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Abstract

Radiation therapy treatments are typically planned based on a single image set, assuming that 

the patient’s anatomy and its position relative to the delivery system remains constant during the 

course of treatment. Similarly, the prescription dose assumes constant biological dose-response 

over the treatment course. However, variations can and do occur on multiple time scales. For 

treatment sites with significant intra-fractional motion, geometric changes happen over seconds or 

minutes, while biological considerations change over days or weeks. At an intermediate timescale, 

geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied 

to consider changes in patient anatomy during the course of fractionated treatment delivery. 

While traditionally adaptation has been done off-line with replanning based on new CT images, 

online treatment adaptation based on on-board imaging has gained momentum in recent years 

due to advanced imaging techniques combined with treatment delivery systems. Adaptation is 

particularly important in proton therapy where small changes in patient anatomy can lead to 

significant dose perturbations due to the dose conformality and finite range of proton beams. This 

review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies 

areas requiring further research.

1. Introduction

There are various sources of geometrical changes in the patient that may occur in between 

fractions. Most random uncertainties, with the exception of significant tumor volume 

changes, are approached by applying appropriate margins around the target volume. There 

are changes, however, that are not considered in the planning target volume either by design, 

because they are not easy to predict, such as unforeseeable changes in the patient’s anatomy, 

i.e., anatomical changes. Some of these are treatment-related such as tumor shrinkage or 

change in patient’s weight or shape. Others might be unrelated to radiation therapy such as 

mucosal filling of the sinuses. In general, geometry changes might dosimetrically impact 

organs at risk more than the target as they might have been anticipated when designing the 

planning target volume (Duma et al., 2012).

Corresponding author: hpaganetti@mgh.harvard.edu.
*Both authors contributed equally

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2022 November 15.

Published in final edited form as:
Phys Med Biol. ; 66(22): . doi:10.1088/1361-6560/ac344f.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The goal of adaptive radiation therapy is to ensure the delivery of the prescribed dose 

while maintaining healthy tissue constraints even if the patient geometry changes during 

the course of a fractionated treatment. Thus, the treatment plan and consequently the 

delivery parameters are tailored to the “geometry of the day” (Wu et al., 2009; Yan et 

al., 1997). As stated in the seminal paper by Yan et al., “Adaptive radiation therapy is a 

closed-loop radiation treatment process where the treatment plan can be modified using 

a systematic feedback of measurements. Adaptive radiation therapy intends to improve 

radiation treatment by systematically monitoring treatment variations and incorporating 

them to re-optimize the treatment plan early on during the course of treatment” (Yan et 

al., 1997). Consequently, adaptive therapy strategies do allow a reduction of margins (van 

Kranen et al., 2016). Furthermore, while classical plan adaptation uses the initial treatment 

plan with its description and constraints as reference, adaptation can potentially alter those 

initial plan parameters during the course of fractionated treatment delivery. Heukelom and 

Fuller (Heukelom and Fuller, 2019) define adaptive radiation therapy (ART) paradigms that 

depend on its intent:

• ARTex-aequo: ART to maintain original plan coverage and constraints

• ARTOAR: ART to reduce the dose to organs at risk during the course of 

fractionated treatment

• ARTamplio: ART aiming at tumor dose escalation

• ARTreduco: ART based on a reduction of CTV volume

• ARTtotale: ART aiming at dose escalation plus CTV volume reduction during the 

course of treatment

A major obstacle for the implementation of plan adaptation is the clinical workflow 

and available clinical resources. Adaptation requires imaging, contour definition, plan 

evaluation, plan adaptation and, finally, plan verification. If done on-line, these steps in 

turn rely on fast image reconstruction, a fast and reliable method for contour definition, 

and fast and accurate dose calculation. It is often unclear what the appropriate frequency 

of adaptation should be and whether plan adaptation is even needed for most patients both 

from a pure dosimetric as well as from a tumor control or normal tissue complication point 

of view (Chen et al., 2014). Figure 1 shows the prominent adaptive workflows. Adaptation 

is often done at fixed intervals (e.g., halfway through the fractionated treatment) in cases 

where anatomical changes are expected (e.g., tumor shrinkage). With the advent of in-room 

imaging it is now often triggered by observations on a given treatment day, e.g., reacting 

to an observed feature change in the setup and/or in the patient resulting in a negative 

effect on the plan quality. If resources permit, adaptation can also be done frequently (e.g., 

daily) potentially in combination with a trigger when a certain dosimetric or anatomical 

threshold is reached. In each of these scenarios, the initial treatment plan is typically used as 

a reference. However, in case of iterative adaptation, the reference is the image taken on the 

previous day as well as the plan of the previous day. This iterative approach is most accurate 

also in the context of adapting based on the cumulative dose.

The impact of adaptive therapy depends on the frequency of imaging (e.g., daily versus 

weekly) but also on the treatment schedule because anatomical changes might be more 
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pronounced during early fractions (Bhide et al., 2010; Sanguineti et al., 2013). Furthermore, 

the quality of imaging plays a role. Infrequent adaptation can be accomplished without 

in-room imaging whereas daily adaptation generally does require in-room (on-line) imaging 

with potential compromises on image quality.

In general, compared to standard (un-adapted) radiation therapy, plan adaptation can follow 

many different strategies (Figure 2). In off-line adaptation, images taken during fractionated 

radiation therapy can be used for complete re-planning, a technique particularly common for 

tumors known to regress during treatment. Systematic errors have been addressed off-line 

by using an average anatomy model for off-line correction (van Kranen et al., 2013). 

There are numerous off-line adaptation workflows depending on the imaging being used, 

the re-optimization process, and the adaptive correction based on previous fractions (Yan 

et al., 2000; Lof et al., 1998). Off-line adaptation can also be used in combination with 

in-room imaging. A common approach is to use daily on-board imaging or serial CT to 

analyze geometrical variations and then re-optimize the treatment plan based on new target 

delineations on the registered original planning CT (Birkner et al., 2003; Wu et al., 2002; 

Woodford et al., 2007). In any case, off-line adaptive therapy generally largely follows 

the standard clinical workflow as far as delivery is concerned. Off-line adaptation is by 

definition a correction method for geometrical changes and its dosimetric impact is delayed 

for subsequent fractions. It is thus desirable to do on-line adaptation with images taken 

immediately before treatment to correct before the potentially flawed dose distribution is 

administered (Lim-Reinders et al., 2017).

As with off-line techniques, there are various ways to perform on-line adaptation used in 

combination with in-room imaging (Wu et al., 2011). The simplest form of on-line adaptive 

therapy is the re-positioning of the patient using in room imaging. For instance, a couch 

shift might correct for setup errors or anatomical changes. Adaptive radiation therapy is 

thus closely related to image guided therapy and treatment verification (Wu et al., 2009; 

Xing et al., 2007; Lim-Reinders et al., 2017). Image guided radiation therapy not only 

allows for more accurate patient setup and positioning, it also opens the door for daily 

treatment adaptation as no separate CT scan might be needed and imaging can be done in 

the same position as treatment (Dawson and Sharpe, 2006). Methods have been developed 

to do on-line adaptation using multi-leaf collimator position adjustments based on daily CT 

imaging assuming that there is no change within one CT slice (Court et al., 2005; Fu et al., 

2009). Online positioning after offline re-optimization was proposed by Lei et al (Lei and 

Wu, 2010) while subsequently others have discussed the feasibility of doing both on-line (Li 

et al., 2011; Li et al., 2010; Mohan et al., 2005; Feng et al., 2006; Wu et al., 2008).

The ultimate goal is to adjust or even re-optimize the treatment plan based on daily imaging 

(Botas et al., 2018). Rapid on-line adaptation in a clinical workflow has to be completed 

within minutes, thus posing computational challenges to image registration, optimization 

and dose calculation alike (Men et al., 2010; Xing et al., 2007). Tumor shrinkage is 

a significant obstacle for on-line adaptation due to contour changes and deformations 

of healthy tissue caused by tumor volume changes that may require human intervention 

(Hamming-Vrieze et al., 2017). Furthermore, on-line adaptation is challenging because of 

limitations in imaging and computational efficiency. Wu et al. described a workflow capable 
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of on-board daily imaging and re-optimization within 2 minutes (Wu et al., 2008). Due to 

the impact on computational and treatment planning efficiency, automated planning using 

machine learning has drawn attention particularly in adaptive radiation therapy (Moore, 

2019). There are methods to reduce the required optimization steps as the plan-of-the-day is 

presumably based on a geometry very similar to the one used for the initial plan. Some of 

these methods re-optimize solely based on virtual couch shifts method (Bol et al., 2013) or 

limited aperture segmentation (Li et al., 2013).

