
Abstract. Background/Aim: The use of iodinated contrast
media may impair renal function. However, no report has
addressed the nephrotoxicity of high doses of iodinated
contrast media in normal kidney cells and its associated
molecular mechanisms. Materials and Methods: Cell
proliferation was assessed using the MTT assay. Cell death
was evaluated through examining the morphological changes
and TUNEL assay. Autophagy was detected through acridine
orange staining and lysotracker staining. Reactive oxygen
species production and AKT kinase activity were examined.
Results: Iopromide induced cell death and triggered
apoptosis and autophagy in HEK 293 cells. Cell viability

was significantly restored in the presence of a pan-caspase
inhibitor or a ROS scavenger, N-acetyl-L-cysteine. AKT
kinase activity was found to be reduced in iopromide-treated
HEK 293 cells. Conclusion: High concentrations of
iopromide induce cell damage, apoptosis, and autophagy
through down-regulating AKT and ROS-activated cellular
stress pathways in HEK 293 cells.

Roentgen discovered X-rays at the end of 19th century,
which was followed by the introduction of iodine-containing
contrast media (ICCM) at the beginning of the 20th century
that opened up a new field of research in medical science (1-
4). Iodine-containing contrast agents are administrated into
the human body through veins and used for radiological
diagnostic examinations of the urinary system, heart,
cerebrospinal system, and blood vessels in various parts of
the body. ICCM enhances the contrast between normal tissue
and lesions, provides information on the morphologic
features of the lesions, and improves the sensitivity of the
examination and the accuracy of diagnosis. The imaging
enhancement effect of the contrast agent makes many tissues
and cell lesions visible (5-8). The main pharmacological
mechanism is that the iodine molecules in the iodine-
containing contrast agent absorb X-ray energy, which makes
the iodine molecules exert a special X-ray shielding effect.
Therefore, a white high-density image appears on the X-ray
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film, thereby providing blood-containing tissue enhancement
in images (3, 5, 9, 10). 

The iodine-containing contrast agents are classified
according to chemical structure, osmolality, and injection
site. Based on the chemical structure, iodine-containing
contrast agents are divided into four types: ionic monomer
structures, ionic dimer structures, non-ionic monomer
structures, and non-ionic dimer structures. Based on
osmolality, iodine-containing contrast agents are divided into
three types: high osmolar contrast media (HOCM), low
osmolar contrast media (LOCM), and iso-osmolar contrast
media (IOCM). Based on the injection site, iodine-containing
contrast agents are divided into two types: intravascular, and
subarachnoid contrast media (1). Generally, non-ionic iodine-
containing contrast agents exhibit lower osmolality than
ionic iodine-containing contrast agents. Additionally, non-
ionic iodine-containing contrast agents are less toxic and
exert allergic effects (11, 12). Injecting ICCM into the
subarachnoid space must exhibit low neurotoxicity and low
osmolality (13, 14). 

Adverse drug reactions (ADRs) of iodine-containing
contrast agents include allergic and chemical reactions. The
main symptoms of allergic reactions are fever, nausea,
vomiting, dizziness, skin rash, itching, sneezing, and nasal
congestion (4, 11, 12). Papules, urticaria, chills, chest
tightness, shock, cardiopulmonary arrest, and death may
occur in case of severe allergic reactions (8, 11, 12).
Adverse reactions and fatality rates of intravascular non-
ionic ICCM are approximately 2 to 7 per thousand and 2 to
9 per million, respectively (15-23). Adverse chemical
reactions mainly lead to contrast-induced nephropathy
(CIN). CIN is the impairment of renal function and
worsening of renal function after the administration of
iodine-containing contrast agents. The pathological
mechanism may include vasoconstriction, renal blood flow
changes, or direct toxicity to renal tubular cells (15-27). In
2006, Lameire et al. pointed out that CIN exerts direct toxic
effects on renal tubular cells or hypoxia in the renal medulla
(4, 28). The main causes of renal medullary hypoxia include
decreased blood flow, decreased oxygen transport, and
increased oxygen consumption. These factors may be
related to an increase in the osmotic pressure, viscosity, and
induction of prostaglandin E2 by ICCM (4, 28). 

