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Abstract

Nickel compounds are environmental toxicants, prevalent in the atmosphere due to their 

widespread use in several industrial processes, extensive consumption of nickel containing 

products, as well as burning of fossil fuels. Exposure to nickel is associated with a multitude 

of chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease 

(COPD) and pulmonary fibrosis. In addition, nickel exposure is implicated in the development 

of nasal and lung cancers. Interestingly, a common pathogenic mechanism underlying the 

development of diseases associated with nickel exposure is epithelial-mesenchymal transition 

(EMT). EMT is a process by which the epithelial cells lose their junctions and polarity and 

acquire mesenchymal traits including increased ability to migrate and invade. EMT is a normal 

and essential physiological process involved in differentiation, development and wound healing. 

However, EMT also contributes to a number of pathological conditions including fibrosis, cancer 

and metastasis. Growing evidence suggest that EMT induction could be an important outcome of 

nickel exposure. In this review, we discuss the role of EMT in nickel-induced lung diseases and 

the mechanisms associated with EMT induction by nickel exposure.
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1. Introduction

Nickel compounds are environmental and occupational toxicants. Nickel occurs naturally 

in the atmosphere through volcanic activity, forest fires and weathering of rocks. However, 

industrial processes such as food processing, mining and refining, as well as extensive 

use of nickel-containing products such as stainless steel, jewelry and electric equipment, 

and medical implants increases its atmospheric levels [1–4]. In addition, sewage sludge 

*Corresponding author: Suresh Cuddapah, suresh.cuddapah@nyulangone.org, Telephone: 646-754-9458. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Declaration of Competing Interest
The authors declare that there are no conflicts of interest

HHS Public Access
Author manuscript
Semin Cancer Biol. Author manuscript; available in PMC 2022 November 01.

Published in final edited form as:
Semin Cancer Biol. 2021 November ; 76: 99–109. doi:10.1016/j.semcancer.2021.05.020.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incineration and fossil fuel combustion significantly contribute to atmospheric nickel levels 

[5]. While the average nickel concentration in ambient air in the United States is 2.22 

ng/m3, in occupational settings, the concentrations of airborne nickel range from 1–60,000 

μg/m3 [6]. Humans are primarily exposed to nickel through inhalation, ingestion and dermal 

contact [1, 4]. Furthermore, smoking cigarettes is an important source of human nickel 

exposure.

Nickel exposure is associated with a number of health hazards in humans. Pulmonary 

absorption is a major route of nickel exposure. Therefore, the lung is a major target organ 

of nickel toxicity and lung and nasal cancers are among the most serious consequences of 

exposure to nickel compounds [4, 7, 8]. Increase in mortality due to lung and nasal cancers 

has been reported in nickel refinery workers [6]. Furthermore, nasal cancer risk in nickel 

refinery workers increased with the duration of employment [9]. Both water-soluble and 

-insoluble nickel compounds cause neoplastic transformation of cells [10–12]. In animals, 

nickel compounds induced tumors at the sites of exposure [12]. Therefore, certain nickel 

compounds have been classified as Group 1 Carcinogens by the International Agency for 

Research on Cancer (IARC) [3, 13].

In addition to cancers, non-malignant respiratory diseases of nickel exposure have also 

been well-documented. Nickel exposure is associated with the development of a number of 

respiratory ailments including asthma, chronic bronchitis, emphysema, pulmonary fibrosis, 

pulmonary edema and reduced lung function [14–16]. Occupational asthma has been 

reported in electroplating workers exposed to nickel fumes [17]. Furthermore, inhalation 

of nickel salts has been experimentally shown to cause bronchoconstriction [18–20]. At 

occupational exposure levels, nickel sulphate, nickel subsulphate and nickel oxide caused 

lung inflammation and fibrosis in rats and mice. A positive correlation has been shown 

between the solubility of nickel compounds and the severity of lung inflammation and 

fibrosis, with nickel sulphate being the most toxic followed by nickel subsulphate and nickel 

oxide [6]. Furthermore, studies on nickel refinery workers showed association of nickel 

exposure with the development of chronic obstructive pulmonary disease (COPD) [21].

Interestingly, a key process that drives the pathogenesis of lung diseases associated with 

nickel exposure is epithelial-mesenchymal transition (EMT). EMT is a process during 

which the epithelial cells lose cell-cell adhesion and acquire mesenchymal properties, 

including increased ability to migrate and invade [22]. EMT is a normal cellular process 

that plays a major role during development and repair of damaged tissues. However, aberrant 

EMT induction results in organ fibrosis. Growing evidence suggest EMT induction as an 

important outcome of nickel exposure [23–26]. Here, we discuss the role of EMT in the 

development of diseases associated with nickel exposure and the potential mechanisms 

underlying EMT induction by nickel exposure.

2. Epithelial-mesenchymal transition (EMT) in the pathogenesis of lung 

diseases

EMT is a process by which the epithelial cells lose their cell polarity and tight junctions, 

reorganize their cytoskeleton and acquire mesenchymal characteristics including increased 
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invasive and migratory potentials [22]. Downregulation of E-cadherin, an important cell-cell 

adhesion protein, is a hallmark of EMT. In addition, repression of epithelial markers such 

as claudins, occludin and desmoplakin, causing the dissolution of adherens junctions and 

tight junctions, is commonly observed during EMT. Downregulation of epithelial markers 

is accompanied by upregulation of mesenchymal markers including fibronectin, vimentin, 

α-smooth muscle actin (α-SMA), desmin, and N-cadherin [22, 27]. Furthermore, several 

transcription factor families such as SNAIL, ZEB and TWIST, which are identified as EMT 

master regulators, are also upregulated during EMT. EMT is a reversible process, with the 

mesenchymal cells capable of undergoing mesenchymal-epithelial transition (MET). During 

MET, the apico-basal polarity of the cells is established, junctional complexes are assembled 

and tight junctions are formed. MET generates epithelial cells at different developmental 

stages and also during metastatic colonization [28, 29].

