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Abstract 

Background:  Markov system dynamic (MSD) model has rarely been used in medical studies. The aim of this study 
was to evaluate the performance of MSD model in prediction of metabolic syndrome (MetS) natural history.

Methods:  Data gathered by Tehran Lipid & Glucose Study (TLGS) over a 16-year period from a cohort of 12,882 
people was used to conduct the analyses. First, transition probabilities (TPs) between 12 components of MetS by 
Markov as well as control and failure rates of relevant interventions were calculated. Then, the risk of developing each 
component by 2036 was predicted once by a Markov model and then by a MSD model. Finally, the two models were 
validated and compared to assess their performance and advantages by using mean differences, mean SE of matrices, 
fit of the graphs, and Kolmogorov-Smirnov two-sample test as well as R2 index as model fitting index.

Results:  Both Markov and MSD models were shown to be adequate for prediction of MetS trends. But the MSD 
model predictions were closer to the real trends when comparing the output graphs. The MSD model was also, 
comparatively speaking, more successful in the assessment of mean differences (less overestimation) and SE of the 
general matrix. Moreover, the Kolmogorov-Smirnov two-sample showed that the MSD model produced equal distri-
butions of real and predicted samples (p = 0.808 for MSD model and p = 0.023 for Markov model). Finally, R2 for the 
MSD model was higher than Markov model (73% for the Markov model and 85% for the MSD model).

Conclusion:  The MSD model showed a more realistic natural history than the Markov model which highlights the 
importance of paying attention to this method in therapeutic and preventive procedures.
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Introduction
The study of natural history of chronic diseases is dou-
bly complex due to their complex nature and multi-
factorial causality [1–3]. Because of this complexity, 
there are few detailed descriptions about chronic dis-
eases natural history [4]. The aim of a study on natural 

history is to clarify the factors that affect the overall 
risk of transition from one stage to another as a dis-
eases progresses (or regresses) [5]. Among the exist-
ing studies, some have looked at the natural history 
of diseases and their pathophysiology from a systems 
biology and complex and dynamic systems perspective 
[6]. Other studies, on the other hand, have illustrated 
the natural histories with complex statistical methods 
[7–10]. The most common methods for investigation 
of dynamic and complex situations and their progres-
sion are simulation-based statistical methods. Among 
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these, Markov models, which pay special attention to 
random changes in processes (stochastic processes), are 
more important. Markov and system dynamics models 
clearly belong to two different scientific fields, but simi-
lar to the system dynamics models, the Markov models 
provide a powerful framework for analyzing dynamic 
systems [11–13]. However, Markov model requires a 
lot of computational capacity when a system becomes 
complex due to increase in the number of states and 
transitions. The MSD model is a hybrid model that 
combines Markov and system dynamics approaches to 
overcome the limitations of Markov models in mod-
eling complex systems. Indeed, despite the difference 
between the Markov and the system dynamic models in 
terms of the stochastic and deterministic nature of the 
states, due to the important similarity of Markov model 
with system dynamic model in terms of “state” and 
“transition”, these two models can be combined with 
each other or even in some cases converted to each 
other [14]. This hybrid model have been mainly used in 
non-medical fields and repairable systems for reliable 
analysis in a more realistic way [12, 15–17]. In fact, in 
a MSD model the failure and repair or control rate of a 
system, which are time-varying indexes, are considered 
for transient availability modeling or analysis of system 
reliability in calculations [15, 18]. Due to information 
feedback theory, easiness of tweaking parameters to 
test different hypotheses and possibility of providing 
solutions to various problems by adjusting flow rates 
[16], system dynamics models are a suitable solution to 
eliminate computational limitations of Markov models.

