. For example, researchers from the Vanderbilt Electronic Systems 

for Pharmacogenomic Assessment (VESPA) Project [57], demonstrated that EHR-based 

biobanks could be cost-effective tools for establishing disease and drug associations, 

because such applications allow the reuse of biological samples for multiple studies without 

incremental collection, extraction, or processing costs, and the integration with EHR system 

allows for centralized de-identification and phenotype annotations.

Finally, we highlight the importance of the clinical and translational science life cycle in 

the drug development process. For example, the drug-repurposing signals identified from 

population-based studies will need to be looped back to the preclinical and clinical study 

stages for further validation and evaluation [58].

Limitations of our work

First, as a rapid review, our work is not comprehensive, but has provided a rapid and 

necessary summary and discussion of the topic. Second, our definition of AI is restricted to 

ML/DL methods (and their applications in NLP), and our definition of RWD is constrained 

to clinical data generated from the delivery of routine care (e.g., EHRs and claims data). 

Therefore, studies using AI methods such as automation and studies using data from 

personal devices, such as social media and activity trackers, were not included in our review. 

For example, social media data have shown promise in identifying AEs, although the noisy 
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nature of social media data remains as a challenge [59,60]. These computational methods 

and data sources could provide additional insights into the drug development process and 

should be revisited in a future review.

Concluding remarks

The use of AI and RWD has been emerging but focused on limited areas across several 

stages of the drug development process. Most AI studies focused on AE detection from 

clinical narratives in EHRs and a few studies explored applications for trial recruitment 

optimization and clinical drug repurposing. Benefitting from the detailed, longitudinal, 

multidimensional large collections of RWD and powerful AI algorithms, the use of 

AI methods on RWD provides golden opportunities in drug development, especially in 

identifying previously unknown associations and generating new hypotheses. Nevertheless, 

several current research gaps and challenges exist, such as issues in data quality, the difficult 

of sharing clinical data, and the lack of interpretability and transportability in AI models. 

We have highlighted examples of latest advancements in AI and data science that could 

address these challenges. For example, the increasing capability of DL models that can 

handle longitudinal and heterogeneous RWD and the raise of causal AI provide new research 

opportunities in drug development that can benefit from the combined use of AI and RWD.
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FIGURE 1. 
The overall search and screening proces
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FIGURE 2. 
Identified artificial intelligence (AI) and real-world data (RWD) applications across the 

different stages in the drug development process. Abbreviations: EWAS, epigenome-wide 

association study; GWAS, genome-wide association study; ML, machine learning.
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FIGURE 3. 
Number of original studies with artificial intelligence (AI) methods using real-world data 

(RWD) in the drug development process over the years.
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FIGURE 4. 
Breakdown of real-world data sources, data types, and artificial intelligence (AI) methods 

used in the identified applications across the drug development process. Given the 

overwhelming number of studies used AI-driven natural language processing (NLP) 

methods, we separated NLP studies from other machine/ deep-learning (ML/DL) studies.
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