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In this study, we addressed the extent of diversification of phages associated
with nitrogen-fixing symbiotic Rhizobium species. Despite the ecological
and economic importance of the Rhizobium genus, little is known about
the diversity of the associated phages. A thorough assessment of viral diver-
sity requires investigating both lytic phages and prophages harboured in
diverse Rhizobium genomes. Protein-sharing networks identified 56 viral
clusters (VCs) among a set of 425 isolated phages and predicted prophages.
The VCs formed by phages had more proteins in common and a higher
degree of synteny, and they group together in clades in the associated
phylogenetic tree. By contrast, the VCs of prophages showed significant
genetic variation and gene loss, with selective pressure on the remaining
genes. Some VCs were found in various Rhizobium species and geographical
locations, suggesting that they have wide host ranges. Our results indicate
that the VCs represent distinct taxonomic units, probably representing
taxa equivalent to genera or even species. The finding of previously unde-
scribed phage taxa indicates the need for further exploration of the
diversity of phages associated with Rhizobium species.

This article is part of the theme issue ‘The secret lives of microbial mobile
genetic elements’.
1. Introduction
Bacteriophages, or phages, are abundant in every terrestrial and marine micro-
biome [1]. They play a significant role in the ecology and evolution of bacterial
communities by enabling horizontal gene transfer (HGT) and influencing the
global biochemical cycles [2]. The interaction of phages with a bacterium
usually leads to cell lysis and death, reshaping bacterial communities [3,4].
Alternatively, phages can become integrated into the chromosome, remaining
as prophages. Under particular environmental stressors, prophages are induced
to replicate and kill the cell.

There is compelling evidence of thewidespread occurrence of phage footprints
left in bacterial genomes [5]. Complete prophages in bacterial genomes can be
induced, but a significant proportion of large and small phage genome fragments
can no longer be activated [6]. This latter category is thought to represent vestiges
of ancient phage–bacteria interactions [7]. Alternatively, prophages may be part of
functional phage-related mobile elements like phage inducible chromosomal
islands (PICIs), and gene transfer agents (GTAs) widespread in bacterial species
[8,9]. In both classes of mobile elements, phage structural proteins (capsid and
tail) and DNA processing (terminases) are recruited to carry out chromosomal
genes encoding virulence genes and other genes [10] instead of the phage
genome [9]. Recently, it has been suggested that selection favours prophage reten-
tion, although the advantages to the bacteria are unclear [11–13]. One direct benefit
of harbouring prophages is immunity to reinfection, but prophages may also
increase bacterial fitness by modifying metabolism via auxiliary metabolic genes
(AMGs) and by providing targets for recombination and HGT, allowing the
bacteria to adapt to their ecological niche [12–15].
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Thewide diversity of bacterial viruses requires a taxonomy
that reflects, ideally, their evolutionary nature. However,
this cannot proceed without identifying the fundamental
units of evolution, which could be designated species, viral
populations or structural clusters [16]. Over the years, viral tax-
onomy has evolved from morphotypes and nucleic acid types
to genome-based classification [17]. Approaches based purely
on comparative genomics such as average nucleotide identity
(ANI) have proved insufficient given their dependence on
defined thresholds, genome mosaicism and variable mutation
rates among viruses [18]. Recently, gene- and protein-sharing
networks have been shown to deal better with the mosaic
genome structure of viruses while preserving the advantages
related to ANI and protein-level similarity [19,20].

In GenBank, there are 18 884 phage genomes, about 70%
of which come from bacterial species of γ-proteobacteria,
Actinobacteria and Firmicutes. By contrast, α-proteobacteria,
β-proteobacteria, bacteroidetes and cyanobacteria phages
are poorly represented (electronic supplementary material,
figure S1). The bias in phage sampling may affect the
phage discovery results in metagenomes (based on bioinfor-
matics algorithms) and it may affect our understanding of
phage diversification in the major classes of bacteria. More-
over, better characterization of prophages will improve the
algorithms to distinguish them from other related phage
mobile elements (PICIS and GTAs) [21].