Metabolic Syndrome (MetS) is a global public health 
challenge with a plethora of increasing research around 
its epidemiology and physiological mechanisms [19–24]. 
However, there are few studies on its natural history which 
have provided contradictory findings [7–10, 25–27]. MetS 
is a very complicated disorder and one can have a differ-
ent combination of the syndrome components at any given 
time, depending on their lifestyle. To be precise, one can 
be in one of the states of “no component”, “isolated hyper-
tension”, “isolated overweight/obesity”, “isolated hypergly-
cemia”, “isolated dyslipidemia”, “obesity + hypertension”, 
“obesity + dyslipidemia”, “obesity + hyperglycemia”, “hyper-
tension + dyslipidemia”, “hypertension + hyperglycemia”, 
“dyslipidemia + hyperglycemia”, and a set of combinations 
of three or four components [28, 29]. The MetS is quite 
dynamic and one can transit from one state to another. 
This dynamicity of the disorder development in individuals 
makes it a proper candidate for an MSD approach. There-
fore, this study was conducted to evaluate the performance 
of a MSD model in a context of investigating MetS natural 
history in a large population-based study.

Methods
Study type and participants
This retrospective study was undertaken on 4 waves of 
Tehran Lipid and Glucose Study (TLGS), ranging from 
year 1999 to year 2016 [30–32]. Data collection and 
measurement procedures, sampling processes, eligibil-
ity criteria for participants, and definitions of MetS cri-
teria in TLGS are published elsewhere [33, 34].

The aim of the study was to evaluate the performance 
of a MSD model in investigation of MetS natural his-
tory (transition between 4 components of MetS, i.e. 
abdominal obesity, hypertension, hyperglycemia, high 
triglycerides with low HDL (dyslipidemia) and their 
combinations (12 states)). To be precise, the investi-
gation encompassed calculating and predicting tran-
sition probabilities (TPs) between the mentioned 12 
states over a period of 21 years (2015–2036) through 
a compartmental MSD model. The findings then were 
compared with those of a Markov model to see which 
model worked better.

Markov model
At the beginning of this section, a 12-state Markov 
model was designed and used to describe the natural 
history of MetS (Fig. 1). A Markov process is a random 
model for describing a sequence of probable events in 
which the probability of each event depends only on 
the present time, not preceding event. In other words, 
if the status of a process is known at times x1, x2…xn, 
then it can be said that only the latest information (that 
is the state of the process at the xn time), is sufficient 
to predict the future progression of the process (Xn + 1). 
Accordingly, the Markov dependency that is intro-
duces as Markov properties (Memoryless) is assumed as 
follow:

Of course, it should be noted that the Markov depend-
ency to the current state, can also be of a different order 
than the first, e.g., of the second-order [35]. So, in many 
practical situations the first-order dependency is suffi-
cient but not always justifiable. However, this is a funda-
mental assumption in the Markov model which is mainly 
considered. Markov process can be fully described by its 
TP function or pij (t) which is the probability that a sys-
tem is in (j) state at time (t), provided that the process 
starts from time (t = 0) and state (i). Hence when (i) = x 
(n-1) [36], then one can write a Markov process as follow:

P
(
Xn+1 = xn+1|X1 = x1,X2 = x2,… ,Xn = xn

)
= P

(
Xn+1 = xn+1|Xn = xn

)

Pij
(

Xn+1 = sj|Xn = si
)

= P
(

Xn = sj|Xn−1 = si
)
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That, (s) is the total number of states that a system 
can occupy at any given time. In our model, the time 
criteria for calculating the TPs in each phase across all 
12 states was triennial and the final matrix of TPs was 
equal to the average of total values of TPs in all peri-
ods [9]. Also, the final state (i.e. MetS), was considered 
as an absorbing state. An absorbing state is a state in 
which no transition to any subsequent state will take 
place [37].

Based on the number of states in our model, a 12 × 12 
transition matrix was used to calculate the TPs.

MSD model design
In order to design a MSD model, control rate (CR) and 
failure rate (FR) indices were first calculated (section 
A in Additional file 1). FR and CR indices are used to 
evaluate the reliability of system models. They are also 
used to evaluate the effects of various interventions in 
a system model (SD). The interventions in our study 
were medicinal (i.e. self-reported consumption of dif-
ferent medications to control blood pressure, blood 

P =







P11 · · · P112
...

. . .
...