In principle the delivery system can also react to changes during delivery, e.g., to account 

for respiratory motion. Potential variations in patient’s breathing pattern add an additional 

complexity that can be addressed by in-line (real-time) treatment adaptation based on on

board imaging (Keall et al., 2019). This review is limited to adaptation due to changes in 

between fractions and does not address changes that occur within a treatment session.

Because plan adaptation, both on-line as well as off-line, does alter clinical workflow, 

criteria for plan adaptation need to be defined. There needs to be a compromise between 

expected impact on treatment outcome and extra efforts for planning and delivery. The 

criteria will likely be different between off-line and on-line adaptation due to the different 

time frames. Thresholds for any type of plan adaptation are typically based on dosimetric 

criteria equivalent to prescription and constraints used in the initial planning (Heukelom et 

al., 2013; Dial et al., 2016; Lim et al., 2014; Green et al., 2019).

Anatomical changes in tumor and non-tumor anatomy clearly suggest a benefit of dosimetric 

treatment adaptation (Ahunbay et al., 2008; Mohan et al., 2005; Fu et al., 2009; Burridge 

et al., 2006; Barker et al., 2004; Hansen et al., 2006). Frequent adaptation using various 

imaging devices has been studied specifically in photon therapy for head and neck cancers 

(Hansen et al., 2006; Barker et al., 2004; Wu et al., 2009; O’Daniel et al., 2007; Schwartz 

et al., 2012; Wu et al., 2002; Castadot et al., 2010; Chen et al., 2014; Heukelom and 

Fuller, 2019). Furthermore, virtual clinical trials have been conducted to assess the benefit 

of adaptive therapy in photon treatments (Schwartz et al., 2012; Schwartz et al., 2013). The 

impact of PTV margin reduction on tumor coverage for oropharynx tumors in an adaptive 

setting with VMAT revealed problems with target coverage as well as a significant reduction 

in lymph node and parotid volumes due to volume reduction and patient weight (van Kranen 

et al., 2016). On-line adaptive therapy for nasopharynx patients has been suggested to 

improve outcome in photon therapy and reduce toxicities (Han et al., 2008; Wang et al., 

2009).

The requirement for adaptation due to internal geometry change depends highly on the 

treatment site (Sonke et al., 2019; Lim-Reinders et al., 2017) and has been studied for 

many sites such as for head and neck cancers (Heukelom et al., 2013; Schwartz et al., 

2013; Schwartz et al., 2012) and prostate carcinoma (Posiewnik and Piotrowski, 2019; 

Deutschmann et al., 2012), in addition to adaptation including respiratory motion in lung 

(Sonke and Belderbos, 2010; Kavanaugh et al., 2019). Brouwer et al. (Brouwer et al., 2015) 

as well as Castelli et al. (Castelli et al., 2018) have reviewed numerous published studies 

on anatomic changes during radiation therapy for head and neck cancer. An estimated 

20% of head and neck cancer cases treated with IMRT require re-planning in the first 
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3 weeks of fractionated radiation therapy (Brouwer et al., 2015). The dosimetric impact 

of geometry changes can be substantial. For instance, Cheng et al. found an increase in 

mean dose to the parotid glands of 10.4 Gy during intensity-modulated photon radiotherapy 

for nasopharyngeal carcinoma patients (Cheng et al., 2012). Consequently, a significant 

improvement of patient’s quality of life was found with re-planning during fractionated 

therapy of these patients (Zhao et al., 2011; Yang et al., 2013).

Adaptive strategies ideally also include dose verification or daily dose reconstruction based 

on delivery information such as delivery log files and/or on-line imaging (Lee et al., 2008a; 

Lee et al., 2008b; van Elmpt et al., 2006). Consequently, it is feasible to perform dosimetric 

corrections in subsequent fractions based on the previously delivered dose (Yan et al., 1999; 

Wu et al., 2006; Jaffray et al., 2010; de la Zerda et al., 2007; Xing et al., 2007). Furthermore, 

plan adaptation typically aims at preserving the goals of the initial treatment plan. However, 

adaptation can be used in the context of adapted dose escalation and local boosts (Ciarmatori 

et al., 2019; Hafeez et al., 2016; Weiss et al., 2013).

While much can be learned from online adaptation in photon therapy, the dosimetric 

characteristics of proton therapy plans might require different adaptive strategies.

2. The rationale for plan adaptation in proton therapy

2.1 Proton therapy

As a result of electromagnetic interactions, nuclear interactions, and Coulomb scattering, 

the kinetic energy of a proton deposited in a medium can be described by the Bethe Bloch 

formula and the shape of the energy deposition curve is commonly termed the Bragg 

curve with the Bragg peak near the end of range (Paganetti, 2019). The initial energy of 

the protons (E0) determines the range (R0) of the proton beam and can be fit with an 

exponential, assuming a water medium, Ro = 0.0022 E0
1.77 (Bortfeld, 1997). Due to the 

peaked energy deposition, proton therapy can delivery therapeutic doses to cancer tissues 

with less dose deposited into surrounding healthy tissues, particularly in the distal region. 

Photon therapy, with recent technological developments, can deliver conformal therapeutic 

doses through intensity modulated deliveries from multiple entrance paths but the volume 

of tissues receiving low doses (integral dose) in surrounding tissue is always greater than in 

proton therapy (Barten et al., 2015; Lomax et al., 1999; van de Water et al., 2011; Zhang et 

al., 2010).

While proton therapy was formerly limited to passively scattered beam delivery using 

absorbers to shape the dose distribution, most modern proton therapy centers use scanned 

beam delivery systems. A scanning system uses magnets to scan the proton beam laterally to 

cover the intended treatment volume while energy modulation covers the target depth. Beam 

scanning allows the delivery of intensity-modulated proton therapy (IMPT), where beamlet 

position, energy and fluence are considered and optimized independently. This can be used 

to create multi-field dose distributions, summed to create a prescribed dose distribution, of 

higher complexity than plans where each field has uniform dose. The increased flexibility 

of scanned beam systems allow for rapid changes in the treatment delivery to accommodate 

online adaptive therapy workflows.
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2.2 Range Uncertainties

While the physical dose deposition is predominantly localized in the Bragg Peak, the 

precision of the peak dose position is subject to uncertainties (Lomax, 2008a, b; Knopf and 

Lomax, 2013). The physical range uncertainties can be divided into CT imaging (relative 

stopping power calibration), dose calculation (nuclear interactions and Coulomb scattering), 

treatment delivery (proton energy variations), and patient anatomy (rigid or deformable 

patient changes) (Paganetti, 2012). Systematic range uncertainties from CT imaging can be 

reduced by the use of stoichiometric calibrations (Meijers et al., 2020; Yang et al., 2012) and 

dual energy CT imaging (Lee et al., 2019). Furthermore, research is ongoing towards the use 

of proton CT (Dedes et al., 2019; Rit et al., 2013; Deffet et al., 2020; Dickmann et al., 2021), 

which would be attractive particularly in an adaptive setting as it allows direct assessment 

of relative stopping power. In addition to imaging, random variations in patient anatomy or 

setup position can result in changes in proton range (Kim et al., 2017; Liebl et al., 2014; 

Trofimov et al., 2011; Stutzer et al., 2017).

The effects of the range uncertainties due to patient anatomy and setup changes can vary 

for treatment sites and treatment delivery techniques. While proton therapy can potentially 

be a more precise dose delivery technique, the daily variations of the patient setup or 

anatomy can impact the range and decrease the dose to the target or increase the dose to the 

surrounding organs (Ashida et al., 2020; Hamming-Vrieze et al., 2019; Liebl et al., 2014; 

Lomax, 2008b; Perumal et al., 2018; van de Water et al., 2011). Setup uncertainties and 

immobilization for various patient populations have been detailed in several publications 

(Engelsman et al., 2005; Winey et al., 2012). For different sites, the setup uncertainties can 

vary from less than 1mm (cranial) to several mm even without accounting for breathing or 

other anatomic motions. More recent studies have analyzed the effects of setup uncertainties 

on range uncertainties, combined with patient changes in head and neck patient populations 

since this treatment site is subject to both setup and anatomic variations during the course 

of treatment (Kim et al., 2017; Liebl et al., 2014; Malyapa et al., 2016). Kim et. al. 
demonstrated that patient weight loss and setup uncertainties in head and neck patient 

populations can have equally large effects on the range uncertainties.