EMT is categorized into three subtypes based on their distinct biological settings and 

different functional consequences. Type 1 EMT is associated with developmental processes 

such as gastrulation, neural crest formation and heart value formation. During type 1 

EMT, the first set of mesenchymal cells known as primary mesenchyme are generated to 

create new tissues with diverse functions [30]. Type 2 EMT, which generates fibroblasts, 

is associated with wound healing and tissue regeneration. This type of EMT occurs as 

part of repair process to reconstruct tissues following trauma or inflammation. Although 

type 2 EMT is a normal physiological process, chronic inflammation and aberrations in 

myofibroblast activation could lead to increased deposition of extracellular matrix proteins, 

resulting in fibrosis and organ destruction [30–32]. Type 3 EMT is associated with the 

dissemination of cells from the primary tumors, thus playing a major role in epithelial cancer 

cell metastasis [22].

Emerging evidence implicates EMT in the pathogenesis of a number of lung diseases:

a. Pulmonary fibrosis is characterized by accumulation of myofibroblasts and 

increased deposition of extracellular matrix proteins. Injury to lung epithelium 

is an important event in the development of this disease. Upon injury, the 

epithelial cells undergo EMT, resulting in morphological changes which give 

rise to fibroblast-like cells [33]. Transforming growth factor-β (TGF-β) levels 

increase in the injured lung epithelial cells and has been identified as a major 

driver of EMT in lung fibrosis [33, 34]. TGF-β-exposed alveolar epithelial 

cells undergo EMT and exhibit fibroblast-like morphology. Furthermore, lung 

biopsies of idiopathic pulmonary fibrosis patients suggest contribution of EMT 

to pulmonary fibrosis [34].

b. COPD is a progressive airway obstructive disease, which involves destruction 

of lung parenchyma (emphysema) and chronic inflammation of large airways 

(bronchitis) [35]. In addition, pulmonary fibrosis is reported in COPD 

patients [36]. Emerging evidence strongly suggest EMT as a driver of COPD 

pathogenesis. In COPD associated with smoking, the epithelium is in an 

activated state and the structural changes to the underlying reticular basement 

membrane (Rbm) suggest EMT. Furthermore, increased vascularization of Rbm 

in large airways indicates type 3 EMT [37–40].
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c. Asthma is a chronic disease characterized by progressive airway remodeling. In 

addition, chronic airway inflammation and airway hyperresponsiveness are major 

features of asthma [41, 42]. Recent studies have demonstrated the importance of 

EMT in airway remodeling in asthma, which include airway wall thickening, 

subepithelial fibrosis, increased smooth muscle mass and angiogenesis [42, 

43]. Downregulation of cell adhesion proteins occur in asthmatic epithelium 

[44]. Furthermore, increased EMT has been observed in asthmatic patients as 

compared to normal individuals [42, 45].

d. In epithelial cancers, loss of cell-cell adhesion results in dissociation of the 

primary tumor mass and metastatic dissemination of the cancer cells. EMT 

is a critical process through which cancers acquire invasiveness and progress 

to a metastatic state. Increased production of TGF-β is normally observed in 

cancer cells and several studies suggest TGF-β signaling pathway as a major 

driver of EMT in cancer progression [46, 47]. Furthermore, recent studies have 

also identified cell dissemination from premalignant lesions, which suggests that 

EMT could be involved cancer initiation, in addition to being associated with 

metastasis [48–51].

Nickel, an EMT inducer, is implicated in the development of a number of lung diseases 

described above, including pulmonary fibrosis [52, 53], COPD [54], asthma [19, 55] and 

cancer and metastasis [9, 56]. This suggests that EMT induction by nickel exposure is 

likely a key mechanism associated with the pathogenesis of nickel-induced lung diseases. 

The following sections discuss molecular mechanisms underlying EMT induction by nickel 

exposure.

3. Transforming growth factor-β (TGF-β) signaling

TGF-β is a multifunctional cytokine that belongs to a superfamily of secreted factors. 

TGF-β is ubiquitously expressed and regulates a variety of physiological processes including 

embryogenesis, differentiation, cell proliferation, cytoskeletal organization and immune 

response [57, 58]. Aberrant TGF-β signaling is associated with a number of pathological 

conditions including autoimmune diseases, fibrotic diseases and cancer [57]. Mammalian 

cells have three TGF-β isoforms, TGF-β1, TGF-β2 and TGF-β3. TGF-β is synthesized as 

a large precursor, which is cleaved to release the active mature ligand in a dimeric form 

[57, 59]. Active TGF-β binds the type I (TGF-βR1) and type II (TGF-βRII) serine/threonine 

kinase receptors forming a heterotetrameric complex [57, 58]. Activation of the receptor 

complex by TGF-β leads to phosphorylation of SMAD proteins, which then translocate 

to the nucleus and regulate the expression of specific genes (Figure 1) [58, 60]. TGF-β 
signaling is also mediated by non-Smad pathways such as MAP Kinase, PI3K kinase, PP2A 

phosphatase and Rho GTPases [58, 61].

