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Long noncoding RNA CRART16 confers 5‑FU 
resistance in colorectal cancer cells by sponging 
miR‑193b‑5p
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Abstract 

Background:  The emergence of chemoresistance to 5-fluorouracil (5-FU)-based chemotherapy is the main cause of 
treatment failure in advanced and metastatic colorectal cancer (CRC) patients. Long noncoding RNAs (lncRNAs) have 
been reported to be involved in 5-FU resistance. Previously, we first detected that lncRNA cetuximab resistance-asso-
ciated RNA transcript 16 (CRART16) could contribute to cetuximab resistance by upregulating V-Erb-B2 erythroblastic 
leukemia viral oncogene homologue 3 (ERBB3) expression by sponging miR-371a-5p in CRC cells. The current study 
aimed to explore the role of CRART16 in acquired 5-FU resistance in CRC cells and its possible mechanism.

Methods:  Quantitative real-time PCR (RT-qPCR) was used to measure the expression levels of CRART16 in a 5-FU-
resistant CRC cell subline (SW620/5-FU) and the parent cell line. Lentivirus transduction was performed to establish 
SW620 and Caco-2 cells stably overexpressing CRART16. Cell Counting Kit-8 (CCK-8) assays and colony formation 
assays were applied to measure cell chemosensitivity to 5-FU. Flow cytometric and immunofluorescence stain-
ing were adopted to assess cell apoptosis induced by 5-FU. The dual-luciferase reporter assay was used to validate 
the direct interactions between CRART16 and miR-193b-5p and between miR-193b-5p and high-mobility group 
AT-hook-2 (HMGA2). The expression levels of HMGA2, apoptosis-associated proteins and p-ERK were examined by 
western blotting. The statistical differences within any two groups were used Student’s t test.

Results:  CRART16 was upregulated in SW620/5-FU cells. Overexpression of CRART16 reduced the sensitivity of CRC 
cells to 5-FU by attenuating apoptosis. In addition, CRART16 promoted 5-FU resistance by suppressing the expression 
of miR-193b-5p. Furthermore, CRART16 modulated the expression of HMGA2 by inhibiting miR-193b-5p and acti-
vated the MAPK signaling pathway.

Conclusions:  CRART16 confers 5-FU resistance in CRC cells through the CRART16/miR-193b-5p/HMGA2/MAPK 
pathway.
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Background
Colorectal cancer (CRC) is among the most common 
cancers worldwide, ranking third in terms of incidence 
but second in terms of mortality [1]. After decades of 
research and development, comprehensive treatment 
based on surgical resection has become the main treat-
ment mode of CRC; the involved approaches include 
endoscopic and surgical local excision, adjuvant chemo-
therapy, downstaging preoperative chemoradiotherapy, 

Open Access

Cancer Cell International

*Correspondence:  03027@pkufh.com
†Jingui Wang and Xiaoqian Zhang contributed equally to this work
1 Department of General Surgery, Peking University First Hospital, NO. 8 
Xishiku Street, Xicheng, Beijing 100034, People’s Republic of China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0381-5497
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-021-02353-5&domain=pdf


Page 2 of 13Wang et al. Cancer Cell International          (2021) 21:638 

extensive surgery for locoregional and metastatic dis-
ease, local ablative therapies for metastases, palliative 
surgery and chemotherapy, targeted therapy, and immu-
notherapy. Among them, drug therapy has developed 
the most rapidly, significantly improving the prognosis 
of advanced and metastatic colorectal cancer (mCRC) 
patients [2]. Despite the fact that research has entered 
into the era of targeted therapy and immunotherapy, 
5-fluorouracil (5-FU) is still the first-line drug and plays 
an irreplaceable role in the treatment of advanced CRC 
and mCRC [3].