Other studies have looked at prostate (Moteabbed et al., 2017; Sejpal et al., 2009; Trofimov 

et al., 2011; Wang et al., 2011). The prostate can move within the patient depending upon 

the bladder filling, rectal motion, and patient setup. Given the motion of the prostate over 

different time periods, the resulting range uncertainties depend upon the surrounding tissues, 

particularly the femoral heads when using lateral treatment beams. Range uncertainties 

in proton therapy for lung treatments have been reviewed in prior studies (Engelsman et 

al., 2006; Park et al., 2013; Szeto et al., 2016). Motion of the target tissues can vary 

depending upon the location and size of the target. The magnitude of the motion and the 

treatment beam angles impact the magnitude of range uncertainties. Since the target tissues 

are generally denser than the surrounding lung tissues, the physical range uncertainties can 

be dramatically larger than other cases of targets surrounded by more water equivalent 

tissues.
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2.3 Margins

Given the dose uncertainties of the proton dose delivery, margins have been implemented 

to decrease the risk of missing the treatment volume due to set up and range uncertainties 

(Knopf et al., 2013; Taasti et al., 2019; Thomas, 2006). The margins rely upon the sum 

of the range uncertainties for the specific beam angle and can involve local tissue density 

variations. While margins can be applied uniformly, proton therapy plans typically apply the 

margins in a beam-by-beam design or by conversion of range margins into beam specific 

PTV (Lin et al., 2015; Park et al., 2012; Perumal et al., 2018). Schuemann et al evaluated 

the site specific range uncertainties when considering tissue homogeneity (Schuemann et 

al., 2014). In addition to margin recipes or recommendations, several studies have reviewed 

beam angle optimization as an additional metric to reduce the range uncertainties and the 

margins required for target coverage (Gu et al., 2018; Kim et al., 2020; Taasti et al., 2020).

As daily or repeat imaging is increasingly available, the sufficiency of traditional planning 

workflows based upon a single CT with margins applied to the CTV can be evaluated. 

For example, GTVs with larger volumes can have different, regional deformations or daily 

changes due to motion, setup uncertainties, weight loss, or lesion shrinkage. In the example 

of head and neck patients, there are different treatment volumes with different kinds, 

magnitudes, and directions of changes. The neck nodal treatment volume can be affected 

by weight loss and shrinkage, the oral pharyngeal treatment volume by sinus filling, and the 

lower neck nodes by the daily shoulder positions (Kim et. al., 2017), thus a single range 

margin will not capture the local variation of the patient specific uncertainties. Similarly, 

prostate positioning and deformation can vary between the primary gland and the seminal 

vesicles, in additional to potential rotational changes (Wang et al., 2011). Some studies have 

proposed patient specific uncertainty models for photon treatments for “plan of the day” 

applications (Murthy et al., 2011; Reijtenbagh et al., 2020; Sharfo et al., 2016) but have not 

been demonstrated in the case of proton therapy.

2.4 Robust Optimization

While margins have been the simplest response to range, setup, and anatomic uncertainties, 

robust optimization has also been suggested as a possible solution to balance target coverage 

and OAR avoidance in the presence of physical or biological dose uncertainties when using 

intensity modulated proton therapy (Barten et al., 2015; Cubillos-Mesias et al., 2019; Liu 

et al., 2014; Liu et al., 2013; Malyapa et al., 2016; Unkelbach et al., 2009; Unkelbach 

et al., 2007; Perumal et al., 2018; van de Water et al., 2018; Yock et al., 2019). Robust 

planning considers uncertainty models during plan optimization such that the resulting plan 

performs well under most scenarios within the uncertainty boundaries of the considered 

effects (Unkelbach and Paganetti, 2018; Unkelbach et al., 2018). Uncertainties considered 

in robust optimization include dose calculation, imaging, biological effect (Unkelbach and 

Paganetti, 2018; An et al., 2017), patient setup (Tang et al., 2017), tumor intra-fractional 

movement (Engwall et al., 2018; Buti et al., 2019; Cummings et al., 2018), and beam angle 

selection (Gu et al., 2019).

In general, robust plans result in less sharp dose gradients and regions of high dose around 

the target to increase the probability of achieving the prescribed doses to the target or OARs 
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(Jagt et al., 2020; van de Water et al., 2016). The primary advantage of robust planning 

is the determination of the optimal tradeoff of target dose coverage and OAR sparing 

when accounting for physical and biological dose uncertainties. The assumption of robust 

optimization is twofold: the model of uncertainties accounts for future combinations of 

uncertainties and the reference imaging set is sufficiently representative of the uncertainty 

distributions. Prior studies have analyzed the sufficiency of robust plans for treatment 

delivery (Kirk et al., 2015; Wang et al., 2011; Yang et al., 2019).

More recently, Cubillos-Mesias et al (Cubillos-Mesias et al., 2019) and van de Water et 

al (van de Water et al., 2018) proposed geometrical and anatomical robust optimizations 

to account for setup variations with repeat CT and sinus filling with synthetic CTs, 

respectively. In both cases, the additional CT information increased the variables in the 

optimization space and the additional CT anatomical information increased the optimizer 

robustness to patient specific anatomical variations compared to a simple margin based 

robust optimization.

Anatomical variations during the course of a treatment are sometimes difficult to consider in 

robust planning due to the complexity of potential scenarios, i.e. gas bubbles in the GI tract, 

bladder filling, weight loss, or uterus position. Even when applied retrospectively through 

multiple-CT optimization, the robust plan may not be able to account for the anatomical 

changes completely (Cubillos-Mesias el al., 2019; Lalonde et al., 2021; Yang et al., 2020). 

Failure to maintain plan robustness may lead to fractions that require adaptation (Li et al., 

2015; van de Water et al., 2018). The need for adaptation, however, can be reduced by 

including more scenarios in the uncertainty distributions used for robust planning, although 

there is a potential increase in OAR doses with wider uncertainty distributions or inclusion 

of anatomic variation scenarios to increase tumor control probability (TCP) using softer dose 

gradients around the target. This trade-off between OAR dose and TCP is known as the 

“price of robustness” (van de Water et al., 2016). Creating plan libraries with individual 

plans for each uncertainty scenario instead of a single robust plan for all scenarios may 

provide a solution to this trade-off by removing the need of softer dose gradients (Jagt et al., 

2019).

Given the patient specific range, setup, and anatomic uncertainties observed in prior studies, 

robust optimization might be insufficient or require large uncertainty models that increase 

the dose to OARs. In these cases, a more optimal course of action would be daily or weekly 

adaptive proton therapy.

2.5 Adaptation

Since both margins and robust optimization increase the dose to surrounding organs to 

achieve a high confidence of tumor control probability (TCP) for a given patient anatomy, 

there is a clinical need for daily dose analysis and access to daily optimized plans 

particularly when the dose delivery exceeds normal tissue complication probability (NTCP) 

limits. Additionally, the use of daily adaptive plans could reduce the margins or uncertainty 

width for robust optimization to the intra-fractional variation of patient anatomy. It has been 

shown that using a simple daily spot intensity re-optimization can achieve superior target 

coverage and lower dose to OARs than robust optimization methods (Lalonde et al., 2021).
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With current technology, inter-fractional variations are the most straightforward variations to 

address with adaptive proton therapy workflows. Weight loss is one factor that contributes to 

slowly changing, inter-fractional range variations, both by a potential decrease in the tissue 

in the entrance region of the proton treatment beam and additional challenges in patient 

setup positioning when the immobilization devices are not as conformal to the patient. 

Tumor shrinkage during the course of treatment can cause additional inter-fractional range 

variations, particularly in the lung but also in other sites such as head and neck. The benefit 

of daily adaptive proton therapy increases when the impact on NTCP is more pronounced 

where the critical OARs are nearby the tumor.

Margin reductions and planning adaptation have been shown to be most impactful for proton 

therapy of sites that are subject to inter-fractional variations such as prostate (Kupelian 

and Meyer, 2011; Trofimov et al., 2011; Wang et al., 2011), head and neck (Kim et al., 

2017; Placidi et al., 2017; Hague et al., 2020; Wu et al., 2017), and NSCLC (den Otter et 

al., 2020). Simone et al demonstrated that adaptive IMPT can dramatically spare OARs in 

squamous cell carcinoma head and neck patients compared to IMRT and adaptive IMRT 

(Simone et al., 2011). Combining setup uncertainties and anatomic variations with the 

complexities of proton therapy for lung cancer, Hoffmann et al found that proton therapy for 

NSCLC requires adaptive techniques to restore the dose to the target while photon therapy is 

more robust to the setup and anatomic variations (Hoffmann et al., 2017).

More recent MR-Linac studies, however, have demonstrated significant inter-fractional 

and intra-fractional target position variations of the pancreas, prostate, and esophagus 

(Lagerwaard et al., 2018; Padgett et al., 2020; Boekhoff et al., 2020), with more treatment 

sites being explored. Currently, proton therapy is limited to targets that are visualized with 

in-room CT, CBCT, surrogate fiducials, or surrogate bony landmarks. To achieve adaptive 

proton therapy for additional treatment sites, the current imaging options must be validated, 

or additional imaging will be needed to supplement.

