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Abstract

Purpose: To assess the robustness and repeatability of intravoxel incoherent motion model 

(IVIM) parameter estimation for the diffusion weighted MRI in the abdominal organs under the 

constraints of noisy diffusion signal using a novel neural network method.

Methods: Clinically acquired abdominal scans of Crohn’s disease patients were retrospectively 

analyzed with regions segmented in the kidney cortex, spleen, liver and bowel. A novel IVIM 

parameter fitting method based on the principle of a physics guided self-supervised convolutional 

neural network that does not require reference parameter estimates for training was compared to a 

conventional non linear least squares (NNLS) algorithm, and a voxelwise trained artificial neural 

network (ANN).

Results: Results showed substantial increase in parameter robustness to the noise corrupted 

signal. In an intra-session repeatability experiment, the proposed method showed reduced 

coefficient of variation (CoV) over multiple acquisitions in comparison to conventional NLLS 

method and comparable performance to ANN. The use of D and f estimates from the 

proposed method led to the smallest misclassification error in linear discriminant analysis for 

characterization between normal and abnormal Crohn’s disease bowel tissue. The fitting of D∗ 
parameter remains to be challenging.

Conclusion: The proposed method yields robust estimates of D and f IVIM parameters under the 

constraints of noisy diffusion signal. This indicates a potential for the use of the proposed method 

in conjunction with accelerated DW-MRI acquisition strategies, which would typically result in 

lower signal to noise ratio.
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Introduction

Diffusion weighted MRI (DW-MRI) enables an indirect estimate of the parameters that 

govern tissue microstructure including cell density, microperfusion, and cell membrane 

viability (21). The simplest model of DW-MRI model signal is given by a single exponential 

decay, which is driven by an apparent diffusion coefficient (ADC) of the tissue (8). This 

study focusses on a bi-exponential model of signal decay in the DW-MRI signal, an 

intravoxel incoherent motion (IVIM) model, which recognizes that diffusion in tissue occurs 

at two scales due to the complex varying cell structures and contribution from vascular 

flow in microcapillaries. IVIM encapsulates both slow and fast diffusion processes has been 

shown to hold an increased benefit in comparison to the ADC model for the assessment of 

severity of a variety of clinical conditions such as renal dysfunction, tumours, liver fibrosis 

and assessment of bowel inflammation and fibrosis in Crohn’s disease (34; 37; 19; 16).

IVIM model is described by:

S(b) = S0 fe−bD* + (1 − f)e−bD

where b is the vector of diffusion weightings (b-values), S0 is the non-diffusion dependent 

MR signal, D is the diffusion coefficient associated with slow diffusion of water molecules, 

D∗ is the diffusion coefficient linked to the fast diffusion due to water molecule perfusion 

in microcapillaries and f is the perfusion fraction that relates to the volume fraction of 

microcapillaries’ contributions to the diffusion.

In a 2D MR acquisition, each diffusion signal is obtained at a certain b-value and a certain 

diffusion-sensitizing gradient. For IVIM parameter fitting, diffusion sensitizing gradient 

images of the same b-value can be geometrically averaged to improve the signal to noise 

ratio (SNR), and to average out non-isotropic diffusion properties of the tissue. However, 

each additional diffusion gradient image linearly scales the acquisition time.

In clinical practice, a trade-off must be made between a higher number of required images 

to improve the robustness of the IVIM parameter estimates and requirement to minimize 

the scan time to lessen motion artifacts, patient discomfort and cost to the medical facility. 

This is especially important in pediatric population, which calls for a reduction in the use 

of sedation and anaesthesia. Scan time reduction in DW-MRI is conventionally achieved via 

a reduction in the number of b-values, diffusion gradients, signal averages (NSA) or via 

in-plane accelerated imaging. Novel acceleration methods, such as simultaneous multi-slice 

imaging (SMS), have also shown promise for the use in fast DW-MRI (15). The goal of this 

study was to investigate the robustness and repeatability of IVIM parameter fitting under the 

constraints of low SNR input, which is typically associated with a reduction in the number 

of available diffusion gradients, higher in-place acceleration factors or SMS.