Previous studies have demonstrated that low or iso-
osmolar contrast media at concentrations above 75 mgI/ml
(six times as high as the normal dose concentration) could
inhibit cell proliferation and induce cell death in kidney cells
(KRK52-E, LLC-PK1, HKCS, HK-2). The types of cell
death include apoptosis and autophagy (29-35). However, the
detailed mechanisms remain unclear. In the present study, we
investigated the molecular mechanisms, including cell
damage, apoptosis, and autophagy, induced by iopromide,
which is a LOCM, in HEK 293 cells. 

Materials and Methods
Cell line and culture. The human embryonic kidney (HEK) 293 cell
line was purchased from the Bioresource Collection and Research
Center (Hsinchu, Taiwan, ROC). Cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum at 37˚C in an incubator with 5% CO2. 

Reagents and chemicals. Iopromide (Ultravist®) was obtained from Dr.
Yuh-Feng Tsai of the Department of Diagnostic Radiology, Shin Kong
Wu Ho Su Memorial Hospital. Except where indicated, the chemical
reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Morphology and cell viability. HEK 293 cells (0.8×104 cells/well)
were grown in 96 well plates for 24 h and treated with different
concentrations (0, 25, 50, 100, and 200 mgI/ml) of iopromide for
either 24 or 48 h. Cell morphology was examined to assess
apoptosis or autophagy using a light microscope at 200×
magnification (Leica Microsystems GmbH, Wetzlar, Germany). Cell
viability was assessed using the MTT assay (thiazolyl blue
tetrazolium bromide) as described previously (36). Briefly, the cells
were mixed with MTT for 4 h. The absorbance at 570 nm was
measured using a SpectraMax iD3 multimode microplate reader
(Molecular Devices Ltd., San Jose, CA, USA). The percentage of
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Figure 1. Iopromide inhibits HEK 293 cell proliferation. HEK 293 cells
were seeded in 96 well plates for 24 h and subsequently incubated with
0, 25, 50, 100, and 200 mgI/ml iopromide for either 24 h (A) or 48 h
(B). Cell viability of HEK 293 cells was evaluated using the MTT assay.
The results are expressed relative to those of the untreated control and
values are presented as mean±SE (n=3) (***p<0.001).



cell viability was calculated through setting the untreated control
group to 100%.

Terminal deoxynucleotidyl transferase dUTP nick-end labeling
(TUNEL) assay. To detect DNA breaks, an In Situ Cell Death
Detection Kit (Roche, Mannheim, Germany) was used according to
the manufacturer’s instructions. Briefly, HEK 293 cells were seeded
for 24 h followed by treatment with 50 mgI/ml iopromide for
another 48 h. Cells were fixed and stained with fluorescein probes.
TUNEL-positive cells were analyzed using a NucleoCounter® NC-
3000 advanced image cytometer (ChemoMetec A/S, Allerod,
Denmark). The relative fluorescence intensity was calculated using
the ratio of the average mean of the sample fluorescence intensity
to that of the untreated control cells. The relative fluorescence
intensity is expressed as fold-change (37). 

Caspase 3/7 and caspase 9 activity assays. To determine the
alterations in caspase enzymatic activity, FAM FLICA® Caspases-
3/7 Assay Kit and FAM FLICA® Caspases-9 Assay Kit
(MyBioSource, San Diego, CA, USA) were used according to the
manufacturer’s instructions. Briefly, HEK 293 cells were seeded
into 6-well plates at a density of 1×106 cells/well for 24 h and
treated with iopromide (50 mgI/ml or 100 mgI/ml) for another 48
h. Samples were assessed as described previously (36, 37) and
analyzed using the NucleoCounter® NC-3000™ advanced image
cytometer (ChemoMetec A/S).

Acridine orange (AO) staining. AO was used to examine whether
acidic vesicular organelles (AVOs) were formed in iopromide-

treated cells. Briefly, HEK 293 cells were seeded for 24 h followed
by iopromide (50 mgI/ml) treatment for another 48 h. Samples were
prepared as described previously (37, 38). Red fluorescence
intensity was measured and analyzed using a NucleoCounter® NC-
3000 advanced image cytometer (ChemoMetec A/S). The fluoresced
bright red color represents the formation of acidic autophagic
vacuoles. The relative fluorescence intensity was calculated using
the ratio of the average mean of the sample fluorescence intensity
to that of the untreated control cells. The relative fluorescence
intensity is expressed as fold change.