Aside from cases with large inter-fractional variations, daily adaptive proton therapy may 

have reduced benefits for sites with little changes over the course of treatment and have 

precise, rigid immobilization such as brain targets. Additionally, sites that are subject to 

large motion during the beam delivery (lung, liver, pancreas) may have less benefit from 

adaptive proton workflows unless motion management or online imaging tools are also 

employed (Veiga et al., 2016).

Finally, in addition to the benefits of more conformal dose distributions or reduced margins, 

daily adaptive proton therapy would provide the clinician with greater degrees of freedom 

for dose prescriptions. The traditional static course dose prescription for the target or OAR 

limits will be more flexible with daily adaptation and re-optimization. Figure 1 shows 

the variety of adaptation possibilities but, in general, the clinician will be presented with 

opportunities to alter the daily tumor or OAR doses. For example, the tumor/OAR geometry 

may have limited the tumor prescription due to increased OAR NTCP, but a daily image may 

provide a more favorable tumor/OAR geometry allowing for increased dose to the tumor. 

Similar dose variations could be possible for OARs. If plans are optimized on a daily image, 
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the clinician may consider daily dose constraints instead of constraints based upon the entire 

course.

3. Imaging

On-line plan adaptation requires a current image of the patient geometry suitable for 

treatment planning. This section introduces recent progress in using in-room imaging and 

other measurements to enable adaptive proton therapy using CT, CBCT, MRI, and in-vivo 

range verification. Each of these approaches offer distinct advantages and challenges.

3.1 Computed Tomography (CT)

In-room imaging can be used to perform plan adaptation using either a plan-of-the-day 

approach, or by replanning (Zou et al., 2018). In current practice, proton and ion therapy 

centers with volumetric imaging systems have either CT or CBCT. Because of their size 

and space requirements at the treatment nozzle, CT systems usually do not offer isocentric 

imaging. One of the first systems was developed at PSI that uses a patient docking table that 

can be moved between the CT and treatment couch using a trolley (Pedroni et al., 1995). 

Another early system developed at NIRS used a horizontal CT that is lowered around a 

seated patient (Kamada et al., 1999). This device could be used in treatment position, albeit 

having a larger air gap. In current practice, CT are generally placed within the treatment 

room, and the patient is imaged on the treatment bed using CT-on-rails with a robotic 

patient positioner (Landry and Hua, 2018). In-room CT has many practical advantages over 

CBCT for adaptive therapy: better HU accuracy, better image contrast, and 4D scanning 

capabilities. The disadvantages of in-room CT are that it requires a larger treatment room 

and the patient must be moved between imaging and treatment positions. The gap between 

imaging and beam on time increases the risk of the patient moving prior to treatment (Ma 

and Paskalev, 2006) although the CT imaging could be supplemented with x-ray radiography 

or surface imaging at the isocenter.

3.2 Cone-beam CT (CBCT)

CBCT systems for proton therapy can be gantry mounted, nozzle mounted, room mounted, 

or couch mounted (Landry and Hua, 2018). Imaging at treatment position is easiest to 

accomplish for the gantry and nozzle mounted options. The main characteristics which 

affect their utility for plan adaptation are the field of view and HU number accuracy. 

Because of the popularity of CBCT imaging, considerable effort has been made to allow 

its use for dose calculation. For photon adaptive therapy, CBCT-based dose calculation 

is generally considered to be of acceptable accuracy (Jarema and Aland, 2019), and is 

commercially available. However, dose calculation on CBCT in proton therapy is still 

considered a research topic, and the best method for correcting HU in CBCT is under 

debate. Broadly speaking, there are two classes of algorithms: projection-space methods and 

image-space methods. Projection-space methods attempt to remove scatter from the x-ray 

projection images prior to volumetric reconstruction, and image-space methods attempt to 

improve the HU number of voxels after reconstruction.
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Projection-space methods model a projection image as a combination of primary image and 

scatter image components, and attempt to estimate either the scatter component or primary 

component (Ruhrnschopf and Klingenbeck, 2011). It is known that the uniform scatter 

estimate (Boellaard et al., 1997) is not accurate enough for patient proton dose calculations, 

and more advanced methods are needed (Park et al., 2015). A conceptually simple method 

for estimating scatter is to measure it using a beam block between the x-ray tube and 

the patient. The areas of the image where the beam is blocked contain no primary signal, 

and therefore contains only scatter. Using a similar principle, you can modulate the beam 

intensity without completely blocking the beam. Various forms of static (Shi et al., 2017; 

Zhu et al., 2006; Liu et al., 2006) and moving (Wang et al., 2010) beam blockers have 

been proposed. We are not aware of any study that evaluates this technique for proton dose 

calculation, but RMS accuracy of +/− 15 HU has been reported (Chen et al., 2017).

Alternatively, the scatter or primary component can be estimated algorithmically from an 

unblocked image. Niu et al. introduced a method that uses a previously acquired CT 

image of the patient (Niu et al., 2010). The prior CT is deformably registered with the 

reconstructed CBCT, and then estimates of the primary image for each projection are 

created. The primary estimates are subtracted from the projection image, with a low pass 

filter used to remove effects of misregistration or anatomical change. This results in a scatter 

estimate that can be subtracted from the projection. This method was found to reduce range 

errors in proton planning to between 1.8 and 3.6 % (Park et al., 2015). The reconstructed 

CBCT can be used instead of a registered CT to estimate primary attenuation using ray 

tracing (Zhao et al., 2016). However, this approach requires an image-based correction for 

incorrect HU prior to ray tracing. This approach has been independently validated and was 

found to result in range errors of less than 5 mm in a phantom (Andersen et al., 2020).

The third major category of projection-based correction methods are model-based, which 

includes physics-based or deep-learning collections. The most accurate physics-based 

corrections use Monte Carlo to estimate and remove scatter (Jarry et al., 2006; Mainegra

Hing and Kawrakow, 2010). The CBCT image is reconstructed and then Monte Carlo 

simulation is used to correct the projections. This process can be performed iteratively if 

reconstruction speed is not an issue. Alternatively, analytic approximations can be used 

to estimate scatter using 2D or 3D scatter kernels. In 3D, a single-scatter model can be 

used in conjunction with ray tracing and pre-calculated kernels (Rinkel et al., 2007; Yao 

and Leszczynski, 2009). The 2D methods avoid the computational expense of ray tracing, 

a spatially varying scatter kernel is inferred from the projection image intensities (Sun 

and Star-Lack, 2010). More recently, deep learning scatter correction has become popular 

(Landry et al., 2019; Maier et al., 2019) (Figure 3). A network is trained to map CT volumes 

into the scatter component of a projection image using Monte Carlo to create training 

data. Treatment plans calculated with this method have been shown to achieve an average 

2%/2mm gamma pass rate of over 98% when compared with scatter free ground truth 

(Lalonde et al., 2020).

In contrast to projection-space methods, image-space methods attempt to correct HU from 

a reconstructed image. One popular approach is to use deformable image registration (DIR) 

to map a previously acquired diagnostic quality CT of the patient onto the daily CBCT 
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and use the warped CT directly (often called either virtual CT, vCT, or synthetic CT, 

sCT) (Veiga et al., 2015; Veiga et al., 2014; Landry et al., 2015; Moteabbed et al., 2015). 

This method was shown to be slightly inferior to the prior CT scatter correction method, 

possibly due to registration accuracy or anatomical change unrelated to tissue deformation 

(Kurz et al., 2019; Kurz et al., 2016a). Another approach is to use tissue segmentation to 

classify voxels to locate fat and muscle. By assigning these regions and expected HU for 

the tissue type, the low frequency scatter-induced intensity variations can be removed (Shi 

et al., 2019). Machine learning is also proposed for performing image-space corrections. 

In a traditional architecture, paired CT and CBCT images are needed. This can be done 

using image registration to create a deformed CT, or by training the network using images 

corrected with another method (Landry et al., 2019; Kida et al., 2018). An alternative is 

to use a Cycle-GAN architecture, which eliminates the need for registration (Harms et al., 

2020; Liang et al., 2019).

