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Abstract

Here we report the direct conversion of strong, aliphatic C(sp3)–H bonds into the corresponding 

alkyl sulfinic acids via decatungstate photocatalysis. This transformation has been applied to a 

diverse range of C(sp3)-rich scaffolds, including natural products and approved pharmaceuticals, 

providing efficient access to complex sulfur-containing products. To demonstrate the broad 

potential of this methodology for the divergent synthesis of pharmaceutically relevant molecules, 

procedures for the diversification of the sulfinic acid products into a range of medicinally relevant 

functional groups have been developed.

Sulfonamides, sulfones, and sulfides are widely employed functional groups that are broadly 

found in modem materials,1 agrochemicals,2 and pharmaceuticals.3 The importance of these 

ubiquitous motifs is underscored by their abundance in bioactive molecules,4 with sulfur 

being more commonly found than fluorine or phosphorus in approved drugs.5 Despite 

the well-established importance of organosulfur compounds and many advances in C–H 

functionalization, there remain few catalytic technologies for the conversion of C(sp3)–H 

bonds into alkylsulfonyl groups.6 Intriguingly, recent studies involving alkyl sulfinates 

have instead focused on the inverse transform, namely C(sp3)–SO2 bond cleavage via the 

oxidative conversion of sulfinates to alkyl radicals with concomitant extrusion of SO2.7 With 

this in mind, we questioned whether this open-shell pathway might be reverse engineered 

to selectively deliver the opposite transformation. More specifically, we considered the 

formation of alkyl radicals from C–H bonds prior to SO2 trapping and subsequent reduction, 

a pathway that if successful would generate C(sp3)-rich, sulfonyl-containing adducts from 

simple aliphatic substrates.
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Given the current body of open shell coupling processes that rely on the oxidative extrusion 

of sulfur dioxide to access alkyl radicals, it is surprising to consider that previous kinetic8 

and synthetic9 studies support the feasibility of C(sp3) radical capture by SO2 (effectively 

the inverse process to extrusion). On this basis, we hypothesized that a sulfur dioxide alkyl 

radical trapping mechanism might be readily married with C(sp3)–H functionalization using 

a photo-HAT catalyst: a pathway that would expand the range of potential sulfur-containing 

feedstocks and, at the same time, provide a new strategy for the divergent, late-stage 

functionalization of pharmaceuticals. Herein, we report the successful execution of these 

ideals and present a hydrogen atom transfer (HAT)-sulfinylation protocol that employs 

aqueous sulfur dioxide, light, and an inexpensive catalyst to rapidly deliver sulfones, 

sulfonamides, and other sulfurous functionality (Figure 1).10

Advances in photoredox catalysis over the past decade have facilitated the development 

of powerful methods for the conversion of abundant functional groups, such as alcohols 

and carboxylic acids, into a broad range of valuable products under mild conditions.11 

A number of recent studies have provided further improvements to synthetic efficiency 

via photoredox approaches to HAT-mediated C(sp3)–H functionalization.12 Among photo­

HAT catalysts, the decatungstate anion ([W10O32]4−) has been widely investigated due 

to its ability to catalytically cleave strong C–H bonds following excitation with near-UV 

light.13 Given these uniquely valuable properties, decatungstate has been utilized in a range 

of synthetically valuable transformations,14 including oxidations,15 dehydrogenations,16 

fluorinations,17 conjugate additions,18 chromium-mediated additions to aldehydes,19 and 

several novel metal-laphotoredox reactions.20 Despite this scope of previous work, methods 

for the formation of C(sp3)–S bonds via decatungstate photocatalysis have not previously 

been reported.21

A depiction of our reaction design appears in Scheme 1. Near-UV excitation of the 

decatungstate anion (1) followed by rapid relaxation is known to afford the reactive excited 

state *[W10O32]4− (2).13,22 Due to the electrophilic nature of the oxygen-centered hole 

present in 2, selective HAT at the more electron-rich β-position of cyclopentanone (3) 

would yield alkyl radical 4 and reduced decatungstate ([W10O32]5−, 5).23 Rapid radical 

capture of 4 by sulfur dioxide (6) would then generate sulfonyl radical 7, forming the 

key C(sp3)–S bond. Based on literature precedent (kdisproportionation ≈ 105 M−1 s−1)24 and 

UV/vis studies of the reaction mixture at partial conversion (Figure S6), the cycle would 

close via disproportionation of 5 to afford doubly reduced decatungstate (8) followed by 

single-electron reduction of 7 (Epa(RSO2
−/RSO2

•) ≈ 0.46 V in acetonitrile,25 0.8 V in 

water,26 both vs SCE for related alkyl sulfinates) by 8 (E1/2
red([W10O32]5−/[W10O32]6−) = 

−1.48 V in acetonitrile,20a − 0.38 V in water,20b both vs SCE) to afford the corresponding 

sulfinate (9). Under sufficiently acidic conditions, subsequent protonation would afford 

the sulfinic acid.27 An alternative radical chain mechanism, in which sulfonyl radical 7 
undergoes chain-propagating HAT from 3 to afford the sulfinic acid product and regenerate 

alkyl radical 4, appears unlikely based on computed reaction barriers (ΔG‡
calc > 22 kcal/mol, 

Table S9).