The most common approaches to the estimation of quantitative MRI parameters of the IVIM 

model are performed on a voxel wise basis via non-linear least squares (NLLS) methods 

(20). These approaches suffer from poor precision and repeatability, which can be improved 

by integrating the estimates over spatially homogeneous priors (33). Bayesian methods have 
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also been used to model the whole diffusion spectrum in terms of probability distribution 

rather than as a two compartmental model to further reduce variability (20). However, these 

methods are significantly slower and typically take hours to fit for a single patient, rendering 

them unfeasible for real-time clinical use.

Advances in deep learning methods have shown robust performance on noise corrupted MRI 

signals and superior computational speed (27). Conventional deep learning architectures are 

typically trained in a supervised manner, which poses a drawback for IVIM model fitting 

due to lack of a robust conventional method for parameter estimation with high accuracy 

and precision that can be used as a reference in parameter estimates. The performance 

of supervised training cannot surpass robustness and accuracy of the reference model. In 

the instance of conventional IVIM methods, the variability of D* estimates is significantly 

high even with Bayesian methods and thus the use of such ground truth reference is not 

commendable (12).

To address this limitation, neural networks can be trained in an unsupervised manner on 

synthetically generated data. This is achieved by sampling IVIM parameter values within 

the acceptable bounds of D, D∗ and f, from which the DW-MRI signal is estimated using 

the IVIM equation. This voxelwise synthetic dataset generation approach has been used 

to train feedforward artificial neural networks (ANNs) in a voxelwise manner (4; 2; 9; 6). 

Alternatively, the input data itself can be used to train neural networks in a self-supervised 

manner, without the need for reference labels (13).

However, neural networks trained in a voxelwise manner do not incorporate any prior 

knowledge of the spatial homogeneity in tissues of the same class, and therefore 

performance may suffer in the conditions of low SNR. Convolutional neural networks 

have been successful in capturing the spatial dependency between neighbouring voxels to 

effectively denoise the low SNR DW-MRI data, and conventional parameter estimation 

schemes could then be applied for model fitting (14; 7). However, it has also been shown 

that convolutional neural networks, such as the U-net architecture (32), can directly estimate 

parameters from noisy MRI signal in a self-supervised manner for modelling T1, T2 and 

T2∗ decay constants (24; 29; 35).

In this work we evaluate a self-supervised convolutional neural network for direct estimation 

of IVIM parameters on noisy SNR input. The network is trained directly on clinical Crohn’s 

patient data and does not require supervision from conventional IVIM parameter fitting 

methods.

Methods

Data

Acquisition—DW-MRI data was acquired with a 1.5T scanner (Magnetom Avanto, 

Siemens Medical Solutions) using free-breathing single-shot echo-planar imaging with 

parameters: repetition/echo time (TR/TE) = 7500/77ms; matrix size =192×156; field 

of view =300×260mm; slice thickness/gap = 5mm/0mm; 36–44 axial slices; 7 b­
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values=0,50,100,200,400,600,800 s/mm2 with 6 directions and 1 excitation (NSA); partial 

Fourier factor 6/8 and GRAPPA factor 2; acquisition time = 5.5min.

Patient population—Training, validation and test data consisted of clinically acquired 

axial DW-MR images from pediatric Crohn’s disease patients that were used under the 

approved IRB protocol. The clinical dataset consisted of 134 subjects, which covered upper 

and lower abdominal areas. The upper abdominal organs are expected to be normal in this 

patient population.