In this study, we investigated Rhizobium phages to expand
the knowledge of their diversification among closely related
species [22]. Rhizobium is a bacterial genus involving species
of great economic importance owing to their capacity to
form symbiotic relationships with the roots of legume
plants and to fix nitrogen. However, few studies focus specifi-
cally on Rhizobium phages and their roles in Rhizobium
ecology and evolution [22–24]. Therefore, we aimed to
place Rhizobium phages into a phylogenetic context, identify
novel and unclassified phages and determine how they are
distributed throughout the Rhizobium genus. Our approach
relied on protein-sharing networks [20] and phylogenetic
inferences, and on searching for prophages in complete and
draft Rhizobium genomes. As a result, we identified viral clus-
ters (VCs), which were relatively consistent in terms of
genome structure and phylogeny. We unveiled the high
level of mobility and large trans-species host range of certain
phages, the host specialization of other phages and the
hidden diversity of prophages in Rhizobium species.
2. Material and methods
(a) Phage isolation and genome sequencing
In this study, we isolated 25 phages from agriculture soils in
localities of Mexico and Argentina, via the enrichment method
usingRhizobium and Sinorhizobium hosts (electronic supplementary
material, table S1) [23]. The DNA from the phages was purified
according to the DNA Isolation Kit for Cells and Tissues (Roche
Life Sciences, CA, USA) protocol, withmodifications [22]. Libraries
for sequencing 22 phage genomes were constructed using the
Nextera Kit and processed using an Illumina NextSeq 500 system
(Unidad Universitaria de Secuenciación Masiva de DNA
(UUSMD)-Universidad Nacional Autónoma de México
(UNAM)). Two phage genomes (RHEph15 and RHEph24) were
sequenced by the Sanger method as previously described [23],
andonephagegenome (RHEph12)withPacBio technology (Macro-
gen, Korea). Details on assembly, coverage andGenBank accessions
identifiers are provided in the electronic supplementary material,
table S1. Open reading frames (ORFs) prediction and annotation
were performed automatically with PROKKA [25]. The results
were manually curated by inspection of BLASTx hits based on the
non-redundant GenBank database, and BLASTp hits based on the
virus orthologous groups [26] and InterPro databases.

(b) Rhizobium genomes and prophage prediction
Rhizobium genomes used for prophage prediction and phyloge-
netic analysis were downloaded from the GenBank RefSeq
database (release date 14 April 2021). We selected 612 genomes
based on genome length greater than or equal to 6 Mb, N50
value greater than 20 kb and the presence of the nifH gene (elec-
tronic supplementary material, table S2). Prophages were
predicted with VIBRANT (Virus Identification By iteRative
ANnoTation) v. 1.2.1 [27], using default parameters (prophage
sequence length greater than or equal to 1000 bp; number of
ORFs greater than or equal to four).

The phage life cycle was predicted using the machine learn-
ing PHAGEAI program accessed through the phageai.lifecycle.
classifier [28].

(c) Network construction and analysis
We clustered the phages using VCONTACT v. 2 [20]. It clusters
similar proteins into protein clusters (PCs) and then calculates
the VCs according to the maximum probabilities of sharing
PCs (edges) between the genomes (nodes) in order to produce
a bipartite network. The PCs were determined using the
Markov cluster algorithm (MCL) and the VCs were determined
using CLUSTERONE, with default parameters (MCL inflation: 2;
penalty value: 2) and with an edge weight of 10. The networks
generated by VCONTACT were visualized using CYTOSCAPE

v. 3.8.2 (https://cytoscape.org/) [29]. The VCs involving Rhizo-
bium phages and/or prophages were manually checked and
adjusted as following: first, it was verified that within the VC
all the individual genomes were related by a minimal edge
value greater than 60. The genomes with edges less than 60
were removed. Second, the phage genomes included in VCs
were examined for inconsistencies with the previously reported
average nucleotide identity by Mummer (ANIm) groups already
reported [22], and average amino acid identity groups.

To construct synteny maps of the genomes of the phages in
the VCs, we used EASYFIG v. 2.2.3 [30]. Pairwise comparisons
between phage genomes were conducted using the BLASTn
algorithm with an e-value cut-off of 0.001. The number and per-
centage of PCs shared between pairs of phage genomes were
computed using a homemade perl script.