3.3 Magnetic resonance imaging (MRI)

In photon therapy, MRI has become a popular imaging modality for on-line adaptation. The 

integration of MRI with proton therapy has many challenges: perturbation of dose due to 

the magnetic field of the MR scanner, effects of beamline and scanning system magnets 

on image quality, dose calculation on MRI, and system integration. The dose effects due 

to the magnetic field are considerable but can be well-modeled by Monte Carlo. Lateral 

deflection of a pencil beam increases with both beam energy and field strength, with a 

deflection of 1.2 mm for a 90 MeV beam in a 0.5 T magnet, and 28.0 mm for a 200 MeV 

beam in a 1.5 T magnet (Moteabbed et al., 2014). An accurate model of this effect requires 

knowledge of the magnetic field in both the imaging field and the fringe field (Oborn, 

2019). The effect on secondary electrons is low, due to their low energy (Raaymakers et 

al., 2008). Dose calculation on MR is much more challenging for proton beams than it 

is for photon beams due to uncertainties in the synthetic CT construction. Nevertheless, 

there is some indication that dose differences can be as low as a few percent for some 

treatment sites (Rank et al., 2013; Koivula et al., 2016). Equipment design remains a highly 

challenging problem (Hoffmann et al., 2020). Neither closed bore magnets nor robotic 

patient positioners are possible, and extensive magnetic shielding of the gantry and scanning 

system is likely needed. A preliminary investigation of an MRI-guided proton beamline 

has been demonstrated recently at OncoRay (Schellhammer et al., 2018). One can expect 

that developments towards proton-MR machines will accelerate in the near future with 

significant impact for proton adaptive therapy (Paganetti et al., 2020).

3.4 In vivo range imaging

In addition to anatomic imaging for dose calculation, range verification is an essential 

component in producing a high-quality adaptive plan. There is a broad category of methods 

both proposed and in use (Knopf and Lomax, 2013; Parodi, 2020; Parodi and Polf, 2018), 

with considerable interest in proton radiography and tomography, positron imaging, and 

prompt-gamma imaging. Proton radiography is a transmission imaging technique that 

uses a high energy proton beam to measure the energy loss when protons traverse an 

object (Poludniowski et al., 2015). It can be used for either 2D imaging technique, or for 

tomographic reconstruction. Proton beam imaging was first proposed by Cormack in 1963 
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(Cormack, 1963), and was first used to image an animal patient in 2004 (Schneider et al., 

2004). To date, there have not yet been human studies, and there remain challenges. Most 

proton radiography designs use a very low dose rate which allows individual protons to be 

tracked. At patient exit, the position and residual energy of the proton can be measured 

using a variety of detectors, such as scintillators, GEM chambers, or solid state devices 

(Parodi and Polf, 2018). The energy is usually measured by a range telescope, which is a 

stack of detectors sandwiched between energy degraders. The path of each proton can be 

more accurately tracked by adding an additional detector between the beam and the patient. 

An alternative approach uses an energy modulated broad beam (Testa et al., 2013). This 

approach has the advantage that a range telescope is not required, but it requires higher 

patient dose. Multiple coulomb scattering within the patient causes the protons to diverge 

from a straight path, which causes loss of spatial resolution. This effect can be mitigated to 

some degree using deconvolution or most-likely path approaches (Rit et al., 2013; Deffet et 

al., 2020).

Positron imaging measures radioactive positron decay from short-lived radioactive isotopes 

produced in the body during therapy (Figure 4). The first use of positron imaging in humans 

was performed in 1997, where GSI used in-line PET to monitor patients during hadron 

therapy (Enghardt et al., 2004). The isotopes of greatest interest to proton therapy are 

O-15 and C-11, having half-lives of 2 mins and 20 mins respectively. These isotopes decay 

by positron emission, resulting in a pair of 511 keV annihilation photons. The relatively 

long half-lives of these isotopes allows PET imaging to be deployed for either on-line or 

off-line operation. On-line operation is preferred due to better registration with pre-treatment 

imaging and rapid capture of short-lived isotopes but is technically challenging due to 

space constraints (Shakirin et al., 2011; Min et al., 2013). There are several challenges in 

using PET for treatment adaptation. First, the image signal does not correlate directly with 

dose because the isotopes are created from nuclear interactions which have a different cross

section than the electromagnetic interactions that produce a large fraction of dose. Thus, it 

is more useful as a tool for treatment verification than dose reconstruction. Further, PET 

resolution is generally limited to 3-4 mm due to positron travel, photon non-collinearity, 

depth of interaction within the crystal, and other effects (Moses, 2011). Another challenge is 

biological washout, whereby isotopes travel within blood vessels before they decay (Grogg 

et al., 2015). Nevertheless, PET remains a feasible approach for detecting large deviations 

from planned treatment.

Prompt gamma rays are emitted from nuclei excited during inelastic scattering events. The 

emission is immediate, within a few nanoseconds, and like PET is correlated with both 

dose and range. Several high energy photons are released for each event, with energies 

that depend on the nuclear species. Because it offers no coincidence photons as in PET, 

prompt gamma measurement cannot localize the exact location of an event but it does 

provide useful information on the proton range. The first patient measurements of prompt 

gamma emission were performed in 2015 at OncoRay in Dresden using a slit camera 

(Richter et al., 2016). The slit camera design places a pixelated scintillator at 90 degrees 

from the beam, collimated with a 1D slit collimator. The resulting measurement allows 

assessment of the beam range from a histogram of counts along a 1D line profile (Perali et 

al., 2014). Alternative strategies include time-energy resolved prompt gamma spectroscopy, 
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prompt gamma timing measurements, and Compton cameras (Hueso-Gonzalez et al., 2015; 

Hueso-Gonzalez et al., 2018; Xie et al., 2017). In most cases, the expected emission pattern 

is computed using Monte Carlo, and compared with measurement. Although 3D information 

is not usually possible using prompt gamma, sub-millimeter spatial accuracy of depth 

information is feasible.

4. On-line adaptation strategies in proton therapy

4.1 Imaging, contour definition and registration approaches

Imaging is required in order to evaluate the original plan on the new setup and anatomy. 

The selection of the imaging technique has implications on the uncertainties involving 

the adaptation and on the workflow. Currently, CT or CBCT have been used in proton 

therapy related publications on adaptive therapy workflow, although it is safe to assume 

that MRI imaging could be leveraged to provide higher contrast for soft tissues. Procedures 

to translate MRI images to substitute CTs that allow for photon dose calculation have 

been developed (Johnstone et al., 2018; Edmund and Nyholm, 2017). The published proton 

therapy adaptation workflows have mainly focused on the plan adaptation itself, using either 

CT or CBCT as daily imaging, but without tailoring the workflow to any imaging technique. 

This approach of treating the imaging technique as a place holder assumes that imaging is 

sufficiently fast, presents sufficient accuracy for the adaptation and the consequences of any 

bias introduced by the imaging technique is small.

As discussed in the imaging section, registration between planning CT and CBCT poses 

challenges when defining the geometry for dose calculation. A recent review focuses 

entirely on dose calculation methods and their accuracy when using CBCT in adaptive 

therapy using photons or protons (Giacometti et al., 2020). Kurz et al compared dose 

calculation accuracy for different imaging strategies in adaptive proton therapy for head 

and neck and prostate tumor patients (Kurz et al., 2016a). Deformable image registration 

of the planning CT to the daily CBCT image yielded a vCT and dose calculations on vCT 

and scatter corrected CBCT were compared. Both methods resulted in acceptable results 

in terms of dose and proton range for head and neck but uncertainties due to anatomic 

variations of the bladder were observed for prostate treatments which were overcome in the 

scatter corrected CBCT by using the vCT only as prior for scatter correction of the CBCT 

projections. Thummerer et al. compared three methods to create synthetic CTs from CBCTs 

in the context of adaptive proton therapy (Thummerer et al., 2020b). This included a deep 

convolution neural network (DCNN), DIR, and an analytical image-based correction method 

using pixel histogram matching. The DCNN approach resulted in superior image quality. 

Only DCNN and DIR resulted in images capable of accurate proton dose calculation. The 

same authors also assessed the use of MR-based synthetic CT for proton dose calculation 

and reported on similar performance (Thummerer et al., 2020a).

In general, the Hounsfield Unit distribution and calibration will differ between planning CT 

and CBCT. Clinically significant dosimetric discrepancies have been reported leading to the 

introduction of a histogram matching algorithm to normalize the distributions for proton 

dose calculation in head and neck cancer patients (Arai et al., 2017).
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One important aspect connecting imaging and plan adaptation is contour propagation. The 

correct definition of contours is a vital step in the initial treatment planning. It is generally 

challenging to define contours accurately on the reference planning image, mainly due 

to the unknown normal tissue infiltration, and the low contrast at some treatment sites, 

particularly for the target volume. Organs at risk typically provide better tissue contrast (with 

the exception of some treatment sites in the abdomen). Adapting contours is arguably the 

most challenging step in online adaptation workflows because contouring typically requires 

human intervention or approval and the target volumes might not have high contrast. 

Depending on the specific adaptive workflow, automated image registration may be required 

to properly define the contours (Cardenas et al., 2019; Rigaud et al., 2019). Specifically 

for adaptive proton therapy, there have been two approaches using either rigid registration 

between the planning CT and the daily image (Bernatowicz et al., 2018; Jagt et al., 2017) 

or deformable registration (Kurz et al., 2016b; Botas et al., 2018; Bobic et al., 2021; Nenoff 

et al., 2021). Deep learning approaches have been investigated for contour propagation for 

on-line proton therapy in prostate cancer (Elmahdy et al., 2019).