TGF-β signaling plays an important role in the induction of EMT. TGF-β induces EMT 

during physiological processes such as embryogenesis and wound healing. However, under 

pathological conditions, TGF-β-induced EMT could be involved in tumor progression and 

metastasis, and the development of fibrotic diseases [60, 62, 63]. TGF-β signaling activates 

the EMT master regulators, SNAIL, ZEB and TWIST [62] and the mesenchymal markers, 
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matrix metalloproteinases (MMPs), α-SMA, vimentin, fibronectin, and N-cadherin [64]. 

SNAIL, ZEB and TWIST repress E-cadherin expression by directly binding to the E-boxes 

at its promoter. [65–69]. SNAIL is also a repressor of claudins and occludin, which are 

involved in maintaining epithelial structure and function [70, 71]. In addition, SNAIL can 

also activate the expression of the mesenchymal proteins fibronectin, vimentin [72, 73] and 

N-cadherin [74].

Studies in mice exposed to nickel sulfate aerosol for 72 hours showed increase in TGF-β1 

transcript and protein in the bronchoalveolar lavage fluid (BALF). Furthermore, expression 

of genes associated with TGF-β signaling and extracellular matrix function was significantly 

increased [46]. TGF-β1 repressed the mouse surfactant-associated protein B (Sftpb) via 

the TGF-β–responsive region at the Sftpb promoter [46]. Interestingly, Sftpb knockout 

has been shown to decrease the expression of E-cadherin and increase the expression 

of vimentin and fibronectin in the lung adenocarcinoma A549 cells. Furthermore, Sftpb 
knockout enhanced cell survival and migration, suggesting EMT [75]. This suggests that 

SFTPB downregulation by TGF-β induces EMT. Inhibition of TGF-β using the TGF-β 
type II receptor–IgG-Fc (TGFbRII-Fc) chimera decreased the nickel-induced total BALF 

protein levels in mice [46]. TGF-β inhibition also prevented NiCl2 induced E-cadherin 

downregulation in both immortalized normal human bronchial epithelial BEAS-2B cells and 

the lung adenocarcinoma A549 cells [26].

Nano nickel oxide (nano-NiO) induced EMT through activation of TGF-β signaling [76]. 

The lungs of rats exposed to nano-NiO showed an increase in TGF-β levels, which was 

associated with pulmonary fibrosis [76, 77]. In addition, several fibrosis associated factors 

including Smad2 and Smad4 were overexpressed [76]. Furthermore, higher protein levels 

of collagen I and III were observed in nano-NiO exposed rat lungs, suggesting higher 

collagen deposition. Collagen I promotes EMT in lung cancer cells via activation of TGF-β3 

signaling [78]. Similarly, A549 cells, as well as the human fetal lung fibroblasts exposed 

to nano-NiO, showed increased TGF-β levels [79]. Furthermore, the nano-NiO-treated 

A549 cells showed mesenchymal characteristics, including increase in the levels of α-SMA, 

vimentin and fibronectin and decrease in the levels of E-cadherin, suggesting EMT [79].

Interestingly, although both nano-NiO (20 nm particles) and micro-NiO (1 μm particles) 

exposure increased the expression of TGF-β and other fibrosis-associated factors in rat 

lungs, the levels of upregulation were higher in nano-NiO exposed lungs compared to those 

of the micro-NiO exposed lungs [76]. Furthermore, no increase in collagen I and III was 

seen in the lungs of rats exposed to micro-NiO. This suggests increased propensity of 

nano-NiO to cause lung injury and induce EMT, and thus is potentially a more serious health 

hazard than micro-NiO.

One of the endogenous negative regulators of the EMT process is hydrogen sulfide (H2S) 

[80]. Endogenous H2S plays a number of physiological roles and has been recently 

identified as a gasotransmitter that is at least as important as the other well-studied 

gasotransmitters, nitric oxide (NO) and carbon monoxide (CO) [80–82]. In mammalian 

cells, endogenous H2S is produced through the metabolism of cysteine. The enzymes 

involved in this process include the two pyridoxal 5′-phospate- (PLP)-dependent enzymes: 
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cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE); and the PLP-independent, 

3-mercaptopyruvate sulfurtransferase (3MST)/cysteine aminotransferase (CAT) pathway 

[83–85].

H2S attenuates EMT by inhibiting TGF-β signaling. Inhibition of TGF-β signaling by 

H2S is involved in the anti-fibrotic mechanism in several tissues including the lung 

and kidney [86]. Several studies have shown that the exogenous H2S donor, sodium 

hydrosulfide (NaHS), could inhibit EMT and airway remodeling in lung epithelial cells 

[82, 86–89]. NaHS attenuated EMT induced by the herbicide, paraquat (PQ), in A549 

cells by inhibiting the TGF-β1/Smad2/3 signaling pathway [87]. Furthermore, a recent 

study suggested loss of H2S-mediated inhibition of TGF-β-Smad signaling as a cause 

for NiCl2-induced EMT in A549 cells [88]. NiCl2-exposed A549 cells underwent EMT, 

as evidenced by the downregulation of E-cadherin and the upregulation of vimentin and 

increased migratory ability. Examination of the associated mechanisms showed that nickel 

exposure downregulated CBS, CSE and 3MST, the enzymes involved in H2S production. 

Concurrently, an increase was detected in the protein levels of TGF-β1 as well as in 

the levels of phosphorylated SMAD2 and SMAD3. However, pretreatment of A549 cells 

with exogenous NaHS prevented NiCl2-induced TGF-β1-Smad signaling [88]. These results 

suggest a novel mechanism of EMT induction by nickel exposure via impaired H2S 

signaling (Figure 1).