(d) Phylogenetic analyses
To construct a phylogenetic tree of Rhizobium genomes, we
aligned 1181 bp of the concatenated dnaA and recA gene seg-
ments from 612 Rhizobium genomes, and 42 dnaA and recA
sequenced polymerase chain reaction fragments of Rhizobium
genomes [31]. Multiple alignments were carried out by
MUSCLE [32]. A phylogenetic tree was constructed in MEGA
v. 7 using the maximum-likelihood method [33] with bootstrap
of 1000 replicates.

We used the terminase large subunit (TerL) protein as a
marker to construct the phage phylogenetic tree. TerL proteins
of previously reported Rhizobium phages [22] were used to
search for homologous TerL proteins in the 642 genomes of
phages and prophages incorporated in the VCONTACT network
(electronic supplementary material, table S3). The searches
were conducted using BLASTp (e-value cut-off: 1 × 10−6; cover-
age: 70%; identity: 30%). Using these criteria, 485 TerL proteins
were obtained to make a multiple gapped alignment of TerL

https://cytoscape.org/
https://cytoscape.org/
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Figure 1. Viral clusters (VCs) of isolated phages and predicted prophages, and their network relationships. The network was obtained using VCONTACT v2 with an
edge weight greater than 10 (electronic supplementary material, figure S2) and was visualized using CYTOSCAPE. The largest connected component (LCC) is shown on
the left; besides the LCC, the other VCs have weak or no relationships to each other. Virulent phages are indicated by circles containing red ellipses exclusively;
temperate phages in circles with red and purple ellipses; prophages are shown by encircled purple ellipses only. In the inset, the colour key indicates the network
components.
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with CLUSTALW (-align option) [32]. The maximum-likelihood
phylogenetic tree was constructed with IQ-TREE [34] based on
the best substitution model found by MODELFINDER (VT + F + R6
(Variable Time + Empirical Codon Frequencies + FreeRate))
with 1000 ultrafast bootstrap replicates. The same procedure
was followed for performing a phylogeny of the major capside
proteins (MCP). To further support the VCs, we used the VIP-
TREE program, which is based on the similarity in proteins by
tBlastx (e-value 10−2; identity 30%; amino acid length 30)
converted to distance in a neighbor-joining tree [35].

The phylogenetic trees were visualized using iTOL v. 6
(https://itol.embl.de/).
3. Results
(a) High genomic similarity of Rhizobium phages
As the taxonomic relationships of Rhizobium phages were
unknown, we constructed a VCONTACT network [20],
involving 425 Rhizobium isolated phages and predicted pro-
phages. The phages comprised 155 phages already reported
[22], of which 25 phages were sequenced in this study, and
270 prophages predicted using VIBRANT [27] (see next subsec-
tion). After an initial test with the default VCONTACT settings
(MCL inflation: 2; edge weight greater than 1), we decided to
construct a stringent network using an edge weight greater
than 10. The network consisted of 3751 nodes joined by 66 332
edges. There were 478 VCs, including 56 VCs involving Rhizo-
bium phages and/or prophages, and there were 102 Rhizobium
phage and prophage singletons (electronic supplementary
material, figure S2). The VCs that involved Rhizobium phages
and/or prophages were shown to be weakly related to other α
aswell as γ- and β-proteobacteriaphages byedges that indicated
lower probabilities of sharing PCs.

Then, we focused only on the 56 VCs of Rhizobium phages
and/or prophages by selecting themwith CYTOSCAPE, as shown
in figure 1. In this subset, there were 642 nodes (genomes)
joined by 6378 edges. There was a largest connected com-
ponent (LCC) that contained most of the Rhizobium phage
and prophage VCs (figure 1). Although some of the VCs
were exclusively formed by phages (encircled red ellipses)
the majority of the VCs were formed by prophages (encircled
purple ellipses). The edges within VCs had the highest scores
(greater than 60), while the edges between VCs had scores
greater than 10 but less than 60. This means that the phage gen-
omes in a VC had a median percentage of shared PCs greater
than 50% of the total (figure 2d).