P121 · · · P1212







lipids, and blood sugar levels) and lifestyle-based 
interventions (i.e. TLGS phase II to reduce risk factors 
for non-communicable diseases in some participants 
[38]). A SD model performs the risk prediction process 
by using these two indices in a pre-fabricated model 
that is the product of actions-reactions between the 
states in a Markov model. FR (CR) indicates any pro-
gress (regress) from less (more) components towards 
more (less) components across the natural history of 
MetS.

In the CR calculation, both for lifestyle interventions 
and medicinal therapies, patients who were on the 
MetS state were not included in the calculation. Also, 
since no medicinal intervention was needed for healthy 
individuals, people with no-components state were not 
included in the CR calculation for medicinal interven-
tions. Mean values of CR and FR were considered as 
the final values.

After calculating the CR and FR indices, based on our 
Markov diagram (Fig.1), causal loop and stock and flow 
diagrams were drawn for formulation of the SD model 
separately for no component, 1-component, 2-compo-
nent and MetS (Figs. 2, 3 and 4). In fact, at this stage, in 
order to perform simulations, qualitative models (causal 
loop diagram) were transformed into quantitative models 
(stock and flow diagram).

Fig. 1  A 12-State dynamic transition diagram for MetS natural history
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In these SD diagrams, the dynamic processes of transi-
tions from each component to the preceding component 
(i.e. recovery or transition probability backward (TPO-B)), 
to the next component (i.e. disease progression or transi-
tion probability forward (TPO-F)), and lack of transition 
(stoppage) are shown as in-transition probabilities (TPIs) 
under the influences of CR and FR. B sign in the diagrams 
is indicative of a balancing cycle and R sign refers to a 
reinforcement cycle. To all of these transitions, which are 
in fact longitudinal (vertical) transitions, the types of lat-
eral (horizontal) transitions must be added. Lateral tran-
sitions (Width TP = TPW) are the conversion (replacing) 
of each of the 1-components to other 1-components and 
also each of the 2-components to the other 2-compo-
nents, which include a total of 21 transitions (6 transitions 
in 1-component and 15 in 2-component). Therefore, lat-
eral transitions were defined in the form of TPW index, 
which is not affected by CR and FR. The final MSD model, 
which has become a quite complicated model of MetS 
and its components, is shown in Additional file 1 (refer to 
Fig. 1 in Section C of the Additional file 1).

Statistical analysis
Predictions with Markov model
In a Markov model, Pij

(n) is the probability of transi-
tion from state (i) to state (j) in nth step. To calculate 
the matrix pn (the transition matrix of step (n)), one 
must multiply the matrix (P) n times by itself, which 
the (Pij) element in the matrix pn will be the same of 
Pij

(n) [39]. For Risk prediction, the time horizon, based 
on the minimum average time of transition of individu-
als directly from no component to the MetS (which was 
approximately 2 years) in the follow-up periods, for 7 
periods (3-year) (2015–2036) calculated and presented 
(refer to Section B of the Additional file 1). Given that 
transition probabilities were non-homogeneous or time 
dependent in our model, instead of transition prob-
ability, transition rate was used in which transitions are 
calculated as per unit time or instantaneous, which is 
equivalent to rate. Hence, the predictive rate was used 
in the Y axis as proportion of individuals who devel-
oped the MetS from various states over time period per 
total person-time.

Fig. 2  Causal loop and stock-flow diagrams for the no-component state
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Markov model validation
To validate Markov model performance, values of param-
eters in the fourth wave of the TLGS were predicted 
using the data from three preceding waves. The predicted 
values then were compared with the actual data using 
measures of mean differences and mean standard error 
of matrices. As a visual evaluation, a graph of the propor-
tionality of the predicted data values with the empirical 
data in terms of trends was drawn in general.

Verification and prediction with the final MSD model
In order to validate the MSD model, the same valida-
tion steps in the case of the Markov model were repeated. 
Finally, for risk prediction by continuing the existing 

conditions such as Markov model, Time horizon, for 7 peri-
ods (3-year) (2015–2036) was calculated and presented. 
Since the SD model is actually a differential equations sys-
tem whose its order depends on the number of variables, 
in the risk prediction section, to calculate the value (N) of 
each state, the following differential equation was designed. 
As an example, the equation is designed for the no compo-
nent state and applies to other states as well.