LysoTracker red staining. HEK 293 cells were treated with 50
mgI/ml iopromide for 48 h, and samples were prepared as described
previously (37, 38). Fluorescence intensity was measured and
analyzed using a NucleoCounter® NC-3000 advanced image
cytometer (ChemoMetec A/S). Fluorescent bright red represents the
acidic organelles in cells. The relative fluorescence intensity was
calculated using the ratio of the average mean of the sample
fluorescence intensity to that of the untreated control cells. The
relative fluorescence intensity is expressed as fold change. 

Detection of reactive oxygen species (ROS) production. To detect the
impact of iopromide on ROS production, HEK 293 cells were treated
with 50 mgI/ml iopromide for 24 h. Samples were prepared as
described previously (37, 38). Briefly, 50 μM CM-H2DCFDA
(General Oxidative Stress Indicator) (Abcam, Cambridge, UK) were
added and cells were incubated for 30 min at 37˚C. The fluorescence
intensity of the cells was measured using a NucleoCounter® NC-
3000™ advanced image cytometer (ChemoMetec A/S).
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Figure 2. Changes in the morphology of HEK 293 cells. (A) HEK 293 cells were treated with 0, 25, 50, and 100 mgI/ml iopromide for 48 h. Changes
in morphology were observed under a light microscope at 200× magnification. (B) Representative image HEK 293 cells -treated with 50 mgI/ml
iopromide. Red arrows indicate the presence of vacuoles in iopromide-treated HEK 293 cells, suggesting that these cells were undergoing autophagy.
Blue arrows indicate cells that became round and bright, suggesting that these cells were undergoing apoptosis.



In vitro AKT kinase activity assay. To determine the alterations in
the AKT kinase activity, an AKT Kinase Assay Kit (Cell Signaling
Technology, Beverly, MA, USA) was used according to the
manufacturer’s instructions. HEK 293 cells (2×106 cells/dish)
were seeded in 10 cm dishes for 24 h and treated with either 50
or 100 mgI/ml iopromide for 24 h. Cells were harvested and
handled as described previously (39). Briefly, 200 mg of protein
from each sample was immunoprecipitated with 2 mg of anti-AKT
antibody overnight. AKT immunoprecipitates were mixed with
glycogen synthase kinase-3 α/β substrate for 30 min at 30˚C.
Samples were applied to 10% SDS-PAGE, and the relative
intensity of phospho-GSK-3 α/β (Ser219) was determined
compared to the untreated control. 

Statistical analysis. Data were obtained from at least three
independent experiments and expressed as mean±standard deviation
(SD). Statistical differences were evaluated using the Student’s t-
test compared with the untreated control group. p value less than
0.05 was considered statistically significant (37). 

Results

Iopromide significantly inhibited HEK 293 cell proliferation. To
investigate the effect of iopromide on cell proliferation, HEK
293 cells were treated with 0, 25, 50, 100, and 200 mgI/ml
iopromide for either 24 (Figure 1A) or 48 h (Figure 1B). Cell
viability was measured using the MTT assay. The half-maximal
inhibitory concentrations (IC50) were 187±3.45 mgI/ml and
53.10±1.87 mgI/ml at 24 and 48 h of iopromide treatment,
respectively (Figure 1). Our results revealed that iopromide
inhibits cell proliferation. Additionally, morphological
alterations in HEK 293 cells were observed when cells were
treated with iopromide at concentrations higher than 50 mgI/ml
for 48 h (Figure 2A). Some cells shrank and attained round
shape, indicating that the cells might have undergone apoptosis.
Meanwhile, some cells displayed vacuoles, which implied that
the cells may have undergone autophagy (Figure 2B). 
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Figure 3. Iopromide induces DNA fragmentation and apoptosis. (A)
HEK 293 cells were incubated with 50 mgI/ml iopromide for 48 h. DNA
breaks were determined using the TUNEL assay. TUNEL-positive cells
were analyzed using the NucleoCounter® NC-3000™ advanced image
cytometer. (B) The relative fluorescence intensity was calculated using
the ratio of the average mean of sample fluorescence intensity of
iporomide-treated cells to that of untreated control cells. The relative
fluorescence intensity is expressed as fold change. The results are
expressed relative to those of the untreated control and values are
presented as mean±SE (n=3) (***p<0.001). 