Of the 56 VCs, 20 VCs contained 106 of the 155 phages
(68.4%) included in the network. These VCs did not include
any prophage, and their phages were predicted to be virulent
by the programPHAGEAI [28]. Additionally, sixVCswere compo-
site VCs that included at least one predicted prophage, and
contained22phages isolatedexperimentally (14.4%).The compo-
site VCs are formed by temperate phages as predicted by the
PHAGEAI program. A further 30 VCs were composed mostly by
predicted prophages and four isolated phages. The remaining
23 phages were singletons without relationships with the other
phages.
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Figure 2. Synteny variation between phages and prophages in VCs. (a) VC_F14 (lytic phages only); (b) VC_F62 (nine predicted temperate phages and two pro-
phages); (c) VC_P3 (prophages only); and (d ) percentage of shared PCs among pairs of phage genomes in the 51 VCs, with VCs comprising lytic phages only,
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shown in greyscale.
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Several phages from the RefSeq viral database were incor-
porated into the 56 Rhizobium phage VCs. Five VCs were
formed exclusively by very similar lytic phages of Sinorhizo-
bium and Agrobacterium (electronic supplementary material,
table S4). Although, the phages P10VF, PRL2RES, RL38J1
from Rhizobium leguminosarum, phiM9 from Sinorhizobium
and Atu_ph04 of Agrobacterium were connected with six
other phages from Rhizobium etli included in VC_F41, they
had the lowest edge weight in the cluster but greater than
60, indicating that phages in this VC have diversified to
infect a broad range of species. Some phage genomes that
were considered singletons in the previous analysis of ANI
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[22] were grouped into VCs. For instance, VC_F19 contained
the phages X2-24 from Sinorhizobium americanum (Xoxocotla,
México) and the phage P106B from Rhizobium gallicum
(Saskatchewan, Canada). VC_F108 contained the phage i4
from Rhizobium phaseoli (from Argentina) and the phages
L338C from R. leguminosarum (Saskatchewan, Canada) and
P11VFA [24]. Other VCs contained the phage ort11 from
Sinorhizobium (VC_F34) and the phage 16-3 from Rhizobium
(VC_F20), which were from the RefSeq database.
/journal/rstb
Phil.Trans.R.Soc.B

377:20200468
(b) Prophages are widespread in Rhizobium
To determine the extent of prophages in the Rhizobium gen-
omes, we predicted prophages using VIBRANT for 612
Rhizobium genomes selected based on their completeness
[27]. Of the 657 predicted prophages, 124 were high-quality,
146 were medium-quality and the rest (387) were low-quality.
As we aimed to identify prophages with the highest proba-
bilities of being complete, we only used the 270 high- and
medium-quality prophage predictions in the subsequent
analysis. The 270 prophages were located in genome seg-
ments of 20–100 kb, but more frequently around 40–50 kb
(electronic supplementary material, figure S3). The length
and gene content matched the estimated size distribution of
the isolated Rhizobium phages. Therefore, we assumed that
the predictions represented the most likely prophages in
the Rhizobium genomes assessed (electronic supplementary
material, table S2).

To assess the genome similarity relationships between
prophages and phages, all 270 prophages were incorporated
into the VCONTACT network as described above (figure 1).
There were 191 prophages in VCs that were either partly
(six VCs) or exclusively (30 VCs) formed by prophages,
while 79 prophages were singletons (figure 1; electronic
supplementary material, table S4).

Prophages from diverse geographical origins had strong
relationships with certain Rhizobium phages, expanding
VC_F12, VC_F89, VC_F20, VC_F45, VC_F62 andVC_RHEph01.
For instance, VC_F12 is composed of a phage isolated in México
(TM3_3_3), a phage isolated inArgentina (N28) and 27 predicted
prophages from diverse strains of R. leguminosarum and R. pha-
seoli isolated worldwide (electronic supplementary material,
table S4). The addition of the 27 prophages to VC_F12 indicates
successful expansion of its host range.

Isolated phages that were predicted as temperate were
also found as prophages in six VCs (electronic supplemen-
tary material, table S4). For instance, VC_RHEph01 includes
the previously characterised REHph01 phage, which infects
a broad spectrum of R. etli and R. phaseoli strains [23]. Our
study shows that this phage belongs to a VC of temperate
phages that are highly conserved in Rhizobium species (such
as R. leguminosarum and Rhizobium anhuenhense), confirming
the wide host range and the diversification of the members
of this VC across Rhizobium species (figure 1; electronic
supplementary material, table S4).