Nickel is an activator of human TLR4 signaling, which triggers an allergic inflammatory 

response [90, 91]. NiCl2 exposure induced TLR4 signaling in the lung cancer A549 and 

H1299 cells [8]. This study also uncovered the elevated expression of IL-8, TGF-β, MMP2 

and MMP9 caused by nickel exposure and demonstrated that TLR4/MyD88 signaling was 

important in increasing the invasive potential of the cells [8]. TLR4 activation has been 

shown to enhance TGF-β signaling in hepatic fibrosis [92]. Based on these results, it is 

plausible that nickel-induced TLR4 activation could be a potential mechanism underlying 

TGF-β induction in nickel-exposed cells (Figure 1). However, although nickel is an activator 

of human TLR4, it does not activate mouse TLR4 due to the sequence variations between 

the human and mouse TLR4 [91]. This suggests existence of additional mechanisms of 

TGF-β activation by nickel.

TGF-β is produced as an inactive complex, which is activated by the degradation of the 

prosegments. The extracellular matrix protein, thrombospondin 1 (TSP-1), is an important 

activator of latent TGF-β [93, 94]. Interestingly, TSP-1 was one of the highest upregulated 

genes in the lungs of mice exposed to NiSO4 aerosol [46]. This suggests that TSP-1 could be 

associated with TGF-β activation upon nickel exposure (Figure 1).

4. DNA methylation

5-methylcytosine (5mC) is an important DNA modification that plays principal roles in a 

variety of cellular processes. [95]. Nickel-induced aberrant changes to DNA methylation 

have been well-characterized in a number of studies [25, 96–102]. The DNA methylation 

alterations caused by nickel exposure is likely a consequence of its ability to inhibit 

the iron- and 2-oxoglutarate-dependent (2-OG) dioxygenases. Notable among the 2-OG 

Lee et al. Page 6

Semin Cancer Biol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dioxygenases are the Ten-eleven translocation (TET) family of DNA hydroxylases. Removal 

of 5mC occurs through the TET family dioxygenases, which mediate oxidation of 5mC to 

5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) 

[103]. The TET enzymes contain Fe(II) at their catalytic center. Ni(II), being highly 

similar to Fe(II) in charge and radius, can replace Fe(II) at the catalytic center of the Tet 

dioxygenases, thus making them highly susceptible to nickel-mediated inhibition [104].

NiCl2 exposure downregulated E-cadherin in BEAS-2B cells. E-cadherin downregulation 

was associated with promoter DNA hypermethylation, and DNA methyltrasferase inhibitor 

5-aza-2’-deoxycytidine restored its expression [25]. Furthermore, treatment of BEAS-2B 

cells with antioxidants or reactive oxygen species (ROS) inhibitors and scavengers reversed 

nickel-induced EMT, and pretreatment of the cells with the antioxidant N-acetylcysteine 

(NAC) inhibited nickel-induced E-cadherin downregulation. In addition, NAC treatment 

prevented DNA hypermethylation at the E-cadherin promoter. This suggests a role for 

ROS generated by nickel exposure in the hypermethylation of E-cadherin promoter [25]. 

ROS has also been shown to induce hypermethylation of E-cadherin promoter through the 

induction of SNAIL expression in Huh7 and Hep3B cells [105]. SNAIL directly binds the 

E-cadherin promoter and recruits the H3K9me2 methyltransferase, G9a, along with the 

DNA methyltransferase, DNMT1. SNAIL binding of the E-cadherin promoter is required for 

DNMT1 recruitment, and G9a functions as a bridge between SNAIL and DNMT1 [106].

Nickel sulfide exposure in mice repressed p16 gene expression through promoter 

hypermethylation [98]. The tumor suppressor p16 is an EMT repressor, which regulates 

EMT by transcriptionally activating miR-141 and miR-146b-5p, negative regulators of 

AUF1, an RNA binding protein. AUF1 stabilizes ZEB1 mRNA, thus increasing its protein 

levels and thereby functioning as an EMT inducer [107]. Ectopic expression of p16 in the 

highly invasive breast cancer cell line upregulated epithelial markers and downregulated 

mesenchymal markers [107] Therefore, it is plausible that nickel-exposure-induced p16 

downregulation could contribute to EMT.

5. Histone modifications

Besides the TET family proteins, another category of major epigenetic regulators among 

the iron- and 2-oxoglutarate-dependent dioxygenases are the Jumonji C (JmjC)-domain 

containing family of histone demethylases [108]. In eukaryotes, DNA is wrapped around 

the four core histone proteins, H2A, H2B, H3 and H4, to form the fundamental structural 

unit of chromatin, the nucleosome. The N-terminal tails of histones are subject to a variety 

of post-translational modifications including acetylation, methylation, phosphorylation and 

ubiquitination [109–112]. Specific histone modifications are associated with the active or 

silent states of a particular genomic locus. For example, histone acetylation is associated 

with transcriptional activation, and histone methylation is associated with both gene 

activation and silencing. While histone H3 lysine 4 trimethylation (H3K4me3) is associated 

with gene activation, H3K9me3, H3K9me2 and H3K27me3 are associated with gene 

silencing [113, 114].
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The JmjC domain histone demethylases (KDM2 to KDM7), target a number of both 

activating histone methylation marks, including H3K4me2/3 and H3K36me1/2/3, and 

silencing histone methylation marks, including H3K9me3 and H3K27me3 [115]. Similar 

to TET enzymes, the JmjC domain histone demethylases are sensitive to nickel exposure 

due to the ability of nickel to inhibit their activities by replacing iron at the iron-binding 

sites of these enzymes [116, 117]. Nickel inhibited the activity of the H3K9 demethylase, 

JMJD1A/KDM3A in a dose-dependent manner, with approximately one molecule of Ni(II) 

inhibiting one molecule of JMJD1A. The inhibitory effect was significantly amplified in 

the absence of iron. However, the addition of iron ions could not rescue JMJD1A activity, 

suggesting that Ni(II) binds the enzyme with a higher affinity as compared to Fe(II) [117].