5-FU, an analogue of uracil that was first synthesized 
by Heidelberger et al. [4] in 1957, eventually inhibits the 
synthesis of purines by inhibiting thymidylate synthase 
(TS) activity in  vivo, resulting in the inhibition of DNA 
replication and repair. In addition, the incorporation of 
5-FU-derived nucleosides into RNA fractions interferes 
with RNA synthesis and function [5]. However, it has 
been documented that a considerable percentage of CRC 
patients and nearly half of mCRC patients experience 
disease progression during the course of 5-FU-based 
chemotherapy [6, 7]. Both primary and acquired chem-
oresistance are responsible for treatment failure and 
limit the clinical application of 5-FU [8]. Although many 
efforts have been made to reveal the molecular mecha-
nisms underlying chemoresistance to 5-FU in CRC, novel 
therapeutic targets have yet to be identified.

As new potential regulators in various cellular pro-
cesses, long noncoding RNAs (lncRNAs), noncoding 
RNAs (ncRNAs) withs length longer than 200 nucleo-
tides and without protein-coding capacity, have recently 
attracted growing interest in different cancer types [9]. 
Several studies have indicated that some lncRNAs play 
an important role in drug resistance [10–13]. LncRNA 
UCA1 has been reported to contribute to cisplatin/gem-
citabine resistance in  vitro and vivo via CREB, which 
modulates miR-196b-5p in bladder cancer [14]. Similarly, 
lncRNA XLOC_006753 has been proven to promote mul-
tidrug resistance in vitro via the PI3K/AKT/mTOR sign-
aling pathway in gastric cancer [15]. To date, few studies 
have focused on lncRNAs in CRC 5-FU chemoresistance 
[16]. Previously, we first found that lncRNA cetuximab 
resistance-associated RNA transcript 16 (CRART16) 
promotes cetuximab resistance by enhancing V-Erb-B2 
erythroblastic leukemia viral oncogene homologue 3 
(ERBB3) expression through miR-371a-5p in CRC cells 
[17]. However, the role of lncRNA CRART16 in CRC cell 
5-FU resistance needs to be further investigated.

In this study, we found that the expression level of 
CRART16 was upregulated in SW620/5-FU cells. Fur-
ther mechanistic investigation demonstrated that when it 
was overexpressed, CRART16 enhanced the 5-FU resist-
ance of CRC cells and upregulated high-mobility group 

AT-hook-2 (HMGA2) expression by sponging miR-
193b-5p. Moreover, we revealed that the MAPK signaling 
pathway was activated by CRART16.

Methods
Cell lines
HEK-293  T and human CRC lines (SW620, Caco-2) 
were purchased from the Cancer Institute of the Chinese 
Academy of Medical Science and cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, Thermo Fisher Sci-
entific, MA, USA) supplemented with 10% fetal bovine 
serum (FBS, Thermo Fisher Scientific, MA, USA) and 
1% penicillin/streptomycin (Thermo Fisher Scientific, 
MA, USA). The 5-FU-resistant CRC subline (SW620/5-
FU) was developed by exposing parental cells to 5-FU 
in stepwise increasing concentrations for approximately 
6 months. SW620/5-FU cells were maintained in DMEM 
supplemented with 10 μM 5-FU. All cells were grown at 
37 °C in an incubator with 5% CO2.

RNA extraction and quantitative real‑time PCR (RT‑qPCR) 
analyses
Total RNA was isolated from cultured cells using TRIzol 
Reagent (Invitrogen, Carlsbad, CA, USA) following the 
manufacturer’s instructions. For miRNA quantification, 
reverse-transcribed complementary DNA was synthe-
sized from 2  µg extracted total RNA using TransScript 
miRNA RT Enzyme Mix (Transgen Biotech, Beijing, 
China) and amplified with TransStart TIP Green qPCR 
SuperMix (Transgen Biotech, Beijing, China) with nor-
malization to U6. For lncRNA and mRNA detection, 
RNA was reverse-transcribed with random primers 
using the RevertAid First Strand cDNA Synthesis Kit 
(Thermo Fisher Scientific, MA, USA) and amplified with 
PowerUp™ SYBR™ Green Master Mix (Thermo Fisher 
Scientific, MA, USA) with glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) as an internal control. RT-
qPCR was performed with a 7500 Real-Time PCR Sys-
tem (Applied Biosystems, Germany). The relative RNA 
expression levels were calculated with the 2−∆∆Ct method 
normalized by internal control. The RT-qPCR experi-
ment in this study followed the MIQE guidelines [18]. 
The primer sequences used in the study are listed in 
Table 1.