To determine the range of distribution of species that har-
bour the prophages and isolated phages in VCs, all of them
were mapped onto the dnaB-recA based maximum-likelihood
bacterial phylogenetic tree (made with MEGA7). Although a
few VCs appeared rather constrained in geography and host
range (e.g. VC_F01, VC_F03 and VC_F06) (electronic sup-
plementary material, figure S4a), the results generally
suggest that some isolated phage and predicted prophage
clusters are dispersed in a broad range of Rhizobium species
(electronic supplementary material, figure S4b,c).

(c) Higher synteny in VC_phage genomes than in
VC_prophage genomes

To investigate the colinearity among the VC_phage genomes,
we conducted pairwise comparisons using BLASTn. We dis-
covered that the 15 VC phages (comprising experimentally
isolated phages but no prophages) had highly conserved
gene content and order, but less conserved genetic identity
(72–100%) (figure 2). Geographical distance and local adap-
tation may explain the divergence exhibited by isolates
from different parts of the world [22] (figure 2). However,
VC_F14 contains highly similar phages, isolated in two
nearby agriculture plots in México (Tepoztlán and Yautepec)
[22] (figure 2a). The synteny analysis revealed only a single
indel site in the middle of the map, which was occupied by
an annotated estearase in the case of the phages from Tepoz-
tlán (e.g. pTM3_3_9) and by hypothetical genes in the phages
from Yautepec (e.g. pY5A).

The syntenymaps showed absence ofDNA rearrangements
(e.g. inversions) or insertions within the virion structure- and
replication-related genes. This is clear in VC_F62, which con-
tains similar phages that were isolated in México and
Argentina, two phages fromCanada and twoprophages inRhi-
zobium azabensis 23C2, a strain isolated in Tunisia [36], and inR.
leguminosarum bv viciae L361. Although the prophage main-
tains the essential scaffold for phage structure and replication,
its hypothetical gene content was different from the gene con-
tent of the phages. Additionally, the pX66 phage isolated
from R. phaseoli INC2-5 in México shared fewer PCs with
other phages while preserving its modular structure.

By contrast to the isolated phages, the prophages in Rhizo-
bium seemed to have lost more genes. The VC_prophages had
lower percentages of shared PCs than the VC phages (median
less than 60%) and showed more variability (figure 2d).
Despite the conservation among prophages of the proteins
required for virion synthesis and assembly and DNA proces-
sing, several alterations in synteny (loss of hypothetical
genes and insertions related to transposases and integrases)
had occurred. The loss of synteny in the VC_P3 prophages
in R. leguminosarum strains suggests that these prophages
were subjected to significant recombination events in their
evolutionary history. Furthermore, the remaining genes in pro-
phages had ratios of non-synonymous to synonymous
mutations (Ka/Ks) < 1 that suggest that they are subject to pur-
ifying selection (electronic supplementary material, figure S5).

(d) Phage phylogeny
To understand the evolutionary relationships and taxonomy
of Rhizobium phages, we constructed a phylogenetic tree
using the maximum-likelihood method (in IQ-TREE software),
based on the TerL protein encoded by the genomes in the
VCONTACT network (figure 1). The phylogenetic tree had
viral clades with very close evolutionary relationships but
separated from each other by long branches. It is likely that
the tree topology reflects the insufficient sampling of
phages of the α-proteobacteria class.

The placement of most of the phages in the TerL-based
phylogenetic tree concurred with their assignments to Inter-
national Committee on Taxonomy of Viruses (ICTV)
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families, which are based on tail morphology. However, some
phages were placed in the same clade but predicted to corre-
spond to different ICTV families (figure 3). Members of the,
recently, incorporated ICTV families Ackermannviridae and
Autographiviridae often appeared, according to the phyloge-
netic tree, to be related to Myoviridae and Podoviridae,
respectively (figure 3, middle circle).