SPRY2, a tumor suppressor gene, is an important suppressor of ERK1/2 activation, and 

its silencing is often observed in a number of human cancers especially in the metastatic 

stages [118, 119]. Nickel exposure inhibited SPRY2 expression in BEAS-2B cells, which 

was associated with increased H3K9me2 levels at its promoter [116]. SPRY2 repression in 

nickel-exposed BEAS-2B cells resulted in ERK activation and neoplastic transformation. 

JMJD1A overexpression and knockdown studies showed that JMJD1A, which directly binds 

the SPRY2 promoter was essential for its expression. SPRY2 repression is often observed 

in a number of human cancers. This suggests downregulation of SPRY2 through JMJD1A 

inactivation as one of the mechanisms underlying nickel carcinogenesis [116]. SPRY2 has 

also been demonstrated to negatively regulate TGF-β signaling and TGF-β-induced EMT 

by inhibiting ERK activation [118]. These studies suggest that nickel could induce EMT 

by inhibiting JMJD1A demethylase activity. Furthermore, nickel exposure caused spreading 

of the repressive H3K9me2 to adjacent active chromatin regions via inhibition of the DNA 

binding activity of the insulator binding protein CTCF, resulting in the downregulation of a 

number of genes [113]. It is likely that nickel-induced inhibition of H3K9me2 demethylase 

activity contributes to H3K9me2 spreading and aberrant gene silencing.

KDM6B/JMJD3 is a histone demethylase that mediates the removal of repressive histone 

modification H3K27me3. TGF-β exposure upregulated KDM6B expression in the mammary 

epithelial NMuMG cells, resulting in H3K27me3 demethylation at SNAIL1 promoter. 

This resulted in the transcriptional activation of SNAIL and induction of EMT [120]. 

Interestingly, NiCl2 exposure increased KDM6B expression in the human embryonic kidney 

cell line HEK293T and renal carcinoma cell line 786-0. There was a concomitant decrease 

in the levels of H3K27me3 in both these cell lines [121]. Therefore, it is plausible that 

KDM6B upregulation by nickel could be associated with EMT induction.

Lysine-specific demethylase (LSD1/KDM1A) is a transcriptional repressor that 

demethylates H3K4me1 and H3K4me2 [122]. LSD1 is associated with the silencing of 

epithelial genes. LSD1 overexpression occurs in a number of solid tumors and levels 

of LSD1 expression correlates with tumor aggressiveness and EMT induction [122–127]. 

Nickel exposure has been shown to upregulate SNAIL in BEAS-2B cells [24]. SNAIL 

represses epithelial genes by recruiting LSD1, which recognizes H3K4 methylation through 

its interaction with the protein SFMBT1, resulting in its demethylation [128]. Interestingly, 

the protein levels of LSD1 remained unaltered due to nickel exposure. However, the levels 

of LSD1 acetylation significantly decreased [127]. In A549 cells, LSD1 protein is acetylated 
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by the histone acetyl transferase MOF, which prevents its binding to the epithelial gene 

regulatory elements. Upon nickel exposure, MOF was significantly downregulated, resulting 

in LSD1 deacetylation. This caused increased binding of LSD1 at the epithelial genes, 

E-cadherin and KRT8, and caused H3K4me2 demethylation. Overexpression of MOF could 

counteract the nickel-induced EMT. Although MOF depletion facilitated nickel-induced 

EMT induction, in the absence of nickel exposure, depletion of MOF could not induce EMT 

in A549 cells. This suggests that in addition to MOF downregulation, other signals provided 

by nickel exposure are important for EMT induction [127].

NiCl2-induced EMT in the lung epithelial BEAS-2B cells is associated with increased 

ZEB1 expression [24]. In the epithelial cells, the ZEB1 promoter is marked by both 

the activating histone modification, H3K4me3, and the repressive histone modification, 

H3K27me3, thus existing in a bivalent chromatin environment [24]. Bivalent genes are 

normally transcriptionally silent, but are considered to be in a poised state [129]. When 

appropriate signals are received, the promoter bivalency resolves to monovalency through 

loss of the activating or the repressing marks, leading to the corresponding gene expression 

changes [129]. Nickel exposure resolved the bivalent chromatin at ZEB1 promoter to a 

monovalent status by inducing loss of H3K27me3, resulting in active gene transcription 

[24].

ZEB1 is a negative regulator of E-cadherin [24]. The nickel-exposed BEAS-2B cells with 

high ZEB1 expression exhibit EMT characteristics, including downregulation of epithelial 

markers, upregulation of mesenchymal markers and metastatic phenotype [24]. Interestingly, 

the loss of H3K27me3 was stable, and chromatin environment at the ZEB1 gene did 

not revert to epithelial state even after the termination of nickel exposure, resulting in 

continued ZEB1 overexpression post exposure [24]. This resulted in persistent mesenchymal 

phenotype even after the termination of exposure. Nickel exposure caused persistent changes 

to the active histone modification H3K4me3 as well [130]. These results suggest that 

epigenetic alterations that persist after the cessation of exposure could be a common 

phenomenon associated with nickel exposure.