Image analysis—IVIM parameter estimates in the upper portion of the abdomen were 

measured over three selected regions of interest - the kidney cortex, the spleen and the 

liver, as shown in Figure 3. Kidney medulla were excluded from the analysis due to the 

anisotropic nature of diffusion in these regions. Similarly, in the segmented regions of the 

liver, the vessel structures were also avoided due to presence of large scale perfusion in these 

regions, which gives rise to anisotropic signal characteristics. Each manually segmented 

image was cross-checked by a second observer (see co-author, S.K.) with 7 years of 

expertise in the abdominal IVIM analysis.

Additionally, normal and abnormal tissue in the bowel region of Crohn’s disease patients’ 

scans was marked by a trained radiologist with 2×2 voxels markings on high b-value images 

(b400, b600 or b800).

Architecture of the Learning Model—The parameter fitting neural network 

architecture is shown in Figure 1, which consists of a convolutional neural network (CNN) 

that solves the inverse problem by estimating the four parameters of the IVIM model from 

the measured signal at multiple b-values. A loss function is formed of an IVIM forward 

model that takes the network predicted parameters and computes the original input image 

at each b-value using the IVIM signal model, and from which a L2 norm of the difference 

between the images at the output of the forward model and the original input data to the 

network is optimized. No ground truth parameters are needed for training the network.

The network uses a conventional U-net (32) as a choice of CNN architecture, which 

is motivated by U-net’s excellent performance on a number of medical imaging tasks, 

including self-supervised forward model based parameter regression in other domains (35; 

30; 24). The U-net takes as an input sets of 3D input arrays. Each 3D array is composed 

of a 2D slice with a 7 dimensional vector of the DW-MRI magnitude signals of different b­

values. The 3D input array is down-sized into 1024 kernels of shape 10×12 in the bottleneck 

layer of the U-net, and reformed back into the 3D shape that consists of the equivalent 2D 

slice size and a 4 dimensional vector that represents the estimated IVIM parameters at the 

output.

Each downsampling block of the U-net, and its equivalent upsampling block, consist of 

a chain of 3 sets of operations - 3×3 convolution, Relu activation and dropout. There 

are 4 downsampling and upsampling blocks in the U-net. The first and last convolutional 

operations are of the same shape as the 2D slice in the x-y dimensions and have 64 filters 

in the z dimension. As is common in the conventional U-net designs, the filter number is 
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progressively increased by a factor of 2 while the x-y dimensions are decreased by the same 

amount through each downsampling block, thereby leading to a 10×12×1024 array in the 

bottleneck layer.

Training—The dataset was split into 120 training subjects, 4 validation subjects and 10 

test subjects. Validation loss was used to monitor network performance and to prevent 

overfitting. The following final hyper-parameters were used for training: a dropout rate of 

10%, batch size of 2, 80 epochs and an Adam optimizer with a progressively decreasing 

learning rate over the training epochs. The framework was trained on Nvidia Titan XP GPU 

using Tensorflow 1.13 library (1).

Thresholding, normalization and rescaling—Prior to training, the input data was 

preprocessed to ensure smooth gradient flow in the backward pass of the CNN and the speed 

of convergence. First, the signal outside of abdominal cavity was set to zero in each image. 

Next, each vector of 7 b-values for each pixel in the 3D input array was normalized with 

respect to the mean of the first b-value image. At test time, the IVIM parameters estimated 

by the U-net had to be re-scaled to match the expected quantitative range of the underlying 

MRI signal properties.

Evaluation

Competing Methods—The proposed approach was compared to a voxelwise IVIM fitting 

algorithm that uses a NLLS iterative scheme via the BOBYQA method (31). BOBYQA 

method has been shown to improve estimates over the conventional Levenberg-Marquardt 

algorithms (18; 17). NNLS scheme incorporated a segmented fit approach (26) with the 

estimates bounded to the naturally occuring range of values for D, D∗ and f. Additionally, 

we trained an ANN on synthetically generated dataset, similar to (4; 2). Synthetic training 

dataset consisted of 1,000,000 voxels and D, D∗ and f parameters sampled from a naturally 

occurring range of their values. ANN consisted of 7 nodes at input (equivalent to the number 

of b-values), followed by three fully connected hidden layers with 7 nodes each, and 3 nodes 

at the output (equivalent to D, D∗ and f). Input signal was normalized with respect to the 

first b-value at test time. Technical implementation was based on modifications to the code 

supplied by (2).