Our initial investigations began by irradiating a solution of 3,3-dimethylcyclohexanone (11) 

and sodium decatungstate (NaDT, 10) in acetonitrile/water with PR160 40 W Kessil 390 nm 
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lights in the presence of a range of convenient sulfur dioxide surrogates. While commonly 

employed SO2 sources such as DABSO28 and metabisulfite salts failed to generate the 

corresponding sulfinic acid under a range of conditions, use of inexpensive aqueous sulfur 

dioxide (“sulfurous acid,” 6 wt % aq. SO2, $0.12/mmol)29 afforded the desired product (12) 

in 67% yield (Table S1). Importantly, control experiments indicated that both decatungstate 

and light are required for reactivity (Table S4).

With optimized conditions in hand, we sought to evaluate the scope of this new C(sp3)–

S bond-forming reaction (Table 1). To ensure uniformity and applicability within a 

medicinal chemistry setting, all experiments were performed using a commercial integrated 

photoreactor30 including numerous examples at gram-scale. While isolation of the crude 

alkyl sulfinates was possible (e.g., 18, 36, S13), a one-pot procedure to convert the 

intermediate sulfinic acid into the corresponding benzyl sulfone was employed to facilitate 

convenient isolation and characterization of the C(sp3)–S products. We first examined a 

range of cyclic hydrocarbons bearing electron-withdrawing groups such as sulfones (13, 

64% yield), carboxylic acids (14, 65% yield), and ketones (15 and 16, 49 and 70% yield, 

57% and 58% selectivity, respectively). In all cases, excellent selectivity was observed 

for the more electron-rich, sterically accessible positions.23 Consistent with the hydridic 

nature of tertiary C(sp3)–H bonds, 17 and 18 were generated in good yield (72% and 57%, 

respectively) and excellent tertiary selectivity despite the presence of weak (but electron­

poor) α-cyano31 and heterobenzylic32 C(sp3)– H bonds.

We next turned our attention to medicinally relevant bicyclic scaffolds. A tricyclic imide 

and brominated norbornane derivative were sulfinylated at the most accessible, electron-rich 

position as a single regioisomer in both cases (19 and 20, 86% and 62% yield, respectively). 

Heterobicyclic scaffolds also proved to be effective substrates for this transformation, 

with a bicylic amide affording the corresponding benzyl sulfone (21, 67% yield, 71% 

selectivity). This ability to efficiently and selectively modify complex bicyclic scaffolds 

clearly illustrates the benefits of C(sp3)–H functionalization-based approaches.

Given the acidic nature of the aqueous SO2 employed under our optimized conditions, 

we hypothesized that adding an additional equivalent of this reagent should enable 

direct functionalization of unprotected amines. Protonation of amines renders the adjacent 

C(sp3)–H bonds both stronger and less hydridic, enabling selective abstraction of distal 

C–H bonds.15a,33 Thus, pyrrolidine was sulfinylated under our standard conditions to 

afford the expected β–benzyl sulfone as a single regioisomer (22, 50% yield). Excellent 

selectivity was observed in the case of amines bearing tertiary C(sp3)–H bonds, with 

4-methylpiperidine and isobutylamine affording the corresponding C(sp3)–S products in 

good yields and complete regioselectivity (23 and 24, 66% and 60% yield, respectively). By 

further increasing the amount of aqueous SO2, trans-1,2-cyclohexanediamine was selectively 

functionalized at the position furthest from the amines (25, 55% yield, single regioisomer). 

Bicyclic amines were also effective substrates for this transformation, with nortropanone 

and a [2.2.1] bicycle functionalized at the most sterically accessible, electron-rich positions 

(26 and 27, 33% and 54% yield, respectively, single regioisomer and 74% selectivity, 

respectively).
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Finally, this reaction was applied to an electronically diverse range of benzylic substrates. 

