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A B S T R A C T   

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely spread in the world, causing 
more than two million deaths and seriously threatening human life. Effective protection measures are important 
to prevent the infection and spreading of the virus. To explore the effects of graphene on the virus adsorption and 
its biological properties, the adsorption process of the receptor binding domain (RBD) of SARS-CoV-2 on gra-
phene has been investigated by molecular dynamics simulations in this paper. The results show that RBD can be 
quickly adsorbed onto the surface of graphene due to π − π stacking and hydrophobic interactions. Residue 
PHE486 with benzene ring has stronger adsorption force and the maximum contact area with graphene. Gra-
phene significantly affects the secondary structure of RBD area, especially on the three key sites of binding with 
human ACE2, GLY476, PHE486 and ASN487. The binding free energy of RBD and graphene shows that the 
adsorption is irreversible. Undoubtedly, these changes will inevitably affect the pathogenicity of the virus. 
Therefore, this study provides a theoretical basis for the application of graphene in the protection of SARS-CoV-2, 
and also provides a reference for the potential application of graphene in the biomedical field.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
been widely spread all over the world [1–5]. The diameter of SARS-CoV- 
2 is about 50–200 nm. The inner single stranded RNA consists of 29,811 
nucleotides, which is encapsulated by N (nucleocapsid) protein. E (en-
velope) protein and M (membrane) protein form the viral envelope, and 
S (spike) protein is embedded in the outermost layer of the virus [1–3]. 
The high affinity between the receptor binding domain (RBD) of S 
protein and human angiotensin converting enzyme 2 (ACE2) is the key 
to the strong infection of the virus [1,6,7]. SARS-CoV-2 has high ho-
mology with SARS-CoV appeared in 2002–2003 and MERS-Cov 
appeared in 2012 [8], possessing strong infection in human. It has 
rapidly caused the worldwide pandemic of coronavirus disease 2019 
(COVID-19) [1]. According to the report of the World Health Organi-
zation (WHO), more than 100 million have been infected by COVID-19 
until January 28, 2021, with 2.15 million deaths. In addition, the impact 
on economy and trade, industrial production and cultural exchange is 
enormous. Considering that SARS-CoV-2 is in nanometer size, nano-
technology may provide an effective way to solve this crisis [3]. 

As two-dimensional nano material with sp2 hybrid, graphene has 
been widely studied due to its good properties and potential application 
prospects [9–11]. It plays a key role in the field of medical and electronic 
engineering since its inception [4,12–16]. In the past decades, graphene 
based nanomaterials have been the most attractive in biosensor design 
due to their high affinity, low cost and ease of manufacture [17–19]. 
Being a single-layer sp2 hybrid carbon atom, graphene has high surface 
area to volume ratio [20,21], it can easily detect single biomolecule. 
Therefore, it becomes a perfect material for sensor manufacture and 
implantable devices [22]. The research of cytochrome C553 on graphene 
revealed a wide application prospect of graphene in biosensors and 
green bio-photovoltaic [23,24]. The interaction of graphene with bio-
molecules has become one of the research hotspots in biomedical area. 
Using molecular dynamics simulation, Zhao et al. found that HIV Vpr 
protein could be adsorbed onto graphene and the protein conformation 
changed significantly during the adsorption process [25]. Zou and his 
team used sum frequency generation(SFG)and molecular dynamics 
simulation to explore the interaction of cecropin P1 and MSI78 (C1) 
with graphene, demonstrating that molecular dynamics simulation is 
effective in investigating the adsorption of biomolecules on graphene 
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[11]. Immunoglobulin G could be rapidly expanded with conformation 
changes in the adsorption process of graphene [26]. Peptides with larger 
volume were easier to be adsorbed onto graphene [27]. The properties 
(size, oxidation rate, curvature, etc.) of graphene and the tension of 
pulmonary surfactant have significant effects on the extraction kinetics 
[28]. In addition, researchers found that graphene and its derivatives 
have good surface integrity in capturing virus [4,29,30]. If the structural 
arrangement and spatial configuration of the protein are changed, its 
function will be lost and may lead to virus inactivation [3]. Therefore, 
graphene may be used to fight SARS-CoV-2. 