Accuracy of parameter estimates on noisy DW-MRI—Noise was added to the input 

DW-MRI data to evaluate each method’s competence at varying levels of SNR, as shown in 

Figure S1. The noise was drawn from a normal distribution that was scaled with respect to 

the mean estimate of the signal of the abdominal cavity to ensure that the noise is scaled 

in relation to each scan’s varying average signal intensity and hence it is drawn from a 

normal distribution that is scaled between N(0, B0
SNR ). Performance of each method was 

evaluated by computing normalized root mean squared error (nRMSE) between each IVIM 

parameter estimate from the original input data and the parameter estimate from the noise 

corrupted input data. nRMSE was computed in a pairwise manner on a voxel by voxel 

basis for all slices of all subjects for each parameter and segmented region. Normalization 

was performed by dividing RMSE by the mean value of the given parameter estimate in 
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the original non noisy data for the given region, and therefore represents the percentage 

difference in relation to the original signal.

Repeatability—In order to assess repeatability, a separately acquired dataset of from 5 

healthy volunteers with repeat intrasession acquisitions was considered. The acquisition 

parameters for this data were identical to those of the clinical protocol used for the training 

and test data. The DW-MRI acquisition was repeated multiple times within a single scan 

session for each of the 5 volunteers at 6,4,4,3,3 repetitions respectively. A carefully placed 

small region of interest that consisted of 12 voxels was placed in three preset regions of 

interest. Coefficient of variation (CoV) between repetitions was estimated for each patient 

for each parameter for each region for each subject.

Crohn’s disease tissue characterization—In this experiment we evaluated the ability 

of each parameter estimation method to discriminate between tissue class types in a 

clinically relevant region of interest. Linear discriminant analysis (LDA) aims to find the 

best decision boundary to separate class variables with a linear combination of dependent 

variables. LDA was performed on the estimated IVIM parameters as dependent variables. 

Misclassification error rate of the estimated LDA linear discriminator function was evaluated 

for D, D∗, f and their joint combinations. In each test, a diagonal covariance matrix estimate 

between dependent variables was used to fit a multivariate normal density to each class. 

Training data consisted of all voxels for all patients in the Crohn’s diseased scans that were 

marked by the trained radiologist, which made up 160 voxels per class. LDA was performed 

with the Matlab software(25).

Results

Estimated parameter maps from an example slice are shown in Figure 2 with kidneys, 

spleen and liver clearly visible in axial view. A difference image is also shown between 

the proposed method and each of the two competing methods. Qualitative assessment of 

the proposed method shows excellent agreement with NNLS and voxelwise trained artificial 

neural network (ANN) for the estimation of D parameter, which is the parameter that 

is typically more robust and easier to fit (23). The proposed method shows a less noisy 

estimate of the D* parameter such that it is possible to view the outlines of the anatomy in 

the three preset regions of interest. Similarly, the estimate of the f parameter is well defined 

around the kidney structures in the proposed method.