Figure 4. Iopromide activates caspase-9 and caspase-3/7 enzyme
activities. HEK 293 cells were incubated with 50 or 100 mgI/ml
iopromide for 48 h. (A) Caspase-9 and (B) Caspase-3/7 enzyme
activities were measured. The results are expressed relative to those of
the untreated control and values are presented as mean±SE (n=3)
(***p<0.001).



Iopromide induces cell death. To investigate whether
iopromide induced cell death, we detected DNA breaks in
iopromide-treated HEK 293 cells using the TUNEL assay.
The relative TUNEL fluorescence intensity increased in
iopromide-treated HEK 293 cells, thereby suggesting the
presence of a large number of apoptotic cells (Figure 3A and
B). Caspases are crucial mediators of apoptosis. During
apoptosis, caspases are activated and initiate a cascade of
catalytic activities. Caspase enzymatic activities were
determined in HEK 293 cells treated with 50 or 100 mgI/ml
iopromide for 48 h using the caspase assay kits. Caspase-9
and Caspase-3/7 enzyme activities were elevated (Figure 4A
and B), thereby indicating that iopromide induced cell death.
Furthermore, the pan-caspase inhibitor (Z-VAD-FMK)
blocked death of iopromide-treated HEK 293 cells (Figure
5). These data revealed that iopromide induces apoptosis. 

Iopromide triggers autophagy to protect cells from apoptosis.
Autophagy acts as a “double-edged sword” and destroys
damaged or aging organelles in response to external stressors,
including oxidative stress or accumulation of protein
aggregates. Recently, autophagy has also been shown to be
involved in stress-induced cell death. To address the role of
autophagy in iopromide-induced death of HEK 293 cells, we
examined the formation of autophagic vesicles using AO and
LysoTracker Red staining assays. Autophagic vacuoles were
observed in HEK 293 cells treated with 50 mgI/ml iopromide
(Figure 6A). Iopromide (50 mgI/ml) increased fluorescence
intensity of acidic vesicular organelles (AVOs) and decreased

AO fluorescence intensity in HEK 293 cells (Figure 6B and
C). Additionally, LysoTracker Red was used to identify acidic
subcellular compartments in living cells. The number of
acidic lysosomes and fluorescence intensity increased in
iopromide-treated cells (Figure 7). The data indicated that
autophagy occurred in iopromide-treated cells. 

To clarify the relationship between autophagy and
apoptosis, HEK 293 cells were pre-treated with the
autophagy inhibitors 3-Methyladenine (3-MA) or
bafilomycin A1 (Baf). Cells were subsequently treated with
iopromide (50 mg/ml) for another 48 h. Cell viability was
assessed using the MTT assay. Cell viability further
decreased to 30% upon treatment with iopromide and 3-Ma
versus 53% in the iopromide only treatment group (Figure
8A). Meanwhile, cell viability further decreased to 18% upon
treatment with iopromide and Baf versus 53% in the
iopromide only treatment group (Figure 8B). These results
suggested that iopromide-induced HEK 293 apoptosis is
mediated through the induction of autophagy

Iopromide elicited ROS production and suppressed the AKT
signaling pathway. A previous study demonstrated that ROS
production was induced by iodinated contrast media (40).
Indeed, treatment of HEK 293 cells with 50 mgI/ml
iopromide resulted in a 165% increase in ROS production
(Figure 9A and B). N-acetyl-L-cysteine (NAC), a ROS
scavenger, blocked ROS production and restored cell growth
(Figure 9C). ROS production is related to oxidative stress,
which leads to the inactivation of AKT signaling pathway
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Figure 5. The pan-caspase inhibitor alleviates iopromide-induced cell death. HEK 293 cells were incubated with 50 mgI/ml iopromide in the absence
or presence of the pan-caspase inhibitor (Z-VAD-FMK) for 48 h. Cell viability was evaluated using the MTT assay. The results are expressed relative
to those of the untreated control and values are presented as mean±SE (n=3) (***p<0.001).



and induction of apoptosis (37). To examine whether AKT
kinase activity is suppressed in iopromide (50 mgI/ml)-
treated HEK 293 cells, we measured AKT kinase activity.
The AKT kinase activity was found to be reduced in
iopromide-treated cells, which implied that AKT signaling
was blocked (Figure 10A).