The droplets discharged from respiratory tract of SARS-CoV-2 
infected people contain virus particles. The virus in this aerosol re-
mains active for up to 3 h in the air [31]. People inhaling this aerosol will 
be infected, which is also the main path of human transmission. Medical 
experts advocate the use of surgical masks to prevent the virus from 
being inhaled [32]. Some people proposed to add graphene nanofilms 
into the masks to more effectively block the spread of the virus. Bye-
ongtaek Oh et al. studied the application of graphene in promoting 
neuronal stem cell differentiation [33]. Graphene can be made into 
magnetic nanocapsules, which is able to deliver oral drugs to the 
stomach site-selective [34]. Graphene has large surface area ratio and 
delocalized π electronic structure. It can be used as a loading platform 
for chemotherapeutic drugs in cancer treatment. This strategy shows 
excellent effects in vitro and in vivo [35,36]. Graphene nanocapsules 
(AuNR@G) were injected into mice caudal vein at certain concentration, 
which didn’t cause any significant damage to cell morphology and main 
organs [36]. Mice orally administered with appropriate concentration of 
magnetic graphene capsules did not cause significant damage to cell 
morphology and gastric mucosa, and most of the particles were excreted 
within 12 h [37]. These researches indicate that graphene is feasible for 
in vitro protection. Whether graphene is used as a sensor to detect virus 
or added into protective equipment, the process of virus adsorption on 
graphene surface should be understood. 

The binding of RBD on S protein of SARS-CoV-2 with ACE2 of human 
[1,6,7] is the key for people to be infected. RBD is also the area the virus 
contacts outside. The adsorption process of RBD on graphene is the 
process of virus being captured by graphene. Thus, we investigated the 
whole process of RBD adsorption on graphene by molecular dynamics 
simulation, to excavate a significant way for graphene in virus detection 
and defence. 

2. Computational model and methods 

To build the simulation model, the crystal structure of RBD and ACE2 
complex was downloaded from Protein Data Bank (PDB: 6M0J). RBD 
was separated and the missed residues were completed by homologous 
modeling. Then, a two-dimensional graphene with the size of 118 × 89 
Å2 is constructed and placed in the X-Y plane at the bottom of the box 
[25,38]. The length of the simulation system along the Z axis is 88 Å. 
RBD was placed on top of graphene with the outermost residue closer to 
graphene, which bounds to human ACE2. Residues embedded inside the 
virus were farther away from graphene as shown in Fig. 1. The initial 
distance between them was about 9 Å. To eliminate the influence of 
periodicity on the system, the distance between RBD and the edge of the 
simulation box was at least 10 Å. Finally, 27,988 water molecules were 
filled into the box and solvated with SPC/E model [25,39]. Three Cl- 

were added into the box and randomly distributed to keep the system 
electrically neutral. 

All simulations were exceuted with Gromacs package 5.1.4 [40,41]. 
The interaction between RBD and graphene was simulated by 
CHARMM36, which is widely used to describe the molecular dynamics 
behavior of proteins [42–46]. The C atoms in graphene were regarded as 
uncharged Lennard-Jones particles. The nonbonding parameters of 
benzene(σcc = 0.355nm, εcc = 0.293kJ/mol)in CHARMM36 were used 
to describe them, which had been successfully used in the study of 
graphene surface adsorption [27,42,47]. The parameters of the 
nonbonding interactions between graphene, RBD and water were 
calculated by Lorentz-Berthelot combination rule. Periodic boundary 
conditions were applied in ×, y and z direction during the simulation. 
The cutoff values of Lennard-Jones and Coulomb interactions were 10 Å. 
The particle mesh Ewald (PME) method was used to calculate the 
electrostatic interaction [48,49]. The bond length of hydrogen atom in 
the system was constrained by LINCS algorithm [50]. Firstly, the energy 
of the system was minimized with the steepest descent method in 50,000 
steps. Then, pre equilibrium was carried out in the canonical ensemble 
for 1 ns to relax the position restriction of solvent molecules on protein 
atoms, with V-rescale temperature coupler controlling the system tem-
perature[51]. Finally, molecular dynamics simulation was carried out in 
NVT ensemble of 298 K for 180 ns. There was no restriction on the 
protein and solvent molecules in this process, with Nose-Hoover tem-
perature coupler [52] controlling the temperature. (On the basis of 180 
ns molecular dynamics simulation, many 20 ns simulations were carried 
out. The results showed that RBD was stably adsorbed on the graphene 

Fig. 1. Simulation model of RBD on graphene, where RBD is expressed in the form of colored Newcartoon, and the blue-green sphere represents graphene.  
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surface.) The trajectory of the system was analyzed by Gromacs, and 
visualized by visual molecular dynamics (VMD) [53]. 