On the other hand, based on the above differential equa-
tion, the integral equation based on the 3-year interval was 
written as follow:

No component (nc) equation =
d (nc)

d (t)
=
(
αinflow (t0) × nc(t0)

)
−
(
αoutflow (tn) × nc(tn)

)

Fig. 3  Causal loop and stock-flow diagrams for 1 and 2-component states
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Finally, the integral equation for calculating the values 
of TPO-F and TPO-B, which are longitudinal transitions 
(from no component to MetS), and TPI, which are consid-
ered as insider transitions and are described in the previous 
sections, are as follows:

nc =

∫ t3

t0

[(

CR × TP×
∑

N
nc(t0)

)

+

(

∑

CR × TP×
∑

N
otherstonc(tn)

)

−

(

FR×TP×
∑

N
nctoothers(tn)

]

TPO − F = ∫
[
N(origin state) × TP(origin state to next state) × FR(origin state)

]

TPO − B and TPI = ∫
[
N(origin state) × TP(origin state to next state) × CR(origin state)

]

Fig. 4  Causal loop and stock-flow diagrams for MetS state
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The integral equation of lateral transitions was also 
written as follows:

Evaluation of models’ performance
A triple approach was used to compare the performance 
of Markov and MSD models. At first, mean standard 
error of matrices, mean of the differences, and fit of the 
graphs were used to compare the two models’ outputs. 
Then, using Kolmogorov-Smirnov two-sample test, close-
ness of predicted and empirical (goodness of fit) sam-
ples distributions in both Markov and MSD models was 
compared. Finally, in the third approach, the value of the 
R2 index was calculated based on a simple linear regres-
sion model between the actual and predicted values. As a 
result, the model with a smaller mean SE, a smaller mean 
difference, a more appropriate graph, and also a higher 
goodness of fit as well as higher R2 was selected as the 
desired one. Also, for quantification of uncertainty in 
predicted model’s performance assessment in both mod-
els, standard errors for estimated transitions (predictive 
rates) as a measure of the accuracy of the resulting esti-
mates that provide ability to objectively assess the quality 
of the reported estimates, was calculated. To estimation 
of the standard error associated with each transition, our 
approach was to use a bootstrap method [40] with 1000 
iterations and combine results.

Additional analysis
Mean and percentage were used for descriptive analy-
sis of baseline and follow-up waves of the TLGS. Also, 

TPW =

∫

[

N(origin state) × TP(origin state to next state)

]

Cochran’s Q test was used to examine the significance 
of revealed trends in data. 0.05 was set as the significant 
value. IBM SPSS Statistics software for Windows version 
24 (IBM Corp, Armonk, NY), excel 2016, and R-4.0.3 
(“msm [41]“and “markovchain [42]“packages) were used 
for data analyses. The maximum likelihood method was 
used for parameter estimation in methods that have 
been implemented within “markovchain” and “msm” 
packages.

Ethical considerations
As this study was conducted on the TLGS data, it is ethi-
cally subject to the ethical considerations observed in 
the TLGS project. The study was also ethically approved 
by National Committee of Ethics in Iranian Biomedical 
Research (code# IR.SUMS.REC.1398.835).

Results
Demographic variables description
56.16% (7235) of participants in TLGS sample (12,882) 
were female. At baseline, the mean of participants’ age 
was 31.34 ± 17.3 years (median age = 29 years).