Lentivirus transduction
The plasmid pCDH-CMV-MCS-EF1-GFP + Puro con-
taining full-length CRART16 cDNA (Mailgene, Bei-
jing, China) was constructed to stably overexpress the 
expression of CRART16 in SW620 and Caco-2 cells 
by lentivirus transduction as we previously described 
[17]. The cells were named SW620-CRART16 and 
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Caco-2-CRART16, and their negative control cells were 
called SW620-NC and Caco-2-NC, respectively.

Dual luciferase reporter gene assay
The full-length CRART16 and HMGA2 3′ untranslated 
regions (3′-UTRs) were inserted into the pmiR-RB-
Report™ vector to construct luciferase reporter vectors 
(RiboBio, Guangzhou, China). HEK-293  T cells were 
seeded in 96-well plates and cultured overnight. HEK-
293  T cells were co-transfected with 0.1  μg WT vec-
tor or empty vector and 50  nM miR-193b-5p mimics 
(RiboBio, Guangzhou, China) or negative controls using 
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s protocols. Forty-eight 
hours after co-transfection, the Dual‐Luciferase Reporter 
Assay System (Cat. E2920, Promega, Madison, Wiscon-
sin, USA) was used to measure the luciferase activity, and 
all experiments were carried out in triplicate.

Cell viability assay
For dose–effect curve depiction, the cells were seeded 
into 96-well plates and cultured overnight, and then the 
culture medium was replaced with fresh culture medium 
containing different concentrations of 5-FU. After 48 h of 
incubation, Cell Counting Kit-8 (CCK-8; Bimake, Shang-
hai, China) assays were performed to detect cell viabil-
ity. The optical density at 450 nm was measured using a 
spectrophotometer at different time points. Each experi-
ment was performed thrice.

Colony formation assay
Transfected cells were seeded (300 cells per well) into 
6-well plates and cultured overnight. Then, the culture 
medium was replaced with fresh culture medium con-
taining 5-FU. The medium was changed every 5  days. 
After 10–14 days, colonies could be clearly observed. The 
colonies were fixed with methanol for 15 min and stained 

with 0.1% crystal violet for 20  min. Then, the colonies 
were photographed and counted.

Flow cytometry
After treatment with 5-FU for 48 h, the stably transfected 
CRC cells were digested with DMSO-free trypsin (Invit-
rogen, Carlsbad, CA, USA) and washed two times with 
cold PBS. Then, flow cytometry (BD Biosciences, NJ, 
USA) was carried out after double staining with APC-
annexin V and 7-amino-actinomycin D (7-AAD, BD 
Biosciences, NJ, USA) according to the manufacturer’s 
protocol.

Western blotting assay and antibodies
Total cellular protein was collected in RIPA buffer 
(50  mM Tris pH 8.0, 150  mM NaCl, 1% NP-40, 0.5% 
sodium deoxycholate, 0.1% SDS) containing phenyl-
methylsulfonyl fluoride (PMSF), aprotinin, sodium 
orthovanadate and NaF. Equal amounts of proteins were 
subjected to electrophoresis on a SurePAGE gel (Gen-
Script, Nanjing, China) and then transferred onto a 
polyvinylidene fluoride (PVDF) membrane. The mem-
brane was then blocked in 5% skimmed milk for 1  h at 
room temperature and incubated with different diluted 
primary antibodies, including HMGA2 (1:1000 dilu-
tion, CST, MA, USA), PARP (1:1000 dilution, CST, MA, 
USA), cleaved PARP (1:1000 dilution, CST, MA, USA), 
caspase-3 (1:1000 dilution, CST, MA, USA), cleaved 
caspase-3 (1:1000 dilution, CST, MA, USA), caspase-7 
(1:1000 dilution, CST, MA, USA), cleaved caspase-7 
(1:1000 dilution, CST, MA, USA), P-ERK (1:2000 dilu-
tion, CST, MA, USA), ERK (1:1000 dilution, CST, MA, 
USA), tubulin (1:1000 dilution, CST, MA, USA), and 
GAPDH (1:1000 dilution, CST, MA, USA), at 4 °C over-
night. Finally, an enhanced chemiluminescence (ECL) 
detection system (Merck, Darmstadt, Germany) and the 
Syngene GeneGenius gel imaging system (Syngene, Cam-
bridge, UK) were used to visualize the protein bands after 
incubation with secondary antibody.