MM-PBSA is a method to calculate the binding free energy with the 
MD trajectory. It has been successfully applied into many researches in 
biomedical field [54–59]. The free energy of a molecule can be 
expressed as 

G = EMM +GPB +GSA − TSMM (1)  

EMM = Eint +Evdw +Ecou (2)  

where Eint is determined by the interaction of intramolecular bond 
length, bond angle and dihedral angle. Evdw and Ecou represent van der 
Waals and Coulomb interaction respectively. GPB is the polar solvation 
energy, which can be obtained by solving Poisson Boltzmann equation. 
GSA is the nonpolar solvation energy, which can be calculated according 
to the solvent surface area of the molecule. SMM represents the molecular 
entropy. T is the thermodynamic temperature. Therefore, the binding 
free energy of the protein and graphene can be calculated as 

ΔGBFE = Gcom − Gpro − Ggra (3)  

where Gpro, Ggra and Gcom represent the free energy of the protein, gra-
phene and their complex separately. 

3. Results and discussion 

Molecular dynamics simulation provides a possible way to clarify the 
effect of graphene on RBD structure. Therefore, the adsorption process 
of RBD on graphene surface and resulted changes in the structure were 
thoroughly investigated. 

3.1. Adsorption process 

As the adsorption of RBD on graphene is time-related, the adsorption 
trajectory is discussed in detail. Locations of the main nodes of RBD 
during the simulation are shown in Fig. 2. As shown, RBD quickly ap-
proaches graphene in the initial stage of the simulation, to a distance 
about 3 Å at 3.5 ns. In other words, the initial adsorption process appears 
in a very short time, indicating the strong adsorption effect of graphene 
on RBD. At the moment, residue PHE486 has been adsorbed onto the 
surface of graphene, and thereafter never desorbs in the whole simula-
tion process. It illustrates that the π − π stacking interaction between 
benzene ring of PHE486 and graphene plays an important role in the 
protein adsorption [60], which is consistent with previous research re-
sults [61–64]. With the increase of simulation time, residue SER477, 
THR488 and PRO479 are closer on to graphene. At 7.9 ns, the three 
amino acid residues are also adsorbed onto graphene and never desorb 
thereafter. From 3.5 to 7.9 ns, the distance between protein and gra-
phene keeps about 3 Å. As shown by Fig. 2 and Fig. 4, ASN481 begins to 
oscillate near graphene at 7.9 ns. The protein atoms contact the surface 

Fig. 2. The adsorption process of RBD on the surface of graphene. The left is the secondary structure of RBD presented in newcartoon type, in which the red circle 
indicates the protein adsorption area. The right is the enlarged CPK type structure of the adsorption area. The blue-green spherical chain below is the side view of 
two-dimensional graphene. 
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of graphene to the maximum extent after a long time of structural 
adjustment and interface rearrangement. In addition, water molecules 
are repulsed on the graphene surface and form a dehumidification layer 
to promote adsorption [65,66]. ASN481 isn’t stably adsorbed onto 
graphene until 95 ns. The five adsorbed residues never desorbe in 
95–180 ns. Because the charge of graphene atom is 0, there is no elec-
trostatic interaction between the protein and graphene. Therefore, van 
der Waals (vdW) force is the main driving force for RBD adsorption and 
stabilization. Hydrophobic and π − π stacking interactions also assist in 
the adsorption, which are included in vdW interaction of typical 

nonpolarized molecular dynamics force field [62,67]. 

3.2. Energies 

After the RBD was stably absorbed, the last 30 ns of the simulated 
trajectory was used to calculate the binding free energy by the shell 
script gmx_mmpbsa [57,68], with one frame at 1 ns interval. The results 
are shown in Fig. 3a. The binding free energy of RBD and graphene is 
− 11 kJ/mol, the molecular mechanics energy is − 163 kJ/mol, the polar 
solvation energy is 34 kJ/mol, the solvent accessible surface (SASA) 

Fig. 2. (continued). 
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energy is − 19 kJ/mol and energy contributed by entropy is 137 kJ/mol. 
Negative values of energy is conducive to the binding of RBD and gra-
phene, while the positive is not. The positive polar solvation energy and 
energy contributed by entropy are counterbalanced by the negative 
molecular mechanics energy and SASA energy. The binding free energy 
of RBD and graphene is negative, which means RBD will be adsorbed to 
graphene surface without desorbing. 