There is a higher complexity in the analysis of the effects of uncertainties and errors in 

contour definition, compared to uncertainties and errors in the imaging technique itself. 

Imaging uncertainties result in deviations that, accumulated over the beamlets path, build 

Gaussian uncertainty profiles (Paganetti, 2012; Knopf and Lomax, 2013; Lomax, 2020). 

This Gaussian distribution is a result of the beamlet paths traversing many CT voxels. By 

contrast, the contours defined in a patient image are a single sample from the uncertainty 

distribution of contouring (Shusharina et al., 2018; Vinod et al., 2016; Riegel et al., 

2016). Because plans are evaluated based on contours, they are consistent with the errors 

committed during contouring. Approaches to solve or alleviate this through probabilistic 

contour definitions have been published (Shusharina et al., 2018; Unkelbach et al., 2020; 

Bortfeld et al., 2021).

4.2 Dose calculation approaches

Dose calculations are required to (1) evaluate the original plan quality, (2) calculate dose 

distributions to optimize the plan to the daily anatomy and setup, and (3) provide quality 

assurance. For on-line adaptation, the time constraint is especially pressing on item 2 due 

to the general need of calculating dose on a per proton beamlet basis in order to optimize 

IMPT plans. Two types of dose calculation algorithms have been applied in studies of daily 

IMPT adaptation, showing a trade-off between time and accuracy. Monte Carlo (MC) dose 

calculations are considered the gold standard in accuracy (Paganetti, 2012; Schuemann et 

al., 2015) but require more computational time, while analytical dose calculation (ADC) 

algorithms can be faster but less accurate.

Because analytical dose calculations algorithms provide high efficiency, they have been 

applied in adaptation pipelines (Kurz et al., 2016b; Jagt et al., 2017; Jagt et al., 2019; Jagt 

et al., 2018; Bernatowicz et al., 2018). Additional efficiency can be gained by implementing 

ADC algorithms on Graphical Processing Units (GPU) architectures. These GPU algorithms 

show high calculational efficiency because they are inherently multi-threaded. Several 

implementations of ADC algorithms have been published (da Silva et al., 2015; Matter 
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et al., 2019), with Matter et al. introducing a fully functional IMPT plan generation package 

capable of generating an IMPT plan in ~10 seconds with the same accuracy as an ADC 

algorithm used for routine IMPT adaptation, which is well suitable for daily online plan 

adaptation.

MC codes have been implemented in GPU architectures and validated in patients (Kohno 

et al., 2011; Yepes et al., 2010; Jia et al., 2012; Qin et al., 2016; Maneval et al., 2019; 

Schiavi et al., 2017; Wan Chan Tseung et al., 2015). The algorithm presented by Qin et 

al. has been tested within an automated online adaptation workflow, potentially performing 

original plan evaluation, IMPT plan adaptation and verification in time scales of 2-5 minutes 

(Botas et al., 2018). In order to further increase the efficiency of the dose calculation, 

methodologies where the emphasis lies on beamlets that carry the highest proton fluence 

have been developed (Li et al., 2017).

Hybrid dose calculation algorithms have been applied in photon-based radiotherapy (Siebers 

et al., 2007; Siebers et al., 2002) and show promise in the adaptation regime also in proton 

therapy (Barragan Montero et al., 2018).

Nenoff et al. (Nenoff et al., 2020) studied the trade-off between the uncertainty in dose 

calculation and patient anatomy in an adaptive proton therapy workflow. For the patients 

and calculation algorithms analyzed, the study found that the advantage of daily adaptation 

outweighs a compromise on dose calculation accuracy when performing lower quality 

but much faster dose calculation using ADC. The study includes 5 non-small-cell lung 

cancer patients with 9 repeat CTs and 5 paranasal patients with 10 simulated CTs with 

sinus fillings. The authors report an average CTV V95 drop of ADC-calculated adaptations 

with respect to MC-calculated adaptations of 2 %, while not adapting implies a drop 

of up to 34 %. This study indicates that ADC and MC calculations could be combined 

in hybrid workflows in scenarios where MC calculations are not feasible due to time 

constraints. Accurate MC-based offline dose calculation of the dose distribution delivered 

with ADC-based adaptation and consider cumulative dose deviations from the nominal 

dose fractionation in the next fractions would minimize the effect of dose calculation 

inaccuracies.

4.3 Dose accumulation

For proper dose accumulation, the total dose delivered to each anatomical position needs 

to be mapped to the same anatomical position in all fractions, which in principle can be 

determined via DIR. However, dose accumulation with DIR poses an intrinsic problem: 

its accuracy can be difficult or even impossible to verify. Tissues within the body change 

through the course of treatment with some tissues shrinking or disappearing and others 

swelling or appearing. Under these scenarios, accumulating dose between CT scans taken 

weeks apart may or may not be appropriate. For a point/counterpoint discussion on this 

fundamental issue please see Schultheiss et al. (Schultheiss et al., 2012).

Additionally, to the perspective problem, the specific DIR algorithm used also can have 

important implications. Chetty et al. reviewed dose accumulation for photon therapy, 

discussing the center of mass, interpolation, direct voxel tracking and energy transfer DIR 
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methods (Chetty and Rosu-Bubulac, 2019). An obstacle to be solved, independently of the 

deformable vector field calculation, is the fact that the equivalent region of a voxel from 

the original image is not necessarily rectangular or of the same volume or mass as in the 

reference image. Given the definition of dose, this change in mass of a voxel might produce 

unphysical dose accumulation with implications that depend on the specific case, such as 

for example the type of tumor regression (Chetty and Rosu-Bubulac, 2019). This could be 

impactful particularly in conformal dose delivery such as proton therapy (Amstutz et al., 

2021).

Dose accumulation can be included within the adaptation workflow in different ways. As 

described in Heukelom et al. (Heukelom and Fuller, 2019), dose can be either accumulated 

on the new patient CT scan or back-projected into the initial planning CT. These two frames 

of reference produce different results due to the patient anatomical evolution. This is termed 

as “the perspective problem” in Heukelom et al. (see Figure 1) Re-calculation can be done 

on daily delivery log files (Winterhalter et al., 2019a; Meijers et al., 2019). If doses are 

analyzed daily, corrections could be made based on dosimetric indices and incorporated 

into an adaptive workflow, i.e., daily adaptation based on the accumulated dose from prior 

fractions.

4.4 Online plan adaptation strategies

Several proton adaptation workflows have been published (Kurz et al., 2016b; Jagt et al., 

2017; Jagt et al., 2018; Jagt et al., 2019; Bernatowicz et al., 2018; Botas et al., 2018; 

Bobic et al., 2021; Moriya et al., 2018; Nenoff et al., 2019; Matter et al., 2019), with 

only the publication by Moriya et al focusing on passive scattering proton therapy. They 

can be divided in two groups, depending on the amount of information inherited from 

the original plan. The first group (“re-planning”) is based on optimizing the initial plan 

again, either inheriting the same objectives and constraints or providing new ones to adapt 

to the new geometry. Re-planning entails execution of the traditional planning pipeline. 

This requires very fast dose calculation and optimization as well as proper QA and plan 

approval. This workflow has been studied by Matter et al. (Matter et al., 2019) and, focusing 

on paranasal cancer patients, by Nenoff et al. (Nenoff et al., 2019). The second group 

(“re-optimization and dose restoration”) focuses on changes to the original plan to restore 

either the original plan quality or the original dose distribution. Depending on the changes 

required, this method may converge to full re-planning. In the following discussion we focus 

on publications that present adaptation approaches that include beamlet energy adaptation 

and optimization in proton beam scanning, i.e., on the second group.

Jagt et al. (Jagt et al., 2017) presented a method in which a reference plan is adapted to a 

new CT image with contours rigidly aligned from the planning CT. The method involved 

two steps: restoration of Bragg peak positions by energy corrections and re-optimization 

of beamlet weights to recover the reference plan. All beamlets were included in the re

optimization, for which the dose-influence matrix must be recomputed (voxels outside the 

regions of interest were not considered). Several prioritization strategies to balance target 

and OAR dose were presented. Ten prostate cancer patients were planned with two laterally 

opposing beams impinging on three PTVs for high, intermediate and low dose. It is not 
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reported if the design of the PTVs was altered to test the method. It is reported, however, 

that the plans were created with a lower degree of robustness in order to challenge the 

adaptation algorithm. With the presented methods, 96.3% of the fractions resulted in V95% 

>= 98% in the prostate CTV, while V107% <= 2% was fulfilled in up to 92.5% of the 

fractions in the same contour.