Boxplots of the parameter estimates for each of the three preset regions of interest in 

the upper abdominal area are shown in Figure 5. Statistical analysis was performed to 

indicate significant difference in the parameter estimates between NLLS and each of the 

alternative fitting methods. The analysis was done with a paired Mann–Whitney–Wilcoxon 

non-parametric test of the null hypothesis, with adjustment for multiple comparison using 

the Scipy statistical toolbox (36). Statistical significance is marked with an asterisk, with 

∗∗ and ∗ indicating significance at 99% and 95% confidence interval respectively, and ns 
indicating no significant difference. Detailed breakdown of p-value stastistics are shown in 

Supporting Information Table 2.
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Results indicated no significant difference for D between NLLS and each of the alternative 

fitting methods in each of the three regions of interest. Both the proposed method and ANN 

showed substantially lower variance in D∗ estimates, which is typically a difficult parameter 

to estimate with the conventional fitting methods. No significant difference was found with 

NLLS for D∗ in kidneys and liver, however significant difference was found between the 

estimates in spleen for both ANN and the proposed methods. Similarly, lower variability 

was observed in the estimates of f parameter in spleen for ANN and the proposed method. 

The scale of variability in D was an order of magnitude lower than in D∗, and two orders 

of magnitude lower in D, which is consistent with relative stability of the f parameter. 

Significant difference was found in parameter estimates of f for ANN and the proposed 

method in the kidney region of interest.

Accuracy of parameter estimates on noisy DW-MRI

Results in Figure 6 show significant reduction in nRMSE for all regions of interest in D and 

D∗ with the proposed method. Reduction is more pronounced when comparing the proposed 

method with the NNLS method. However, note that nRMSE in D∗ varies on a substantially 

larger scale when compared to D, particularly for NNLS. Finally, some improvement in 

nRMSE is shown for the estimation in f with the proposed method, although it is less 

pronounced.

Repeatability

Mean CoV measure across 5 subjects for each region and for each parameter are shown 

in Figure 7. Results indicate reduction in CoV for D∗ for both neural network approaches, 

when compared to NLLS. A smaller reduction is seen in liver and spleen between NLLS and 

the two neural network methods for D, and similarly for kidneys and spleen for f parameter. 

Interestingly, both neural network approaches show higher CoV in the liver for f parameter. 

In general, the proposed method shows reduced CoV over the voxelwise trained neural 

network. However, it is also noted that the proposed method has a higher CoV in kidneys 

and spleen for D, and kidneys and liver for f.

Crohn’s disease tissue characterization

Results of LDA based linear classifier between normal and abnormal Crohn’s disease tissue 

that was estimated with D and f parameters is shown in Figure 8. Misclassification error 

rate (err) in class estimates from the available data is shown at the top of each graph. The 

proposed approach yields the lower misclassification error for the fitted linear discriminant 

functions as more data points in the D vs f plot are clustered together. Visual evaluation 

between normal and abnormal appearing tissue of the method is given in Figure 4, and 

statistical aggregate across all subjects are shown in Figure 9. Supporting Information Table 

1 provides misclassification error rate for each method when different combinations of 

IVIM parameters are used to build the linear discriminant function. Notably, neither of the 

methods could provide reliable linear discriminant function with the use of D∗ parameter. 

The use of both D and f parameters jointly had improved the classification performance for 

both neural network methods, in contrast to when each parameter is used independently.
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Discussion

This study evaluated a self-supervised convolution neural network based method for 

estimation of IVIM parameters from multi b-value diffusion weighted images on clinically 

acquired DW-MRI data of Crohn’s disease patients. The proposed method was compared 

to the conventional iterative voxelwise NLLS fitting scheme as well as a voxelwise 

synthetically trained artificial neural network. Analysis of the regions of interest consisted 

of spleen, kidney cortex, liver and bowel regions. Results indicate improved robustness of 

IVIM parameter estimates in the presence of noise, as well as reduced variability in the 

intra-session repeatability experiments. The proposed method was able to provide reliable 

estimates of D and f parameters that can be used to distinctly characterize between abnormal 

and normal tissue in the bowel regions of Crohn’s disease patients via linear discriminant 

analysis.

The proposed neural network architecture consisted of the widely successful U-net (32), 

which regresses parameter estimates for each voxel from a set of spatially dependent 

convolutional operations in a self supervised manner. It has been shown previously that 

learned priors that incorporate the knowledge of the spatial consistency and the knowledge 

of the underlying data distribution can effectively denoise the input while regressing 

estimates to a true value (3). This may indicate the improved performance of the proposed 

algorithm in the presence of noise over the voxel-based fitting methods in the present study.