Immunofluorescence staining
Transfected cells were seeded into 6-well plates placed 
with coverslips in the bottom and cultured overnight. 
Then, the culture medium was replaced with fresh culture 
medium containing 5-FU. After 48  h of incubation, the 
cells were fixed and permeabilized with a methanol and 
acetone mixture. After blocking with 10% goat serum, the 
cells were incubated with primary anti-cleaved caspase-3 
(1:100 dilution, CST, MA, USA) or anti-Ki-67 (1:100 dilu-
tion, CST, MA, USA) at 4 °C overnight, followed by incu-
bation with secondary Alexa Fluor 555 goat anti-mouse 
IgG (1:100 dilution, CST, MA, USA) or Alexa Fluor 647 
goat anti-rabbit IgG (1:100 dilution, CST, MA, USA) for 

Table 1  Primer sequences used for RT-qPCR

Gene Sequence of the primers

lncRNA CRART16, forward primer 5′-TGA​TAG​TGA​GGC​CTC​CTG​CAA-3′

lncRNA CRART16, reverse primer 5′-CTG​GAG​TTC​TGC​AGG​TTC​CTTT-3′

miR-193b-5p, forward primer 5′-CGG​GGT​TTT​GAG​GGC​GAG​ATGA-3′

U6, forward primer 5′-GCA​AGG​ATG​ACA​CGC​AAA​TTC-3′

HMGA2, forward primer 5′-GCA​GCA​AAA​ACA​AGA​GTC​CCT​
CTA​-3′

HMGA2, reverse primer 5′-GCC​TCT​TGG​CCG​TTT​TTC​TC-3′

GAPDH, forward primer 5’-GCA​CCG​TCA​AGG​CTG​AGA​AC-3’

GAPDH, reverse primer 5’-ATG​GTG​GTG​AAG​ACG​CCA​GT-3’
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1 h. Coverslips were mounted on slides using DAPI. The 
cells were visualized using a fluorescence microscope.

Statistical analysis
All statistical analyses were performed with SPSS Ver-
sion 25.0 software (IBM) and GraphPad Prism Version 7 
software (GraphPad Software). Data are presented as the 
mean ± SD. The results were considered statistically sig-
nificant at p < 0.05. The statistical differences within any 
two groups were used Student’s t test.

Results
CRART16 expression is upregulated in 5‑FU‑resistant CRC 
cells
The expression levels of CRART16 in different CRC 
cell lines have been shown in our previous published 
study [17]. To detect whether CRART16 is involved in 
the acquired resistance of CRC cells to 5-FU, its expres-
sion level in a cell line with acquired 5-FU resistance 
was assessed. The 5-FU-resistant variant SW620/5-
FU cell subline was generated by the stepwise screen-
ing of SW620 cells exposed continuously to increasing 
concentrations of 5-FU at a range of 0.1 to 10  µM for 
approximately 6  months. The CCK-8 assay was applied 
to confirm the sensitivity of SW620/5-FU and par-
ent cells to 5-FU. Figure  1a shows that the cell viability 
rate of SW620/5-FU cells was significantly higher than 
that of SW620 cells when exposed to 5-FU. The half-
maximal inhibitory concentration (IC50) value of 5-FU 
in SW620/5-FU cells was 109.20 ± 12.92  µM, while that 
in SW620 cells was 47.44 ± 3.17  µM (p < 0.01, Fig.  1b). 
Then, the expression levels of CRART16 were investi-
gated by RT-qPCR in SW620/5-FU and parent cells. The 
results demonstrated that the expression of CRART16 
was significantly upregulated in SW620/5-FU cells ver-
sus parental cells (Fig. 1c), suggesting that CRART16 may 
participate in 5-FU-acquired resistance in CRC cells.