ZEB1 is a negative regulator of the microRNAs (miRNAs) associated with epithelial 

phenotype, miR-200 family and miR-205. On the other hand, miR-200/205 are negative 

regulators of ZEB1. Thus, ZEB1 and miR-200/205 exist in a double negative feedback 

loop [131, 132]. In BEAS-2B cells, ZEB1 overexpression due to nickel exposure caused 

downregulation of miR-200/205, which likely caused further increase in ZEB1 expression. 

Continued downregulation of miR-200/205 even after the termination of nickel exposure 

contributed to the continuous overexpression of ZEB1 resulting in the persistent EMT 

phenotype. However, ZEB1 knockdown after the termination of nickel exposure abrogated 

miR-200/205 downregulation and re-established the epithelial phenotype in BEAS-2B cells. 

These results suggest ZEB1 as an important mediator of nickel-induced persistent EMT 

[24].

Bivalent chromatin at ZEB1 gene has also been observed in the non-CSC population of 

the human mammary basal epithelial cells (HMECs). EMT signals such as TGF-β quickly 

converted the bivalent chromatin to an active chromatin configuration, and the cells enter 
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CSC state [133]. These findings suggest that the bivalent chromatin configuration at the 

ZEB1 promoter enables its rapid upregulation upon receiving appropriate environmental 

cues. Nickel exposure could be one such environmental cue, which activates ZEB1 gene in 

order to trigger the wound healing process via EMT induction. However, persistent ZEB1 
overexpression could result in pathogenesis. The molecular basis of irreversible alteration to 

the chromatin at ZEB1 promoter, which enables its persistent overexpression, remains to be 

investigated.

6. MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are non-coding RNAs, which are 18–25 nucleotides in length. 

miRNAs negatively regulate gene expression either by targeting the 3′ UTR of target 

mRNAs and causing their degradation or translation inhibition. Regulation of EMT 

associated transcription factors by miRNAs are well documented. miR-203, miR-30a 

and miR-34 family downregulate SNAIL expression [134–136]. ZEB family genes are 

well-studied targets of miR-200 family and miR-205. TWIST1 is also a direct target of 

several miRNAs, including miR-15, -16, -186, -381 and -495 in various cell types [137–

141]. Furthermore, miR-9 is a repressor of E-cadherin. In addition to the miRNAs that 

directly target the EMT transcription factors, several miRNAs that target other transcription 

factors such as MYC and SP1 are also described as pro- or anti-metastatic [134]. These 

studies suggest that deregulation of miRNAs could have significant consequences in the 

development of EMT-associated diseases and cancer metastasis.

Prominent among the EMT-regulating miRNAs are the miR-200 family and miR-205, 

which are negative regulators of EMT master regulators ZEB1 and ZEB2. miR-200/205 

are downregulated by nickel exposure, which contributed to nickel-induced EMT [24]. 

In the nickel-exposed BEAS-2B cells, miR-200/205 downregulation is likely caused by 

ZEB1 upregulation, since ZEB1 knockdown restored the levels of miR-200/205 [24] (see 

section ‘Histone modifications’ for more information on ZEB1-miR-200/205 interaction). 

TGF-β treatment has been shown to upregulate several EMT associated transcription factors 

including ZEB1 and ZEB2 [142, 143]. Therefore, TGF-β signaling activated by nickel 

exposure could also contribute to miR-200/205 downregulation and EMT.

Upregulation of miR-21 is seen in multiple cancers, including cancers of the lung, and 

elevated expression of miR-21 promoted EMT [144, 145]. In A549 cells, miR-21 inhibition 

increased E-cadherin expression while miR-21 mimics decreased it [144]. Exposure to 

nickel nanoparticles (nano-Ni) caused upregulation of miR-21 in mouse lungs [53]. Nano-Ni 

exposure also caused increased expression of fibrosis-associated factors TGF-β1, p-Smad2, 

COL1A1, and COL3A1. Furthermore, severe lung inflammation and fibrosis were detected 

in the lungs [53]. In the miR-21 knockout mice, nano-Ni-induced upregulation of pSmad2, 

COL1A1 and COL3A1 was significantly diminished, although TGF-β1 levels remained 

unaltered. Furthermore, pulmonary inflammation and fibrosis decreased in miR-21-knockout 

mice suggesting a role for miR-21 in nano-Ni-induced EMT [53]. Though the mechanism of 

miR-21 overexpression by nano-Ni exposure remains unclear, studies have shown that it can 

be upregulated by TGF-β [146–149]. Therefore, TGF-β induced by nano-Ni exposure could 

be associated with miR-21 upregulation and fibrogenesis.
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miR-152 is a negative regulator of DNA methyltransferase 1 (DNMT1) [150]. 

Downregulation of miR-152 is associated with EMT induction [151]. Nickel sulfide (NiS) 

exposure downregulated miR-152 in human bronchial epithelial 16HBE cells through 

promoter DNA hypermethylation. While ectopic expression of miR-152 inhibited cell 

proliferation in the NiS-transformed cells 16HBE, anti-miR-152 promoted it [152]. This 

suggests that NiS-induced miR-152 downregulation could potentially induce EMT.

7. Long non-coding RNAs (LncRNAs)

LncRNAs are non-coding RNAs, which are over 200 nucleotides in length. Recent studies 

have begun to uncover the role of lncRNAs in regulating EMT and metastasis. A number of 

lncRNAs such as HOTAIR, H19 and MALAT1 are identified as EMT promoters [153–157]. 

Some lncRNAs function as competing endogenous RNAs (ceRNAs), which impede binding 

of miRNAs to their targets. LncRNA-ATB upregulated ZEB1/2 and promoted hepatocellular 

carcinoma metastasis by functioning as a ceRNA for the miR-200 family members. 