States description
Table 1 shows the status and trend of changes in 12 states 
of MetS during study periods. In general, the highest 
prevalence in baseline belonged to isolated dyslipidemia. 
In terms of difference between baseline and final stage 
values, states of “no component”, “isolated dyslipidemia”, 
“obesity + dyslipidemia”, “hypertension + dyslipidemia”, 
and “dyslipidemia + hyperglycemia” all had decreasing 
trends and the highest decrease was related to “hyper-
tension + dyslipidemia”. Other combinatorial states had 

Table 1  Longitudinal change of MetS states among participants over the study period

* Two-sided p-value significance level = 0.05, and Cochrane test

States of MetS Baseline F1 F2 F3 F4 Change (%) P*

Count % Count % Count % Count % Count %

No Component 1604 12.5 672 5.2 917 7.1 1154 9.0 1248 9.7 − 22.1 < 0.0001

Isolated Overweight/Obesity 1360 10.6 927 7.2 1370 10.6 2462 19.1 2725 21.2 100.3

Isolated Hypertension 106 .8 38 .3 72 .6 67 .5 139 1.1 31.1

Isolated Dyslipidemia 3902 30.3 2872 22.3 2112 16.4 1037 8.0 705 5.5 − 81.9

Isolated Hyperglycemia 143 1.1 96 .7 279 2.2 303 2.4 456 3.5 218.8

Obesity + Hypertension 233 1.8 128 1.0 131 1.0 284 2.2 508 3.9 118.0

Obesity + Dyslipidemia 3325 25.8 4864 37.8 3767 29.2 3002 23.3 2017 15.7 −39.3

Obesity + Hyperglycemia 190 1.5 183 1.4 379 2.9 978 7.6 1192 9.3 527.3

Hypertension + Dyslipidemia 264 2.0 190 1.5 178 1.4 94 .7 97 .8 − 63.2

Hypertension + Hyperglycemia 26 .2 22 .2 79 .6 50 .4 118 .9 353.8

Dyslipidemia + Hyperglycemia 350 2.7 538 4.2 737 5.7 351 2.7 333 2.6 −4.8

MS 1379 10.7 2352 18.3 2861 22.2 3100 24.1 3344 26.0 142.4
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increasing trends and the highest increase belonged to 
“obesity + hyperglycemia” state.

TPs values
The overall TPs matrix is given in Table 2. Over the study 
period (4 follow-up periods), probability of direct and 
non-stop transition from “no component” to MetS was 
8.6%. The highest transition probability from “no com-
ponent” to other states belonged to “isolated abdominal 
obesity”. Among isolated components, the highest TP 
towards MetS was related to hyperglycemia and hyper-
tension, respectively. Among the composite components, 
the highest TP towards MetS belonged to obesity & 
hypertension which was the highest value of TP toward 
MetS among all components and their combinations 
(41.1%), which was generally introduced as the main ini-
tiator. The diagonal row in the matrix (Table 2) indicates 
the probability of remaining in same state, no transition, 
over time. In overall, people with MetS had the highest 
probability (60.2%) of no transition over time.

Markov model
Markov predictions show that as the time continues over 
the years, the probability of transition towards MetS for 
all isolated states would first experience an upward trend 
until the sixth year, and then all the states would have a 
same probability of transition. Among the isolated states, 
people in “no component” state will experience the high-
est increase in the upward trend towards MetS and those 
with hyperglycemia will experience the least increase, 
before reaching to a constant probability (steady state) 
(Fig. 5). In other words, the highest rate of MetS seems 
to occur among people with no component state. At the 
same time, the highest rate of progression toward the 
MetS was related to hyperglycemia and the lowest was 
associated with no component.

In the case of composite states, the predictions showed 
that except for “obesity + hypertension” and “obesity 
& hyperglycemia” which would have a decreasing or a 
constant trend of transition towards MetS, other states 
would all first have an increasing trend for 6 years and 

Table 2  Matrix of transition probabilities (%)
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then would flat-out. Before reaching to the steady prob-
ability, the highest progression toward the MetS was 
associated with obesity & hyperglycemia, and the highest 
progression was associated with dyslipidemia & hyper-
glycemia (Fig. 6). In other words, the highest rate of MetS 
among all the composite states, until reaching to the 
steady level, seems to occur in people with “dyslipidemia 
+ hyperglycemia”.