Discussion

Intravascular application of low osmolarity contrast media
(LOCM) or iso-osmolar contrast media (IOCM) causes
severe nephropathy and renal injury (2, 41, 42). LOCM have
also been known to induce allergic reactions. The frequency
of adverse drug reactions (ADR), severe allergic reaction of
lethality to LOCM is 0.2-0.7%, 1 to 4/100,000 and 2-
9/1000,000, respectively (43). In our previous review, we

showed that IOCM induces nephropathy and renal injury
through increasing oxidative stress, enhancing renal
vasoconstriction, and inducing tubular cell damage (43).
Renal ischemia in the medulla, ROS production, reduction
of nitric oxide production, and induction of tubular epithelial
and vascular endothelial injury are risk factors for injury in
cells and tissues (44, 45). In the present study, we
investigated the cytotoxic effects of iopromide on apoptosis
and autophagy in normal HEK 293 cells. Our results
demonstrated that iopromide significantly increases
apoptosis and autophagy in HEK 293 cells through the
induction of a ROS-dependent pathway. 

When a cell receives damaging extracellular stimuli,
apoptosis or autophagy is induced as a rapid active response
to injury. Many studies have suggested that iodinated
contrast media (ICM) exerts cytotoxic effects and renal
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Figure 6. Iopromide induces the formation of acidic vacuoles in the autophagosomes. HEK 293 cells were incubated with 50 mgI/ml iopromide for
48 h. The cells were stained with acridine orange (AO). (A) Representative fluorescent images of AO-stained cells. (B) The relative fluorescence
intensity is expressed relative to that of the untreated control. (C) Representative histograms AO- and acidic vesicular organelles (AVOs)-stained
cells generated using the image cytometer analysis. The results are expressed relative to those of the untreated control and values are presented as
mean±SE (n=3) (***p<0.001).



tubular epithelial cell death via autophagy and/or apoptosis
(46-49). Peer et al. demonstrated that iopromide, ioxaglate,
and ioxatalamate induce apoptosis in renal mesangial,
tubular, epithelial, endothelial, and hepatic cells (50). Tan et
al. demonstrated that in NRK-52E cells, cell viability was
decreased to 70% upon treatment with 150 mgI/ml
iopromide compared to the control group (51). Ludwig et al.
demonstrated that 120 mgI/ml iopromide treatment for 2 h
induced DNA fragmentation in human proximal renal tubular
(HK-2) cells (52). Our results demonstrated that iopromide
reduced HEK 293 cell viability in a time- and concentration-
dependent manner (Figure 1). Iopromide induced morphological
alterations, DNA fragmentation, apoptosis and autophagy in
HEK 293 cells (Figure 2). Iopromide induced caspase-3/-7 and
caspase-9 activities at concentrations 50 and 100 mgI/ml in
HEK 293 cells (Figure 4A and B). Additionally, the cell
viability results revealed that iopromide-induced cytotoxicity in
HEK 293 cells was significantly inhibited by the addition of
pan-caspase inhibitor (Figure 5). These results indicated that
iopromide induces DNA damage and apoptotic cell death
mediated caspase 9 and caspase 3/-7 activities. 

Recently, Lei Rong et. al. suggested that autophagy plays
a protective role in iohexol- and iodixanol-induced injury in
human renal tubular epithelial HK-2 cells (47). However, it
remained unclear whether autophagy is associated with
iopromide-induced normal HEK 293 cell injury. To examine
the effect of iopromide on autophagy we used the AO
staining assay. AO is a lysosomotropic green fluorescent
probe that gets protonated and trapped inside acidic vesicular
organelles (AVOs). Autophagy is characterized by an
increase in the formation of AVOs. Therefore, AVOs can be
quantified through imaging or flow cytometry after staining
the cells with AO (41, 53-55). As shown in Figure 6A and
B, iopromide increased fluorescence intensity AVOs and
decreased cellular AO fluorescence intensity (Figure 6C) in
HEK 293 cells. Our results indicated that iopromide induced
autophagy, as assessed using AO staining assay. We also
demonstrated that iopromide increased the fluorescence
intensity of LysoTracker Red, thereby suggesting that
iopromide induced lysosome activity during the autophagy
process (Figure 7). Previous studies have demonstrated that
autophagy plays a protective role in cisplatin-induced renal
tubular epithelial cell injury (56-58). To further examine the
role of autophagy in iopromide-induced cell death, HEK 293
cells were treated with the autophagy inhibitors 3-
methyladenine (3-MA) or bafilomycin A1 (Baf).
Combination treatment (iopromide with 3-MA or Baf)
significantly decreased cell viability when compared with
iopromide alone (Figure 8), suggesting that autophagy plays
a protective role in iopromide-induced HEK 293 cell injury. 