Similarly, HOTTIP upregulated SNAIL and promoted EMT and metastasis in esophageal 

carcinoma cells by functioning as a ceRNA for miR-30b, a SNAIL repressor [158]. 

Furthermore, MEG8 suppressed the expression of MIR34a and MIR203 by facilitating 

EZH2 mediated H3K27me3 enrichment at their promoters, resulting in the upregulation of 

SNAIL [159].

Although a few lncRNAs, such as NRG1 [160] and MEG3 [161], are implicated in 

nickel-exposure-induced tumorigenesis, their role in nickel-induced EMT has not been 

thoroughly investigated. Nickel exposure downregulated MEG3 through promoter DNA 

hypermethylation, resulting in malignant transformation of BEAS-2B cells [161]. MEG3 

overexpression reversed the nickel-induced cell transformation. Lung tissues from lung 

squamous cell carcinoma (SCC) also showed a significant downregulation of MEG3, 

suggesting a role for MEG3 inhibition in lung tumorigenesis [161]. A study on gastric 

cancer tissues also suggested the anti-tumorigenic effects of MEG3. Interestingly, this study 

showed that MEG3 upregulated E-cadherin while downregulating the mesenchymal markers 

N-cadherin, Snail and β-catenin [162], thereby decreasing the cell’s ability to invade and 

migrate. Moreover, this study showed that the anti-EMT effect of MEG3 was mediated by its 

ability to negatively regulate miR-21, a promoter of EMT [162].

MEG3 is also downregulated by nano-NiO exposure [163]. Nano-NiO exposure induced 

EMT, causing collagen deposition in A549 cells and pulmonary fibrosis in rats in a TGF-β 
dependent manner. MEG3 overexpression decreased TGF-β1 expression and suppressed 

EMT. Therefore, MEG3 downregulation has been implicated in the EMT induction and 

fibrosis by nano-NiO exposure [163]. Contrarily, MEG3 has also been shown to be essential 

for TGF-β-induced EMT in the lung cancer cell lines, A549 and LC-2/ad, where it recruits 

repressive epigenetic marks to the regulatory regions of E-cadherin and MIR200 [164].

8. Hypoxia-inducible factor-1 (HIF-1) signaling

Cellular response to low oxygen is mainly mediated by HIF-1 signaling [165]. HIF-1 is 

a heterodimeric transcription factor consisting of a hypoxically inducible α subunit and 
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a constitutively expressed β subunit. Under normoxia, the proline residues in the oxygen­

dependent degradation domain (ODDD) of HIF-1α are hydroxylated by prolyl-hydroxylases 

(PHDs). The hydroxylated proline residues are recognized by von Hippel-Lindau protein 

(pVHL), which mediates HIF-1α ubiquitination, leading to its proteosomal degradation 

[166]. Hypoxia prevents HIF-1α hydroxylation due to inhibition of PHD activity, resulting 

in lack of interaction with pVHL and HIF-1α stabilization. The stabilized HIF-1α 
translocates to the nucleus, dimerizes with HIF-1β and activates target genes by binding 

the hypoxia-response elements (HREs) at their promoters [167–169] (Figure 2). HIF-1α is 

stabilized in solid tumors due to low oxygen availability and is associated with a number of 

cancers [170–173].

PHDs are 2-oxoglutarate (2-OG)-dependent dioxygenases, which require Fe(II) and 

ascorbate as cofactors [174]. Ni(II) can compete with Fe(II) and replace it at the iron­

binding site of PHDs causing their inactivation. This results in HIF-1α stabilization [117, 

175, 176]. Therefore, nickel exposure stabilizes HIF-1α even under normoxia [170]. HIF-1 

has been well-documented to regulate a large number of cellular processes including cell 

survival, proliferation, motility, metabolism, extracellular matrix function and angiogenesis 

[177–180]. Emerging evidence suggest a major role for HIF signaling in the induction of 

metastasis. A number of studies have demonstrated the role of HIF-1 in inducing EMT in 

multiple cell-types [181–184]. EMT can be induced by increased HIF-1α expression either 

due to hypoxia or due to the constitutive expression of HIF-1α mutant containing a deletion 

in the ODD domain [185, 186]. Moreover, HIF-1α knockdown in hypoxic cells reversed 

both the expression of EMT markers and the metastatic ability [185, 187, 188].

The effect of HIF-1 signaling on EMT is mediated by a number of downstream targets of 

HIF-1 such as the EMT master regulators, SNAIL, ZEB and TWIST. HIF-1 directly targets 

these EMT factors by binding the HREs at their promoters and activating their expression 

(Figure 2) [184–186, 189–191]. Suggesting major roles for the EMT master regulators in 

mediating HIF-1 signaling, ZEB1 inhibition abolished HIF-1α-induced EMT in metastatic 

colorectal cancer cells [189]. Similarly, TWIST knockdown in lung and hypopharyngeal 

cancer cells abolished the EMT phenotype and inhibited EMT induced by hypoxia or 

HIF-1α overexpression [185, 186]. Inhibition of SNAIL by shRNAs reduced HIF-1α­

induced EMT in gastric CSCs [192]. These studies also suggest that the downstream 

effectors of HIF-1-induced EMT could be cell-type specific. In addition, HIF-1 can also 

regulate EMT markers in an indirect fashion. HIF-1α promoted EMT and fibrogenesis in 

mice renal epithelial cells by upregulating lysyl oxidase genes Lox and LoxL2 [193]. The 

lysyl oxidases have been shown to functionally interact with SNAIL, causing E-cadherin 

repression in MDCK cells [194].