Validation of the Markov model
In general, the mean of differences was 0.0562 and the 
mean SE of the predicted matrix from the actual matrix 
for the fourth period of TLGS was 0.003684. Also, the 
trend analysis showed that the fit between values in 
empirical and predicted data was favorable. Moreover, 
in terms of closeness of values, with an overestimation of 
about 5.62%, the estimated values were relatively desir-
able (Figs. 2 and 3 in section C Additional file 1). Gener-
ally, the evaluation was suggestive of relative adequacy of 
the Markov model in risk prediction.

MSD model
The overall CR and FR indices are presented in Table  3 
(detailed tables can be found in Additional file 1 section 
D). The SD model was built to examine the progression 
of each component towards the MetS (separately for 

isolated components and composite components). For 
this purpose, the CR and FR values along with transi-
tion probabilities were entered into the final MSD model 
(Fig. 1 in Additional file 1 section C) and a risk prediction 
process was simulated.

According to the MSD modeling outputs, among 
the isolated components, the highest progression rate 
towards MetS was related to hyperglycemia and obe-
sity, respectively. The trends of other components had 
also a small upward slope and the lowest rate of pro-
gression belonged to dyslipidemia (Fig.  7). In the case 
of composite components, the rate of “obesity + hyper-
glycemia” progression towards MetS was higher than 
others composites (Fig.  8). But, in overall, progression 
slope of composites was greater than that of isolated 
components (except for obesity and hyperglycemia). 
The lowest progression slope was related to “hyperten-
sion + dyslipidemia”.

Validation of the MSD model for risk prediction
The mean difference between the predicted values and 
the empirical values was 0.04911 and the mean SE of 
the predicted matrix from the real matrix in the fourth 
period of TLGS was 0.002056. Also, the trend analysis 
showed that the fit between values in empirical and 
predicted data was desirable. Moreover, in terms of 

Fig. 5  Risk of progression towards MetS for isolated components in Markov model
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proximity of values, with an overestimation of about 
4.9%, the estimated values were desirable (Figs.  4 and 
5 in section C of Additional file 1). Overall, the evalu-
ation indicated that the MSD model performance, in 
terms of risk prediction, was satisfactory.

Evaluation of models’ performance
According to the evaluation outputs, both the Markov 
and MSD models were shown to be desirable models for 
risk prediction. But, according to greater proximity of 
predictions made by the MSD model to the real (empiri-
cal) conditions (i.e. fitter graphs of values proportional-
ity, lower mean difference (less overestimation), lower SE 
of the general matrix, and also significance of the MSD 
model test (p = 0.808 for MSD model and p = 0.023 for 
Markov model) which is indicative of equal distribu-
tion of real and predicted samples in the MSD model) 
and Finally, a higher R2 for the MSD model (73% for the 
Markov model and 85% for the MSD model), the MSD 

model was shown to be a more desirable model for pre-
dictions. Also, uncertainty quantifications given in sec-
tion E in Additional file 1.

Discussion
In this study, a MSD model was designed to model the 
natural history of MetS, i.e. progression from its com-
ponents. The model then was compared with a Markov 
model to evaluate their performance. The findings 
showed that both the Markov and MSD models were 
adequate enough to predict the secular trends of the 
MetS. But based on the greater proximity of the predic-
tions made by the MSD model to the real data gathered 
in TLGS, the MSD model was introduced as the desirable 
model.

The MSD model has a systemic approach and adopts a 
comprehensive and integrated view to the processes that 
lead up to MetS. For instance, a MSD model enriches 
one’s understanding of the natural history of MetS by 
integration of the effectiveness of MetS-driven thera-
peutic and life-style interventions (i.e. control and failure 
rates) into the model. It also enriches the understanding 
by being open and inclusive to dynamicity of MetS com-
ponents and the fact that one can shuffle back and forth 
between simple and complex components of the MetS 
over time. Therefore, the authors thought that a MSD 

Fig. 6  Risk of progression towards MetS for composite components in Markov model

Table 3  Control and failure rates in metabolic syndrome 
interventions

No component 1-component 2-component MetS

Overall CR 36.66 62.29 77.37 43.94

FR 63.34 37.70 22.63 –
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model is a good match to sheer complexity of the MetS 
and might outperform other models, e.g. Markov model, 
in terms of risk predictions.