The binding energy (BE) of each residue with graphene was also 
calculated using gmx_mmpbsa [57,68], where the energy contributed by 

entropy was not included. The results are shown in Fig. 3b. It can be seen 
that the binding energies of SER477, THR488, PRO479, ASN481 and 
PHE486 are negative, while the binding energies of the remaining res-
idues are basically zero. The results indicate that only these five residues 
are adsorbed with graphene. Among the five residues adsorbed, PHE486 
has the smallest adsorption energy of − 18 kJ/mol, which indicates that 
π − π stacking interaction between PHE486 and graphene is strong. 

Van der Waals interaction is usually calculated by Lennard-Jones 
(LJ) potential, as shown in Eq. (4) 

VLJ
(
rij
)
= 4ε

((
σij

rij

)
12 −

(
σij

rij

)
6

)

(4)  

where σij and εij are LJ parameters between atom i and j, given by the 
corresponding force field of GROMACS. rij is the distance between atom i 
and j. As Graphene has no charge, the energy between RBD and gra-
phene is mainly LJ potential, whose variation with time is shown in 
Fig. 3c. It can be seen that the LJ potential decreases rapidly in the first 
7.9 ns, corresponding to the process of RBD approaching the surface of 
graphene. After some residues of RBD were adsorbed onto graphene 
(such as SER477,THR488, PRO479 and PHE486), the energy curve 
shows a stable period of about 87 ns. LJ potential begins to decrease 
again at 95 ns, due to ASN481 contacting graphene with the change of 
RBD structure and interface. For another 10 ns, the adsorption of 
ASN481 is stable. The LJ potential between RBD and graphene keeps at 
− 231 kJ/mol thereafter. 

3.3. Sructural changes 

In order to reveal the structural changes of RBD during simulation, 
the root mean square deviation (RMSD) was calculated according to Eq. 
(5) 

RMSD(t0, t1) =

[
1
M
∑N

i=1
mi‖ri(t1) − ri(t0)‖

2

]

1/2 (5)  

where mi is the mass of the ith atom, M is the total mass of all atoms in 
RBD, N is the total number of atoms in protein, ri(t0) and ri(t1) corre-
sponds to the position of the ith atom at initial time and t1. RMSD reflects 
the change of protein structure during simulation. A larger RMSD in-
dicates larger change of protein configuration. When the structure of 
protein is stabilized, RMSD shows little variation over a period of time. 
That is, RMSD converges. In Fig. 4a, RMSD increases rapidly in the 
process of RBD approaching graphene at the beginning of the simula-
tion. When the protein is 

stably adsorbed, RMSD decreases for a short time and then increases 
slowly. Finally, RMSD converges to the average value of 1.5 Å after 130 
ns. 

To further investigate the variation of RBD configuration in simu-
lation, its radius of gyration (Rg) was calculated according to Eq. (6) 

Rg =

(∑
i‖ri‖

2mi
∑

imi

)

1/2 (6)  

where mi is the mass of the ith atom, ri is the position of the ith atom 
relative to the molecular centroid. Rg can roughly reflect the structural 
compactness of protein. A higher Rg means larger volume and smaller 
density of the protein. In Fig. 4b, Rg firstly decreases slowly until 30 ns, 
and then begins to increase slowly to the maximum at about 130 ns. 
During 130–180 ns, Rg keeps at an average value of 17.1 Å. This shows 
that in the initial stage of the adsorption, the molecular volume first 
decreases due to the inertia effect. When the adsorption is stable, the 
molecular volume begins to recover and increase slowly under the 
interacton of Coulomb and van der Waals forces. After 130 ns, the 
configuration and volume of the protein tend to be stable. 

What’s more, the root mean square fluctuation (RMSF) of each 

Fig. 3. The various energies of RBD and graphene. In Fig. 3a, ΔGBFE, EMM, GPB, 
GSA and − TΔS represent binding free energy, molecular mechanics energy, 
polar solvation energy, solvent accessible surface energy and energy contrib-
uted by entropy, respectively. 
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residue was calculated according to Eq. (7) 

RMSF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

rt − rref
)

2

T

√

(7)  

where rt is the position of conformation at time t, rref is the position of 
the reference conformation, and T is the total simulation time. RMSF 
reflects the average fluctuation of residues relative to the reference 
position in the simulation process. In Fig. 4c, there are two parts of 

residues fluctuated greatly in the whole simulation process. One part is 
the residues at the end of protein peptide chain (residue 331 and 530). 
As only one end of the these residues is connected with others, the other 
end can fluctuate freely. The other part is residues 477–486, which is the 
adsorption area of RBD on the surface of graphene. It indicates that the 
hydrophobic interface of graphene has a strong effect on these residues 
and changes their structure obviously. This domain is also the main 
binding region between RBD and ACE2. 