Overexpression of CRART16 is associated with 5‑FU 
resistance in CRC cells
To investigate the precise biological function of 
CRART16 in the 5-FU chemoresistance of CRC cells, we 
stably overexpressed CRART16 in SW620 and Caco-2 
cells. Fluorescence microscopy and RT-qPCR were 
adopted to confirm the efficiency of transfection (Fig. 2a, 
b). After treatment with increasing concentrations of 
5-FU for 48  h, cell viability was evaluated by CCK-8 
assay (Fig. 2c, d). Compared with SW620-NC and Caco-
2-NC cells, the IC50 values of 5-FU in CRART16-over-
expressing cells were significantly increased by 434.58% 

Fig. 1  CRART16 is upregulated in SW620/5-FU cells. a, b The 
cytotoxic effect of 5-FU was evaluated by CCK-8 assay in SW620 and 
SW620/5-FU cells after exposure to graded concentrations of 5-FU 
for 48 h (a), and the IC50 values were calculated (b). **p < 0.01. c The 
expression levels of CRART16 in SW620 and SW620/5-FU cells were 
measured by RT-qPCR. GAPDH was used as an internal reference. 
Data are presented as the mean ± SD from three independent 
experiments. *p < 0.05
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and 60.96%, respectively (SW620-NC 4.02 ± 0.79  µM, 
SW620-CRART16 21.49 ± 0.82  µM, P < 0.001; 
Caco-2-NC 22.13 ± 2.04  µM, Caco-2-CRART16 
35.62 ± 2.6 µM, P < 0.01). We performed a colony forma-
tion assay under 5-FU treatment and revealed that after 
CRART16 was upregulated, the number of cell clones 
was less suppressed by 5-FU (P < 0.01, P < 0.05, Fig.  2e, 
f ). To further examine whether CRART16 had an effect 
on 5-FU-induced apoptosis, a flow cytometric assay was 
performed. The results showed that overexpression of 
CRART16 in SW620 and Caco-2 cells with 5-FU treat-
ment had lower apoptotic rates than the negative con-
trol cells (Fig. 3a, b). Consistently, we observed that the 
apoptotic marker cleaved caspase-3 was downregulated 
and the proliferative marker Ki-67 was upregulated in 

CRART16-overexpressing cells versus negative control 
cells 48 h after 5-FU treatment (P < 0.05, Fig. 4a, b). Col-
lectively, these data demonstrated that CRART16 could 
promote 5-FU resistance in CRC cells by attenuating 
apoptosis.

CRART16 directly binds to miR‑193b‑5p as a competing 
endogenous RNA (ceRNA)
Our previously published study demonstrated that 
CRART16 could confer cetuximab resistance in CRC 
cells by functioning as a ceRNA [17]. We hypothesized 
that CRART16 could also promote 5-FU resistance in 
CRC cells by inhibiting the function of a certain miRNA. 
Based on the previous work of RNA-seq analysis and 
bioinformatics prediction, we found that CRART16 

Fig. 2  CRART16 confers 5-FU resistance in CRC cells. a, b Overexpression efficiency in CRART16 in SW620 and Caco-2 cells was validated by 
fluorescence microscopy (Scale bar: 100 μm) (a) and RT-qPCR (b). ***p < 0.001. c, d The sensitivity of SW620-NC and SW620-CRART16 cells (c) and 
Caco-2-NC and Caco-2-CRART16 cells (d) to 5-FU was assessed by CCK-8 assay after treatment with increasing concentrations of 5-FU for 48 h. The 
IC50 values of 5-FU were calculated. Data are presented as the mean ± SD from three independent experiments. ***p < 0.001, **p < 0.01. e, f Effects 
of CRART16 overexpression on colony formation of CRC cells treated with 5-FU. **p < 0.01, *p < 0.05
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harbors several recognition sequences of miR-193b-5p 
(Fig.  5a). To confirm the potential relationship between 
CRART16 and miR-193b-5p, luciferase reporter vectors 
containing full-length CRART16 were constructed for 
the dual-luciferase reporter assay. We observed that com-
pared with the miRNA negative control group, the miR-
193b-5p mimics group showed dramatically reduced 
luciferase activity for the CRART16-WT reporter vec-
tors but little change in that for the empty vectors 
(Fig. 5b). In addition, RT-qPCR was performed to assess 
the expression levels of miR-193b-5p, and the results 
showed that the expression levels of miR-193b-5p were 
significantly downregulated in CRART16-overexpress-
ing cells and SW620/5-FU cells compared with the cor-
responding control cells (Fig.  5c). Taken together, these 
results revealed that the expression of miR-193b-5p 
was negatively regulated by CRART16 through direct 
binding. We further performed a rescue experiment to 
evaluate the function of miR-193b-5p in 5-FU resist-
ance induced by CRART16 overexpression. The CCK-8 
assay revealed that ectopic miR-193b-5p expression 