Bernatowicz et al. (Bernatowicz et al., 2018) presented a workflow that considered rigidly 

translated contours from the planning CT to the daily anatomy on the example of 3 patients: 

a nasopharyngeal case with varying nasal fillings, an oropharyngeal and a 4D-robustly 

optimized lung case. Their approach aimed to restore the original dose distribution by 

creating new plans. In order to reach this goal, they investigated 3 ways of minimizing the 

difference between the original and the new plan, focusing on: DVH points, voxel-wise 

dose comparisons and isodose contours. All adaptation methods recovered V95% >= 95% 

and V107% <= 2% for the CTV on all repeat CTs, with the isodose approach yielding 

the best dose distribution as compared to the one originally planned. The dose restoration 

for the isodose approach time ranged from ~25s to ~200s, including dose calculation and 

optimization.

Jagt et al. (Jagt et al., 2018) expanded their previous methodology and tested it on daily 

manual contours, removing the limitation to rigid registration. The focus remained on 

prostate cancer. They also restricted the number of proton energy layers, implemented 

a reference point method (RPM) optimization and allowed up to two iterations of 2500 

beamlets in addition to the original plan. In this method, once the energies of the beamlets 

are corrected and the random beamlets are added, the plan is optimized, which may remove 

unused beamlets and energy layers. Beamlet addition and optimization may be repeated 

for a second iteration. The contours were manually defined for the sake of testing the new 

approach and additional margins of 2 and 3.5 mm to the high- and low-dose CTV were 

added to account for the delineation and auto-segmentation uncertainties. In this case, 100% 

of the 88 scans produced V95% >= 98% in the true prostate CTV, while V107% <= 2% was 

fulfilled in 94.3% of the fractions in the same contour. This method required 2.9 to 4.6 min, 

depending on the number of iterations.

Botas et al. (Botas et al., 2018) studied different adaptation strategies involving the use 

of range shifters and isocentre shifts with and without beamlet weight optimization for 

head and neck cancer patients. The combination of isocentre shifts with beamlet weight 

optimization was shown to be the superior strategy. The first step in this approach consisted 

of adapting the position of the original Bragg peaks for each beamlet by applying the 

deformation field from the reference CT to the daily patient anatomy. Afterwards, the 

beamlet energy was modified without constraining to discrete energy layers. The fluence 

map produced was then evaluated. In case the result was not satisfactory, the set of beamlets 

with the highest number of protons was selected and their weights optimized, by fixing 

the dose provided by the beamlets with lower proton fluence. Using the deformation field 

this way, its inherent uncertainty may impact the position of the Bragg peaks, but not 

necessarily the dose distribution. Ten head and neck patients were studied, each having 6 

scatter-corrected CBCTs and contours were translated using deformable image registration. 

The plans were optimized on the CTV directly without adding margins in order to test the 
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efficacy of the adaptation algorithm. The authors reported an average V95 in the CTV across 

all patients and fractions of 99.0+−1.0 % a V107% = 12.8+−5.8% and V110%=2.1+−2.4%. 

Dose-volume histograms for OARs show the dependency on patient and fraction. The 

average adaptation time per patient was 322.7s. The approach was not evaluated imposing 

machine-dependent deliverability constraints on the minimum fluence per beamlet and total 

number of energy layers following approaches similar to van de Water 2015 (van de Water et 

al., 2015).

In 2019, Jagt et al. (Jagt et al., 2019) published another step of their framework by applying 

the previously developed techniques to a library of prior plans accounting for altered target 

geometries. At each fraction, the best library plan was adapted using energy adaptation. 

Next, the spot addition and RPM optimization presented in their previous publication was 

applied (Jagt et al., 2018). The framework was demonstrated with 6 locally advanced 

cervical cancer patients, with a total of 23 repeat-CTs. Using a 2-plan library and applying 

two iterations of beamlet addition-RPM optimization recovered V95% >= 95% and V107% 

<= 2% in all CTVs.

Bobic et al. (Bobic et al., 2021) built on the framework developed in Botas et al., 

comparing daily and weekly adaptation on a cohort of 10 head and neck patients with a 

total of 320 CBCT image sets. The authors demonstrated that, although daily adaptation 

yielded better results, weekly adaptation was typically successful in maintaining high plan 

quality throughout the plan delivery while reducing the clinical workload (see Figure 5). 

Specifically, random errors caused by daily positioning and anatomy variations are only 

effectively accounted for by daily adaptation. Furthermore, they showed that removing the 

energy and position adaptation initially implemented in the framework (Botas et al., 2018), 

maintained the deliverability of the initial plans so that adaptation only required beamlet 

weight adjustments. Thus, this method might be considered a delivery correction, instead of 

a plan re-optimization, a distinction with potential impact on clinical workflow guidelines.

4.5 Treatment verification

Patient specific plan verification with water phantom-based measurements are not viable 

in an online adaptation workflow. To carry out plan verification, it has been proposed to 

utilize independent MC-based simulations on the patient anatomy (Meier et al., 2015; Zhu 

et al., 2015; Matter et al., 2018; Johnson et al., 2019; Mackin et al., 2013). In order to 

also test the information pipelines feeding the plan parameters to the delivery system, it 

has been proposed to perform QA using the machine delivery files as inputs for the MC 

calculation. This approach has been shown to have higher sensitivity compared to patient 

specific verification measurements (Matter et al., 2018). The downside as compared to 

performing QA based on the delivery files is that it can only be performed after the patient 

is treated (Matter et al., 2018; Meijers et al., 2019; Toscano et al., 2019; Winterhalter et al., 

2019a; Belosi et al., 2017). Corrections can only be applied in subsequent fractions.

4.6 Robust planning vs adaptation

Uncertainties other than the patient anatomy, such as imaging, patient setup, contouring, 

dose calculation or beam delivery are not explicitly considered in the plan adaptation 
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approaches reviewed in this work. Performing robust plan adaptation online during plan 

adaptation would guarantee a higher degree of robustness of the online-generated plan. 

Direct comparisons of online adaptation vs robust planning were performed in prostate 

and head and neck cohorts. Jagt et al. (Jagt et al., 2020) compared robust planning of 11 

prostate cancer cases with plan adaptation on a total of 88 repeat CT scans. Plan adaptations 

improved median OAR doses up to 16%. Lalonde et al. (Lalonde et al., 2021) compared 

online adaptation against classical robust optimization and anatomical robust optimization in 

a cohort of 10 head and neck patients with a median of 33 CBCT images each (range: 31 - 

35). Online adaptation was shown to fulfill clinical objectives for all cases, while anatomical 

and classical robust optimization maintained them only in 8 and 4 cases, respectively. The 

studies are indicative of the advantage adaptation has on robust planning, although precise 

conclusions about the extent of these advantages should be considered site and case specific.

5. Biological aspects of plan adaptation in proton therapy

Plan adaptation as described in the previous sections is based on imaging and dosimetric 

indices. The main focus is on matching the treatment plan for each fraction. While the 

goal is to meet the prescription dose to the target and meet dose constraints for all organs 

at risk, there will be deviations from the original plan. For the tumor, adaptation may 

lead to dose hot spots, which may not necessarily of concern, except for when trying 

to analyze outcome differences in a clinical trial. For OARs, plan adaptation could lead 

to higher or lower doses than initially shown in the treatment plan, albeit according to 

adaptation guidelines, still below the defined constraints. Variations in dose distributions and 

higher dose heterogeneity cause deviations from the intended uniform fractionation scheme 

and might have implications on the total equivalent biological dose. Treatment outcome 

depends on the delivered biological dose, which has a complex dependency on the physical 

dose delivered at each anatomical scenario at each point in time (Boman et al., 2017). 

Consequently, for retrospective outcome analysis, the accumulated delivered doses instead 

of the planned doses should be used.

Treatment adaptation can be applied to address biological considerations particularly in the 

context of fractionation (Yang and Xing, 2005). A variation of the dose between fractions 

always leads to a larger biologic effect than does the same total dose delivered with standard 

uniform fractionation. It has been shown that the effect is negligible if the standard deviation 

of the dose is less than ~10% of the dose per fraction (Bortfeld and Paganetti, 2006). In 

adaptive dose-correction schemes, the dose correction should be applied uniformly over the 

remaining fractions, to minimize the variance (Bortfeld and Paganetti, 2006).

An alternative to maintaining the planned dose distribution (based on DVH constraints) 

in the adaptive workflow would be to adapt daily delivery towards maintaining estimated 

TCP or NTCP for organs at risk. Currently, treatment planning is mainly done based 

on dosimetric indices and not directly considering TCP and NTCP because of inherent 

uncertainties in TCP and NTCP models. Daily adaptation, as a relative concept, could 

potentially be based on TCP and NTCP. Adapting radiotherapy to temporal and spatial 

variations in tumor oxygenation has been suggested as well but is currently far from clinical 
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reality (Sovik et al., 2007). Furthermore, plan adaptation can include biological indices 

deduced from image features (Matuszak et al., 2019).