The robustness of the proposed method to low SNR input indicates a potential for IVIM 

parameter estimation with certain accelerated acquisition strategies that typically lead to 

low SNR images, such as acquisitions with a reduced number of diffusion gradients, higher 

in-plane acceleration factors or simultaneous multi-slice imaging. Our results showed that 

nRMSE error of less than 0.15 for f and less than 0.1 for D is achievable with relative SNR 

decreased to 50, which indicates that acceleration factors of up to 4x may potentially be 

investigated in the future studies. Additional data collected on a cohort of healthy volunteers 

with these accelerated strategies is required to be evaluated first in conjunction with the 

proposed fitting method. Importantly, motion between images acquired at different b-values 

and at directional gradients remains to be an active issue that needs to be addressed. In future 

work, application of motion correction methods such as in the work of Kurugol et al. (17) 

would be of benefit.

It is important to note that the present study’s clinically approved acquisition protocol had 

already included a number of accelerated scanning strategies and therefore, this limited 

some investigation into how these factors may affect performance of the proposed fitting 

approach. Namely, the data was acquired with the minimum number of signal averages 

(NSA=1), a high partial Fourier factor (0.625), a GRAPPA factor of 2 and only 7 b-values.

While D∗ estimates obtained with the proposed method showed reduced variability, the 

use of this parameter remains to be impractical due to degeneracy in D∗ values. This is 

supported by the evaluation of D∗ in the linear discriminant analysis experiment for the 

characterization of abnormal Crohn’s disease tissue in the bowel. Prior literature suggests 
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that robust fit of this parameter requires a significantly higher number of b-values (11), 

which would be impractical within the constraints of clinically feasible acquisition times.

Further improvements to parameter fitting accuracy for the proposed method may include 

constraints on the bounds of each parameter, similarly to those applied in the BOBYQA 

based NNLS fitting algorithm. This has recently been demonstrated within the context of 

a neural network where the output of the final layer of the voxelwise trained network was 

multiplied with a sigmoid function, and then normalized within the minimum-maximum 

range of each parameter (13).

The added benefit of neural networks is their superior computational speed during inference. 

Notably, the ANN took on average 3 seconds per subject for IVIM parameter estimation, the 

proposed method 5 seconds and NNLS method 28 seconds. Slightly longer inference time 

for the proposed method over the ANN is likely to be due to a larger 2D architecture that 

performs inference over an entire slice, rather than a single voxel. We also note that ANN 

was implemented in Pytorch framework (28), while the proposed network was build with 

Tensorflow framework (1).

Practical application of the proposed approach is affected by the common setbacks of deep 

learning methods, which include the need to retrain the network for inputs that are drawn 

from dissimilar probability distribution to that of the training set. Examples of this may be 

images obtained with different acquisition parameters, images of a different anatomy or a 

different patient class, where IVIM parameter statistics may be sufficiently distinct. To avoid 

retraining from scratch, transfer learning may be used in certain cases where sufficient new 

training data is available and the data does not differ substantially (5; 38). However, if the 

input shape, or the range of b-values, are different then a completely new training process 

is required. Moreover, it has been recently suggested that optimal b-value combinations 

may change based on noise statistics when training a voxelwise neural network (22). 

Furthermore, the work of Gyori et al. (10) suggests that uniform sampling of all possible 

parameter values during training generally leads to lower precision for typical parameters 

but more accuracy for atypical parameter estimates. A consideration for this phenomena 

may be important when designing a neural network with a specific clinical application in 

mind.