The risk prediction by Markov model in our study 
showed that all states/components first showed an 
upward trend towards MetS until the ninth year. Then, 
all the trends levels off at a same risk value. This pat-
tern of trends (only the trends and not the time until 
leveling-off) was seen in other studies [7–10]. How-
ever, in the risk prediction process with the MSD model, 
which, there was no similar evidence, assuming that the 
existing conditions continued, the progression of all 
states toward the MetS (with differences between vari-
ous states in different conditions) was upward which 
was completely different from the process observed in 
Markov modeling, both in our study and in other stud-
ies [7–10]. To be specific, the predictions made by the 
MSD model is a component-specific prediction that 
is not comparable with the general trends reported in 
other studies. In fact, in other studies, the general trend 
of MetS is drawn and described, while in our study, the 
trend of each components is described as part of the 
natural history of the disease. In other word, the trends 
shown by Markov model mainly refers to progression of 
the disease as a whole and lifetime, but the MSD model 

reveals the progression and dynamicity of each compo-
nent in the natural history towards MetS. To clarify it 
more, it seems that since the Markov model does not 
systemically consider the natural history of MetS, inter-
actions between components over time, non-linear 
knock-on effects of changes in each component on other 
components, and influence of external factors (e.g. inter-
ventions) on the natural history of the MetS are not con-
sidered in the modelling. As a result, rather than seeing 
the natural history of progress of components and states 
as a whole, the natural history of each component or 
state is examined and predicted separately. In this case, 
the real contribution of each component or state in the 
occurrence of MetS and its trend is probably not seen in 
full, and the rate of progress and change in progress are 
not accurately calculated. Importantly, in this study, our 
aim was to model the development trend of MetS com-
ponents as different compounds as the natural history of 
MetS, rather than the development of MetS over time as 
a whole, that usually can be seen in other studies. Clini-
cally and mechanically, as seen in this study, the high-
est rate of progression has been from no component to 
isolated components and from isolated components to 
composite components and finally to MetS, which illus-
trate a cumulative and ascending process over time.

Fig. 7  Risk of progression towards MetS for isolated components in MSD model
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In addition to Markov model, there are a few other 
prospective risk prediction models that have been used 
to predict the process of MetS development. For exam-
ple, one study used a biomarker-base model [43] and the 
risk of MetS based on age and gender was predicted for 
5 to 10 years into future. In another study, Framingham 
Risk Score (FRS) model was used [44] and an upward 
trend and an irregular trend was predicted for high 
and low risk people, respectively. Retrospective studies 
have also been another way to investigate the develop-
mental process of MetS. For instance, it was shown that 
overall prevalence of MetS over a 15-year period had 
an upward trend, but incidence of MetS from differ-
ent components had an irregular and relatively upward 
trend among children & adolescents [33] and adults 
[45]. The differences between our findings and those of 
others in this section are probably related to different 
study methodologies.

Accordingly, lack of similar studies in terms of meth-
odology was a challenge for our study. In fact, although 

we showed that MSD outperformed Markov model 
(and probably other models) in revealing the develop-
mental process of MetS, but unless it is widely used in 
various medical fields, a clear-cut judgment on func-
tional advantages and strength of MSD model would be 
avoided. This is where we cordially invite researchers to 
work on in future.

Conclusion
The natural history of many chronic diseases, e.g. 
MetS, develops through multistate and dynamic paths. 
This chronicity, state-multiplicity, and dynamic-
ity therefore calls for systemic approaches in order 
to understand and control these health problems. 
In this study, a MSD model showed to outperform a 
commonly used Markov model in revealing the devel-
opmental process of MetS over time. Our findings, 
therefore, invite researchers to adopt MSD models in 
investigation of chronic and complex health problems 
and test its practicalities.

Fig. 8  Risk of progression towards MetS for composite components in MSD model
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