In proton therapy, there is an additional effect due to variations in RBE (relative biological 

effectiveness). Despite patient variability and uncertainties in RBE, biological treatment 

planning can be incorporated via the linear energy transfer (LET) aiming at reducing LET 

in OARs (Unkelbach et al., 2016; Unkelbach and Paganetti, 2018). This can be partially 

achieved through robust optimization (Hirayama et al., 2020; Unkelbach and Paganetti, 

2018). Maintaining LET considerations in the adaptive workflow would require full re

planning. It is thus likely that LET considerations cannot be fully maintained during the 

course of adaptive therapy. Re-calculating not only the dose but also the LET based on daily 

log files might therefore be necessary to confirm biologically equivalent doses. In theory, the 

impact of the biological uncertainty could be reduced by explicitly influencing LET in the 

adaptive workflow.

6. Summary and Outlook

On-line adaptive therapy faces many challenges as discussed in this review. The impact on 

the treatment delivery workflow depends on the chosen adaptation strategy and the tools 

applied for imaging, dose calculation, and dose assessment. There is ongoing research into 

the technical realization of on-line adaptive therapy. Equally important are efforts towards 

understanding the impact on treatment outcome, which will decide whether the disruption of 

the current clinical workflow by implementing adaptive strategies is generally warranted.

Treatment adaptation is expected to be clinically more significant in highly conformal 

treatment techniques such as proton therapy. Furthermore, range variations due to 

geometrical changes, including both anatomic and setup variations, result in dose 

perturbations that can be more severe. At the same time, there are unique challenges in 

proton therapy due to typically more inhomogeneous dose distributions in organs at risk 

compared to photon therapies. On the other hand, the complexity of intensity-modulated 

treatment fields in proton therapy offers great potential for plan adaptation since not only the 

fluence but also the energy (Bragg peak position) can be utilized in an adaptive workflow.

Radiation therapy is moving towards hypo-fractionated treatments for many disease sites 

particularly when using proton therapy with its low integral dose to normal tissue. This 

will impact also strategies for plan adaptation. First, changes in patient geometry might be 

smaller with a decrease in the overall time of the course of treatment. On the other hand, 

fewer fractions leave less room for retroactive plan corrections.
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Figure 1: 
Adaptation workflow: A: Adaptation at constant intervals using the initial plan assessed on 

the new image; B: Adaptation triggered by on-line imaging based on the initial plan; C: 

Daily adaptation using the initial plan assessed; D: Frequent (e.g., daily) adaptation using 

the accumulated dose and previous day image and adapted plan as reference. Figure adapted 

from Heukelom and Fuller (Heukelom and Fuller, 2019).
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Figure 2: 
Frameworks for adaptive radiation therapy (RT). Off-line imaging is used for standard 

radiation therapy as well as off-line adaptive therapy for a selected number of fractions 

(left). Using image registration, on-line imaging also allows off-line adaptive therapy as well 

as image-guided therapy and in-line adaptation (middle) On-line adaptive therapy, the focus 

of this review, is shown on the right (dark colors) and aims at complete re-planning or plan 

adjustment.
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Figure 3: 
Uncorrected CBCT (left) is unsuitable for proton dose calculation because of large HU 

errors. This may be corrected by deforming the planning CT to match the CBCT (center), 

or removing scatter from CBCT projection images prior to reconstruction (right). From 

(Landry et al., 2019), with permission.
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Figure 4: 
Indirect imaging of proton dose using PET (left) and proton range verification using prompt 

gamma (right). From (Min et al., 2013) and (Richter et al., 2016), with permission.
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Figure 5. 
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a: Evolution of the target conformity (high-risk CTV and low-risk CTV) over the full course 

of treatment for a three head and neck cancer patients. The target coverage and overdose 

are evaluated using the D98 and D2, respectively (both in % of the prescription dose). The 

red dots represent which fractions were adapted in a weekly adaptation scenario (OAW). 

Overall, daily adaptation (OAD) achieved the best target coverage, while both weekly 

and daily outperform treatment based on the base plan (BP). ((Bobic et al., 2021); with 

permission).

b: DVHs for the three patients shown in figure 5a, comparing the accumulated doses over 

the course of treatment, delivered by BP (dotted line), OAW (dashed line), and OAD (solid 

line). OAW yields remarkably similar performances to OAD for patients A and C, both 

in terms of target coverage and OAR sparing. For patient B, a clear difference regarding 

the high-risk CTV coverage can be observed between OAW and OAD. In terms of target 

coverage, patient B exhibits the worst result for OAW, which barely reached the clinical 

objective for the high-risk CTV. (Bobic et al., 2021); with permission).
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Table 1:

Published adaptive proton therapy strategies.

Target results Cases Contour 
definition

Method Dose calc. Optimization Timing

Jagt 2017 
(Jagt et al., 
2017)

96.3% of true 
prostate CTV’s 
V95%>= 98% and 
92.5% of V107% 
<= 2%

10 prostate cases. 
80 repeat scans. 
Single plan.

Rigid 
registration

IMPT, 
beamlet 
energy, 
beamlet 
weight re-
optimization

Analytical 
(Astroid)

Minimization 
of voxel-wise 
quadratic 
difference to 
reference plan

Dose 5-10 
min, 
optimization 
10s

Bernatowicz 
2018 
(Bernatowicz 
et al., 2018)

All CTV V95% >= 
95% and V107% 
<= 2%

3 cases: 
nasopharyngeal, 
oropharyngeal 
and lung. Single 
plan.

Rigid 
registration

IMPT, 
energy and 
beamlets 
positions

Analytical 
(Raystation 
6)

Three 
approaches: 
DVH-based, 
voxel-wise and 
isodose-based 
objectives.

25 to 200s

Jagt 2018 
(Jagt et al., 
2018)

100% true prostate 
CTVs: V95% >= 
98% and 94.3% of 
V107% <= 2%

11 prostate cases. 
88 repeat scans. 
Single plan.

Manual 
contouring

IMPT, 
beamlet 
energy, 
beamlet 
weight re-
optimization

Analytical 
(Astroid)

Reference 
point method 
to original 
objectives, 
guided by plan

Dose 1.1 min 
plus 1.1 per 
spot addition 
iteration. 
Opt. 37s

Botas 2018 
(Botas et al., 
2018)

Mean CTV V95% 
= 99.0+−1.0%, 
V107% = 12.8+
−5.8% and 
V110%=2.1+
−2.4%.

10 head and 
neck. 60 repeat 
scans. Single 
plan.

Deformable 
registration

IMPT, 
beamlet 
energy and 
beamlets 
positions

GPU MC 
(Qin et al., 
2016)

Opt4D 
(Trofimov et 
al., 2005) with 
original 
objectives on 
subset of spots

Energy-
position 
adaptation 
11.7-26.6 s. 
MC dose 
115.6-419.2 
s Opt. 
12.0-198.0

Jagt 2019 
(Jagt et al., 
2019)

100% primal & 
nodal CTVs: 
V95% >= 95%, 
V107% <= 2%

6 cervix. 23 
repeat scans. 
Plan library (max 
2 plans).

Manual 
contouring

IMPT, 
beamlet 
energy, 
beamlet 
addition, 
plan library

Jagt et al 
2018

Jagt et al 2018 318-504 s

Matter 2019 
(Matter et al., 
2019)

Paraspinal: 
V95plan-adapt ~ −2%
Brain: V95plan-adapt 

~ 0%
Cranio-spinal axis: 
V95plan-adapt ~ 0%
Paranasal: 
V95plan-adapt ~ 1%

4 patients: 
paraspinal, brain, 
cranio-spinal 
axis and 
paranasal

Manual 
contouring

IMPT, full 
replanning

Same 
publication 
(Matter et 
al., 2019)

Same 
publication 
(Matter et al., 
2019)

5-10 s. Up to 
25 s for 
cranio-spinal 
axis.

Nenoff 2019 
(Nenoff et al., 
2019)

V95plan-adapt < 1% 
for all cases

5 paranasal 
patients. 1845 
setup errors and 
nasal fillings 
scenarios 
simulated

Same as 
original

IMPT, new 
plan 
generation

Analytical 
(in-house)

In-house 
((Winterhalter 
et al., 2019b))

Seconds

Bobic 2021 
(Bobic et al., 
2021), daily 
adaptation

High risk CTV: 
Median D98% = 
98.07%, 
(97.15%-99.73%)

10 head and neck 
patients. 320 
image sets.

Deformable 
registration

IMPT, 
beamlet 
weight re-
optimization

GPU MC 
(Qin et al., 
2016

Opt4D 
(Trofimov et 
al., 2005

Median of 12 
min (8 – 22 
min)
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