While the relatively low benzylic C–H bond dissociation energies render the initial HAT step 

facile, the stability of the resultant radical led us to initially question the favorability of its 

reaction with sulfur dioxide. Gratifyingly, toluene derivatives were highly effective in this 

transformation, producing the expected benzylic sulfinic acids in good yields across a broad 

range of aryl functionality (28–33, 67–82% yield), including ortho substitution (33, 81% 

yield). Despite greater stabilization of the resultant radical, secondary benzylic substrates 

also performed well in this transformation (34 and 35, 74% and 46% yield, respectively). 

Notably, many of these benzylic substrates contain protic functional groups, such as 

sulfonamides (30), amides (32 and 33), and boronic acids (35), which prove problematic 

for traditional approaches requiring a strong base or organometallic nucleophiles.34 Further 

investigation revealed that heterobenzylic substrates were also effective in this reaction, with 

selectivity observed for functionalization at the (hetero)-benzylic C–H bonds (36 and 37, 

58% and 56% yield, respectively).

To demonstrate the utility of this methodology for late-stage functionalization, natural 

products and pharmaceuticals were converted to the corresponding sulfinates in a single 

step (Table 2). Notably, natural amino acids leucine and GABA afforded the corresponding 

benzyl sulfones in synthetically useful yields and excellent selectivity (38 and 39, 58% 

and 24% yield, respectively, 91% selective and single regioisomer, respectively). The 

monoterpenoid fenchone was functionalized with good selectivity for the most electron­

rich, sterically accessible C–H bond (40, 56% yield, 63% selectivity), and pregabalin 

was converted to the corresponding benzyl sulfone with excellent regioselectivity for the 

tertiary position (41, 54% yield, 85% selectivity). Finally, two drugs bearing benzylic C–H 

bonds, celecoxib and prilocaine, were derivatized with complete selectivity observed for 

functionalization at the benzylic position (42 and 43, 70% and 73% yield, respectively).

As an illustration of the broad utility of this platform for the synthesis of diverse 

organosulfur compounds, a range of one-pot procedures for the divergent functionalization 

of tricyclic imide 44 were developed. As shown in Table 2, the sulfinic acid intermediate 

was successfully converted to a range of alkyl sulfone derivatives (45–47, 56–93% yield). 

Introduction of heteroatoms also proved facile, with the corresponding sulfonic acid (48, 

82% yield), primary sulfonamide (49, 65% yield), sulfonyl fluoride (50, 66% yield), 

and sulfonyl chloride (51, 57% yield) all generated with good efficiency. Additionally, 

two-pot protocols were developed for the conversion of celecoxib to a diverse range of 

sulfonamides via the intermediacy of a sulfonyl chloride, generated via chlorination of the 

C–H sulfinylation product without intermediate purification. Alkyl amines (52 and 53, 62% 

and 53% yield, respectively), anilines (54, 56% yield), and N-heterocycles (55, 31% yield) 

all reacted to afford the desired sulfonamide products.

As a preliminary investigation into the mechanism of this transformation, we 

computationally studied the coupling of a range of alkyl radicals with sulfur dioxide 

(Scheme 2). Notably, with aliphatic radicals, a significant negative free energy of reaction 

was observed for this trapping in water ((U)-ωB97XD/6–31+G(d,p), SMD solvent model). 

Moreover, efforts to identify a transition state in the case of unstabilized aliphatic radicals 

proved unsuccessful, with stretching of the C–S bond of the sulfonyl radical product 
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resulting in a continuous increase in energy, possibly indicating a barrierless process (Figure 

S7). In order to further investigate the nature of the C–S bond-forming step, we calculated 

the transition state energies for the addition of a series of stabilized radicals (e.g., benzylic) 

into SO2 in the gas phase, conditions under which sulfonyl radical formation is predicted to 

be markedly less favorable than in the presence of polar solvent. Remarkably, however, low 

barriers to radical capture with SO2 were determined (7.5 and 6.8 kcal/mol for primary and 

secondary benzylic, respectively), consistent with the observed efficiencies in experiments 

involving aliphatic radicals and sulfur dioxide.

In summary, we have developed a perfectly atom-economical protocol for the photocatalytic 

conversion of C(sp3)–H bonds into the corresponding alkyl sulfinic acids, thereby enabling 

unprecedented access to a broad array of valuable organosulfur products. Furthermore, these 

studies clearly illustrate the importance of sulfur dioxide as an efficient reagent for the 

formation of C–S bonds from a diverse range of aliphatic radicals and, as such, should 

inform the development of related transformations that proceed via this key elementary step.
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Figure 1. 
Development of a general C(sp3)–H sulfinylation.
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Scheme 1. 
Proposed Photocatalytic Cycle and Initial Conditions
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Scheme 2. 
Computational Study of Radical Addition to SO2
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