In conclusion, this work introduced a self-supervised physics model guided deep learning 

method to estimate the IVIM parameters from multi b-value diffusion weighted images. The 

method was evaluated in spleen, kidney cortex, liver and bowel regions of pediatric Crohn’s 

disease patients. The proposed method achieves comparable performance to conventional 

methods with fully sampled signal, but generates more robust estimates of parameters in 

the presence of noise. This result suggests that the proposed method holds promise to 

more robust parameter estimates for accelerated scanning where the SNR of the signal is 

significantly degraded.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A network structure of the proposed method for a physics guided IVIM parameter 

estimation with a self supervised U-net architecture. An input consists of 3 dimensional 

array, which is a concatenation of a 2D slice acquired at 7 b-values. The input is passed 

through a U-net to produce 4 IVIM parameter estimates at each pixel. Parameter estimates 

are used in the IVIM equation to reconstruct the original input image array. L2 loss between 

the output and the original input is used to propagate gradients backwards through the 

network.
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Figure 2: 
An example of IVIM parameter estimates with the conventional voxelwise IVIM fitting 

method, ANN and the proposed approach. Difference image between the proposed method 

and each of the alternative methods is shown in the bottom two rows. The proposed method 

shows strong agreement with estimates of the conventional fitting method for the estimates 

of D and f, but a more coherent visual graph of D*.
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Figure 3: 
An example slice of a manual segmentation of three regions of interest used for results 

reporting. An axial slice is shown to visualize segmentation in one of the slices over the 

spleen and liver. An coronal slice is included to show the segmentation over the kidney 

cortex area, which exhibits isotropic diffusion properties that allows for geometric averaging 

of input across multiple directional gradient images at each b-value.
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Figure 4: 
Visual evaluation of Crohn’s disease tissue in the bowel on b=400 b-value image and the 

corresponding estimated parameter maps with the proposed method. 2×2 voxel markings 

were labelled by a trained radiologist on high b-value images of the input data. Red labels 

refer to abnormal tissue and green labels refer to normal tissue.
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Figure 5: 
IVIM parameter estimates for slow diffusion rate (D), fast diffusion rate (D∗) and perfusion 

fraction coefficient (f) for three regions of interest. A mean measure over a given region 

of interest for a specific parameter was measured for each subject, such that the boxplots 

represent the distribution over the test subjects. The legend denotes the model used to fit the 

data. Results of statistical analysis from the paired Mann–Whitney–Wilcoxon tests between 

NLLS and each of the neural network models are shown above each plot, where ∗ and ∗∗ 
indicate significance at 95% and 99% confidence intervals respectively.
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Figure 6: 
Normalized root mean squared error between IVIM parameter estimates calculated on the 

original input data that consisted of 6 geometrically averaged diffusion gradient images 

at each b-value, and the noise corrupted variant of the same input at a given SNR. The 

proposed method shows substantial improvement in performance under the noisy input data 

in comparison to competing methods.
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Figure 7: 
Intrasession repeatability of IVIM parameter estimates computed as a coefficient of variation 

on a cohort of 5 healthy subjects. Both neural network methods substantially reduce CoV in 

D∗ estimates in comparison to NLLS. The proposed method performs at a similar level or 

lower when compared to the voxelwise trained neural network.
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Figure 8: 
Linear discriminant analysis for classification of abnormal Crohn’s disease tissue in the 

bowel with D and f parameter estimates for each model. Misclassification error rate is 

based on the estimated linear discriminant function for each method by using D and f 
parameter estimates and is given in the subplot titles (see ‘err’). All methods are able to 

successfully distinguish between tissue types with the proposed method yielding the lowest 

misclassification error rate.
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Figure 9: 
IVIM parameter estimates for slow diffusion rate (D), fast diffusion rate (D∗) and perfusion 

fraction coefficient (f) in diseased and healthy regions of the bowel for Crohn’s patient 

cohort. All methods are able to distinguish the tissue classes for D and f, however, the 

measure of D∗ yields degenerate values between the diseased and healthy tissues.
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