Stabilization of HIF-1α by nickel compounds is well documented [25, 170, 195–197]. 

NiCl2 exposure significantly increased the protein levels of HIF-1α, which was associated 

with E-cadherin repression in BEAS-2B cells [25]. ShRNA-mediated HIF1α knockdown 

in BEAS-2B cells diminished NiCl2-induced E-cadherin downregulation and fibronectin 

upregulation, suggesting a role for HIF-1 signaling in NiCl2-induced EMT in the lung 

[25]. Nano-NiO exposure increased the levels of HIF-1α and TGF-β1 in human fetal lung 

fibroblasts, which contributed to the development of pulmonary fibrosis [77]. Exposure of 
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human fetal lung fibroblast cells to HIF1-α inhibitor 2-deoxy-d-glucose (2-DG) reduced the 

nano-NiO-induced overexpression of TGF-β1. On the other hand, TGF-β-Smad inhibitor 

treatment diminished the nano-NiO-induced increase in HIF-1α protein levels [77]. This 

suggests a synergistic interaction between the HIF-1 and TGF-β signaling pathways in 

the development of nickel-induced pulmonary fibrosis [77]. Although the role of HIF-1 

signaling in nickel-induced EMT has not been extensively investigated, given the well­

established role of HIF-1 signaling in EMT induction, it is reasonable to speculate that 

HIF-1α stabilization by nickel exposure could play a major role in EMT induction.

9. Conclusions and future perspectives

Evidence from recent studies clearly indicate the importance of EMT induction in the 

etiology of lung diseases associated with nickel exposure. TGF-β is an important regulator 

of a number of pathogenic processes [198]. It is clear that the activation of TGF-β 
signaling by nickel exposure is an important event in nickel pathogenesis. Although some 

mechanisms such as impaired H2S production [88] and activation of TLR4 signaling [8] 

could begin to explain the underlying mechanisms, further investigation is necessary to 

fully understand this critically important process. Similarly, HIF-1 signaling, which could 

directly regulate the expression of EMT associated factors including ZEB, TWIST and 

SNAIL, is an important EMT inducer. The mechanisms underlying nickel-mediated HIF-1α 
stabilization is well understood. Future studies will reveal the importance of HIF-1 signaling 

in nickel-induced lung diseases.

In addition to TGF-β and HIF-1 signaling, epigenetic deregulation constitutes an important 

phenomenon that is associated with nickel-induced EMT. The mutagenic potential of 

nickel compounds is low and accumulating evidence suggest aberrant epigenetic changes 

as major drivers of nickel toxicity. Consequently, nickel-induced epigenetic changes have 

been extensively characterized by a number of studies [113, 130]. However, epigenetic 

changes related to EMT induction is only beginning to be understood. Although inactivation 

of 2-OG dioxygenases potentially plays a major role in the aberrant epigenetic changes 

caused by nickel exposure, the mechanisms associated with nickel-induced dysregulation 

of the epigenome are not fully understood. Bivalency resolution via loss of H3K27me3 

at the ZEB1 promoter plays an important role in EMT induction by nickel. However, 

the underlying mechanisms remain unclear. Bivalent chromatin, which poises genes for 

activation upon receiving appropriate stimuli, is present in all cell types. However, it is 

more prevalent in the embryonic stem (ES) cells, where the developmental gene promoters 

are marked by both active and repressive epigenetic marks [111, 129, 199]. EMT is 

involved in a number of early developmental processes such as gastrulation and neural crest 

formation. Therefore, it is reasonable to speculate that nickel exposure could have significant 

deleterious consequences during early development, and this warrants in-depth investigation 

in the future. Thus, while the current studies have shed important light on the contribution 

of EMT to nickel-induced lung diseases, there are a number of open questions and exciting 

avenues for future research.
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Figure 1. TGF-β signaling in nickel-induced EMT.
During TGF-β signaling, the active TGF-β binds the TGF-β receptors TGF-βR1 and TGF-

βRII. The activation of the TGF-β receptor complex results in phosphorylation of the 

SMAD proteins, which then translocate to the nucleus and regulate target gene expression. 

Nickel exposure could activate TGF-β signaling via multiple mechanisms, including TLR4 

signaling, TSP-1 upregulation and inhibition of H2S production. Nickel exposure induces 

TLR4 signaling. which has been shown to enhance TGF-β signaling. The extracellular 

matrix protein, TSP-1, an important activator of latent TGF-β, is one of the highest 

upregulated genes in the lungs of mice exposed to nickel, suggesting its role in nickel­

induced TGF-β signaling. H2S is an important negative regulator of TGF-β signaling. 

Nickel exposure promoted TGF-β signaling by downregulating the enzymes involved in 

H2S production, CBS, CSE and 3MST, thereby increasing protein levels of TGF-β1 and 

phosphorylated SMAD2 and SMAD3.
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Figure 2. Activation of HIF-1 signaling in nickel-exposed cells contributes to EMT.
Under physiological conditions, HIF-1α is rapidly degraded via hydroxylation of its oxygen­

dependent degradation domain by prolyl-hydroxylases (PHDs). Upon nickel exposure, Ni(II) 

replaces Fe(II) at the iron-binding site of PHDs causing their inactivation. This leads to 

the stabilization of HIF-1α, which translocates to the nucleus, dimerizes with HIF-1β and 

binds the HREs at the promoters of target genes, resulting in their activation. HIF-1 could 

directly activate EMT master regulators, SNAIL, ZEB and TWIST, by directly binding their 

promoters. HIF-1 could also upregulate lysyl oxidase genes Lox and LoxL2, which interact 

with SNAIL and cause E-cadherin repression.
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