ICM enters the cells and induces changes in mitochondrial
function, thereby resulting in increased ROS generation and
apoptotic cell death (59). Tana Xuexian et al. also
demonstrated a significant increase in ROS production in
iopromide-treated NRK-52E cells (60). Antioxidant agents,
including sodium bicarbonate, NAC, ascorbic acid (Vitamin
C), statins, and phosphodiesterase type 5 inhibitors have
been demonstrated to ICM-induced effects (61-65). In an in
vivo study, NAC was shown to be more effective than hyper-
hydration alone in preventing contrast-induced acute renal
failure (63). In the present study, we demonstrated that
iopromide induced ROS production in HEK 293 cells
(Figure 9A and B). Cell viability was found to be
significantly increased in the iopromide plus NAC group
compared to the iopromide only group (Figure 9C).

Alterations in AKT activity are essential for cell survival
and have been shown to strongly regulate apoptosis and
autophagy in the presence of ICM (66-68). Here, we
investigated the effect of iopromide on the regulation of
AKT in HEK 293 cells. The results revealed a marked
reduction in the AKT kinase activity in iopromide-treated
cells compared to the control cells. Our results suggest that
the inhibition of AKT activity is correlated with iopromide-
induced apoptosis and autophagy, which may be controlled
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Figure 7. Iopromide increased lysosomal membrane permeability. HEK
293 cells were incubated with 50 mgI/ml iopromide for 48 h. The cells
were stained using LysoTracker Red. (A) Representative fluorescent
images of LysoTracker Red-stained cells. (B) The fluorescence intensity
is expressed relative to that of the untreated control and values are
presented as mean±SE (n=3) (***p<0.001).
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Figure 8. Autophagy inhibitors enhance cell death in iopromide-treated cells. HEK 293 cells were pretreated with (A) 1 mM 3-methyladenine (3-
MA) and (B) 100 nM bafilomycin A1 (Baf) for 4 h, and then incubated with 50 mgI/ml iopromide for 48 h. Cell viability was assessed using the
MTT assay. The results are expressed relative to those of the untreated control and values are presented as mean±SE (n=3) (***p<0.001).

Figure 9. Iopromide elicits reactive oxygen species (ROS) production. HEK 293 cells were incubated with 50 mgI/ml iopromide for 24 h. The cells
were stained with 50 μM CM-H2DCFDA (General Oxidative Stress Indicator). (A) Representative cytometer histogram of CM-H2DCFDA stained
cells. (B) The percentage of ROS production in treated samples was compared with that of the untreated control. (C) The ROS scavenger (N-acetyl-
L-cysteine; NAC) was added in iopromide-treated cells. Cell viability was evaluated using the MTT assay. The results are expressed relative to
those of the untreated control and values are presented as mean±SE (n=3) (***p<0.001).



through the AKT signaling pathway. Our results suggest that
iopromide induces ROS production, which inhibit AKT
kinase activity and signaling. The AKT signaling pathway
positively correlates with cell survival and negatively
associates with cell death and autophagy. 

In this study, we demonstrated that autophagy protected cells
from apoptosis. Cell damage and cytotoxicity of HEK cells
were initiated by iopromide-induced apoptosis (Figure 10B).
Conclusively, we demonstrated that iopromide significantly
inhibited HEK 293 cell viability and induced apoptosis and
autophagy compared to the control group in vitro. Moreover,
high concentrations of iopromide induce cell damage, apoptosis,
and autophagy via ROS-dependent cellular stress and inhibition
of AKT signaling pathway in normal HEK 293 cells. 
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Figure 10. Iopromide inhibits the AKT kinase activity. (A) HEK 293 cells were incubated with 50 mgI/ml iopromide for 24 h. Samples were assayed
for AKT kinase activity. The results are expressed relative to those of the untreated control and values are presented as mean±SE (n=3) (***p<0.001).
(B) A working model depicting the underlying mechanism of action of iopromide. 
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