To assess the association between clades and VCs, the
members of VCs obtained using VCONTACT were mapped
onto the TerL-based phylogenetic tree. To this end, we
defined a monophyletic group as that with boostrap greater
than 75%, and looked for the distribution of members of
VC clusters in single or separated clades. We were able to
associate only 41 out of 56 VCs with the TerL clades. Most
of the VCs were located in discrete viral clades (figure 3,
third outermost circle; electronic supplementary material,
figure S6). All the VCs formed by isolated phages belong to
single TerL clades; five of six VCs composed of both isolated
phages and predicted prophages showed congruency with
clades; and only 15 out of 30 VCs, exclusively formed by pre-
dicted prophages, were in congruent clades (electronic
supplementary material, table S7). Fifteen VCs with pro-
phages were not analysed because the corresponding TerL
proteins were excluded from the phylogeny owing to the
BlastX cut-off used to select them.
Only three VCs (VC_F20, VC_P15 and VC_P28) were
located in different clades of the phylogenetic tree, indicating
that either phage recombination may have distorted the clus-
tering results, or their association depend on the kind of
phylogenetic marker used. To further evaluate this aspect,
we did a phylogeny with the MCP protein and a VIP-TREE

based on the presence and absence of proteins. Although
the MCP phylogeny showed five separated VCs in distinct
clades, the VIP-TREE agreed in most of the groups with the
VCs (electronic supplementary material, table S7, figures S7
and S8). Clades either from TerL or MCP phylogenies,
agreed well with the shared genomic structure indicated by
the VCs (electronic supplementary material, table S7). There-
fore, we argue that VCs have phylogenetic signals that
indicate its process of diversification from a single ancestor.

In the recent ICTV release, only three genera of Rhizobium
phages, two for Sinorhizobium and three for Agrobacterium
have an approved status [37] (electronic supplementary
material, tables S3 and S6). Two genera of lytic phages of
Rhizobium named Cuernavacavirus and Rigallicvirus, agree
with the VC_F48 and VC_F19 detected in the VCONTACT
network (electronic supplementary material, table S6). The
other genus is Paadamvirus, which is a family of temperate
phages formed with nine prophages and three phages from
R. etli and R. leguminosarum.
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Formerly, the ICTV proposed three other genera that
included Rhizobium phages but they are no longer supported.
However, we found 15 VCs that can be considered as new
genera of Rhizobium phages. Among them, the VC_F37
that include the RHEph04 and -06 (formely Rheph4virus,
Kleczkowskavirus), and the VC_F62 that forms a family of
temperate phages similar to RHEph10 (formerly in the Nick-
ievirus genus). The phage Nickie of Pseudomonas is unrelated
to the VC_F62. It had a low number of shared PCs and edge
values of less than 60, with genomes of the cluster.
rnal/rstb
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4. Discussion
This study unveils novel phage taxa in symbiotic Rhizobium
bacteria, their genomic relationships and their occurrence
across Rhizobium species and strains. Our data reveal a com-
plex network of structural and phylogenetic relationships,
probably owing to coevolution and everchanging bacteria–
phage interactions. Most of the 425 phages and prophages
analysed here formed coherent clusters of relatively closely
related phage genomes in terms of both structure and phylo-
geny. Furthermore, several phages and their prophage
counterparts were found in various Rhizobium species and
strains. Our results indicate that the identified VCs represent
discrete taxonomic units and, most probably, units of evol-
ution. Therefore, the VCs might be deemed taxa that are
equivalent to genera or even species.

Evidence at the molecular level regarding viral species
has been elusive owing to the lack of universal genes for phy-
logenetic reconstruction and pervasive genome mosaicism
[18]. We showed that a given VC, defined based on PCs
related to the genomes in the VC, represents a structural
unit. The conserved patterns of synteny between isolated
phage and prophage genomes clustered in VCs suggest that
these isolated phages and predicted prophages might have
diverged either recently or are under purifying selection.
Still, in the TerL-based phylogenetic tree, most of the mem-
bers of each VC clustered into a single clade, meaning that
they have a single phylogenetic origin. However, the mem-
bers of some VCs (VC_F20, VC_P15 and VC_P28) were
divided into different clades. This suggests that the phages
in these VCs had undergone recombination, which had
rarely been studied until recently [18,38].