3.4. Contact area 

The contact areas are calculated according to Eq. (8) 

S =
1
2
(sx + sy − sxy) (8)  

where sx is the solvent accessible surface (SASA) of monomer X, sy is the 
SASA of monomer Y, sxy is the SASA of the adsorbed complex, and S is 
the contact area of monomer X and Y. The probe radius for SASA cal-
culatation is 1.4 Å. 

The contact area of RBD and some of its residues with graphene is 
shown in Fig. 5. The average contact area of RBD with graphene is 129 
Å2 in 3.5–7.9 ns, and 354 Å2 in 7.9 ns-95 ns. After 95 ns, the average 
contact area rests around 488 Å2. As seen from Fig. 2 and Fig. 5, the 
variation in contact area of RBD with graphene results from the 
adsorption process of different residues onto graphene. There is only 
PHE486 contacting graphene in 3.5–7.9 ns, while SER477, THR488 and 
PRO479 also adsorbed onto graphene in 7.9–95 ns. And, ASN481 res-
idue doesn’t get a stable adsorption until 95 ns. The average contact 
areas of SER477,THR488,PRO479 and PHE486 in stable adsorption 
with graphene were 84 Å2, 85 Å2, 81 Å2 and 129 Å2, respectively. 
ASN481 doesn’t get stable adsorption area of 84 Å2 until 95 ns, as it flops 
near graphene in 7.9 ns-95 ns. This indicates that the hydrophobicity of 
ASN481 is weaker than that of the other four residues, while PHE486 
with aromatic ring has the strongest adsorption capacity. It is worth 
noting that PHE486 is also one of the main residues of RBD binding to 
human ACE2 [6,8]. 

3.5. Secondary structure 

To further study the effect of graphene on RBD, the secondary 
structure of RBD adsorption region was calculated using Define Sec-
ondary Structure of Proteins (DSSP) [44,69], as shown in Figs. 6 and 7. 
The adsorption region initially contains two B-sheets, one B-bridge, two 
Turns and two Bends. The B-sheets are respectively composed of resi-
dues 473–474 and 488–489 , while the B-bridge is composed of residue 
485. The Turns are respectively composed of residues 481–482 and 
486–487, as well as the Bends correspondingly of residues 476–478 and 
491. The remaining 12 residues form five Coil. No A-helix and 3-helix 
appear in the adsorption region. The secondary structure of RBD 
adsorption region changes obviously after the simulation of 180 ns. Two 
B-sheets evolves into B-bridge and Coil in some time and finally forms B- 
sheet in the simulation process. The B-bridge formed by residue 485 
becomes Coil in some time and finally evolves into Bend. The Turn 
formed by residues 486–487 evolves into Bend. Bend formed by residues 
476–478 evolves into a Turn and a Coil. It is worth noting that GLY476, 
PHE486 and ASN487 are the key sites for SARS-CoV-2 virus binding to 
human ACE2 [6,8]. These changes in the secondary structure are bound 
to influence the biological properties of the virus, and even make it lose 
the pathogenicity. 

4. Conclusions 

In this paper, the adsorption process of the receptor binding domain 
(RBD) of SARS-CoV-2 S protein with graphene was studied by molecular 
dynamics simulations. The results show that graphene has strong 

Fig. 4. Structural changes of RBD during simulation.  
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adsorption on RBD. Within 3.5 ns, RBD can be approach to and contact 
graphene. Five amino acid residues are adsorbed onto the surface of 
graphene. Compared to the other four residues, PHE486 gets stronger 
adsorption and more contact area, because of the π − π stacking inter-
action between benzene ring and graphene. Due to the adsorption of 
graphene, the secondary structure of RBD adsorption region changes 
significantly, with Turn formed by residues 486–487 becoming Bend, 
and the Bend formed by residues 476–478 becoming a Turn and a Coil. 

Among them, GLY476, PHE486 and ASN487 are the key sites for SARS- 
CoV-2 binding to ACE2. These changes of the secondary structure will 
inevitably affect the pathogenicity of the virus. The simulations after 
stable adsorption show that RBD will not desorb. The binding free en-
ergy of − 11 kJ/mol also shows that the adsorption is irreversible. This is 
very important to prevent the spread of SARS-CoV-2. Therefore, it pro-
vides a theoretical basis for the application of graphene in defending 
SARS-CoV-2 and preventing its spread, as well as in the biomedical field. 
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