Discrete clusters of phages have been observed among
phages associated with various bacterial species [39–41]. In
cyanophage populations, clusters of closely related phages
from a single Synechococcus strain were identified based on
whole-genome ANI of about 99% [39]. This indicates that ver-
tical evolution drove the diversification of these clusters of
phages. By contrast, mycobacteriophages display a conti-
nuum of nucleotide diversity and phage clusters that
exhibit shared genes between the clusters [40,42]. The
mosaic genomes of mycobacteriophages originated as a
result of HGT and recombination, thus reticulate evolution
might explain the diversification of this group [43]. The
VCONTACT network reconciles both perspectives based on
the statistical significance of phage genomic relationships
within and between VCs. However, despite the robustness
of the clustering methods used by VCONTACT, the MCL
inflation parameters may affect the size of the VCs and the
identity of the included PCs. In the Rhizobium phage network,
recombination appears to have only slightly distorted the
VCs, except for in the abovementioned VCs. Therefore, the
VCs represent genomic units of structure and evolution,
which is relevant to understand the phage speciation process.

The spatial structure of Rhizobium-phage interactions indi-
cate that they are locally adapted to their host bacteria.
Sympatric isolation provides evolutionary opportunities
for genetic disequilibrium between phage populations, as
shown by the local adaptation at small and large geogra-
phical scales [22]. Phage host ranges vary from highly
specialized to generalized. For instance, some Rhizobium
phages infected only 2.2% of tested Rhizobium hosts (which
were strains of the closely related species R. etli and R. pha-
seoli), while others infected up to 92.6% [22]. The host range
of a phage is in part predictable based on host phylogeny,
with closely related Rhizobium species being more likely to
share phages than more distantly related Rhizobium species.
However, we lack data on the extent to which individual
phages in a VC share hosts. VCs can involve members with
distinct host ranges. Members of VCs may be in the process
of diverging from each other through specialization related
to specific species and genera (e.g. VC_F62). Some of the
VCs described here were found worldwide and in different
species of Rhizobium and Sinorhizobium. It is likely that cos-
mopolitan phages will be recurrently found in diverse
settings associated with symbiotic nitrogen-fixing bacteria.
To improve our understanding, we need to sample
phages from a broader range of hosts and conduct more
comprehensive host range assessments.

Only a small proportion of the Rhizobium prophages were
complete or almost complete, while the rest had preserved
few of the essential genes required to enter a lytic cycle; the
latter are known as prophage remnants, or ‘grounded’
phages, as described recently [12]. The scarcity of complete
prophages in bacterial genomes may be explained by the
cost involved in maintaining a harmful element, which at
any moment can become activated and annihilate the cell.
Thus, prophages become grounded by the selection of
mutations that disrupt their lytic cycle. The lysogen has the
advantage of being immune to reinfection and of harbouring
ecologically relevant genes (e.g. antibiotic resistance genes,
toxin genes and AMGs) [12,27,44]. The prophages may also
serve as targets related to rearrangements and recombination
with foreign mobile elements, providing variability for the
bacterial population. The benefits to Rhizobium of harbouring
prophages is not obvious from the predicted AMGs
associated with them [27].

In this work, Rhizobium predicted prophages were less
conserved than isolated phages experimentally isolated, jud-
ging by the synteny results and the gain and loss of genes.
However, it is possible that the phage isolation process may
create bias towards lower diversity, and under-represent
the hidden virus diversity. Relatedly, prophage genes are
under natural selection like any other housekeeping gene,
and gene deletion allows prophages to remain in the bacterial
genome [45]. Our analysis of the ratios of non-synonymous to
synonymous substitutions (Ka/Ks) in three VCs comprising
Rhizobium prophages suggested that the remnant phage
genes are under selection like bacterial housekeeping genes
(electronic supplementary material, figure S5). This is in
agreement with previous results [11,45].

Rhizobium phages are only distantly related to other
known groups of phages registered in the RefSeq viral
database and the ICTV taxonomy. This is expected, owing
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to the poor representation in databases of the phages of
α-proteobacteria and Rhizobiaceae. Although there are only
three Rhizobium phage genera in the ICTV classification, our
results indicate that 15 VCs (with high PC sharing probabilities;
edge scores: 60–300) may represent new genera.

Although the ICTV has included genomic standards in its
criteria [46], the wide diversity of phages and their low rep-
resentation for some bacterial species prevent a consistent
taxonomy. Additional efforts to obtain massive phage geno-
mic information from the rhizosphere of various legumes
may open a new insight into the diversity of Rhizobium-
phage communities. We hope that modern approaches may
recover the long history of Rhizobium phages given their
importance for symbiotic association with legumes in sustainable
agriculture [47].
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