significantly reversed CRART16-induced 5-FU resist-
ance in both SW620-CRART16 and Caco-2-CRART16 
cells (SW620-CRART16 + NC 21.07 ± 2.79 µM, SW620-
CRART16 + miR-193b-5p mimics 11.02 ± 0.86  µM, 
p < 0.05; Caco-2-CRART16 + NC 48.67 ± 2.98 µM, Caco-
2-CRART16 + miR-193b-5p mimics 26.41 ± 3.0  µM, 
p < 0.01) (Fig.  5d, e). Collectively, these results demon-
strated that CRART16 promoted 5-FU resistance by sup-
pressing the expression of miR-193b-5p in CRC cells.

CRART16 sponges miR‑193b‑5p to modulate HMGA2 
expression
Based on previous mRNA sequencing data and bioin-
formatics analysis results, we concentrated on HMGA2 
as a potential target mRNA of miR-193b-5p. The bind-
ing sites between miR-193b-5p and the HMGA2 3′ 
untranslated region (UTR) predicted by TargetScan 
and RNAhybrid are displayed in Fig.  6a. The dual-
luciferase reporter assay revealed that compared with 
the miRNA negative control group, overexpression of 
miR-193b-5p strikingly repressed the luciferase gene 

Fig. 3  CRART16 confers 5-FU resistance in CRC cells. a, b The effects of CRART16 overexpression on cell apoptosis were detected by flow cytometry 
in CRC cells exposed to 5-FU. ***p < 0.001
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Fig. 4  CRART16 confers 5-FU resistance in CRC cells. a, b The effects of CRART16 overexpression on the expression of cleaved caspase-3 and Ki-67 
were assessed by immunofluorescence staining (Scale bar: 2 μm). *p < 0.05
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expression of HMGA2 3′ UTR reporter vectors while 
having little effect on empty vectors (Fig.  6b). The 
results indicated that HMGA2 was the target mRNA 
of miR-193b-5p. Subsequently, the expression levels of 
HMGA2 were assessed by RT-qPCR and western blot-
ting. The results showed that HMGA2 expression was 
obviously upregulated in CRART16-overexpressing 

cells and SW620/5-FU cells (Fig.  6c, d). Furthermore, 
to detect whether CRART16 regulates HMGA2 expres-
sion via miR-193b-5p in CRC cells, a rescue experi-
ment was performed and showed that introduction of 
miR-193b-5p mimics significantly attenuated HMGA2 
protein levels in both SW620-CRART16 and Caco-
2-CRART16 cells (Fig.  6e). Collectively, these results 

Fig. 5  CRART16 binds to miR-193b-5p as a ceRNA. a Schematic illustration of miR-193b-5p binding sequences in CRART16. b The dual luciferase 
reporter assay was performed to measure the luciferase activity after co-transfection of 293 T cells with miR-193b-5p mimics or NC and 
pmiR-RB-Report™-CRART16-WT vector or empty vector. *p < 0.05. c The expression levels of miR-193b-5p in CRART16-overexpressing CRC cells, 
SW620/5-FU cells and their corresponding control cells were measured by RT-qPCR. U6 was used as an internal reference. Data are presented 
as the mean ± SD from three independent experiments. **p < 0.01, ***p < 0.001. d, e The viability of SW620-CRART16 and Caco-2-CRART16 cells 
transfected with miR-193b-5p mimics or NC was detected by CCK-8 assay after treatment with stepwise increasing concentrations of 5-FU for 48 h. 
The IC50 values of 5-FU were calculated. *p < 0.05, **p < 0.01
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demonstrated that CRART16 sponges miR-193b-5p to 
upregulate HMGA2 expression in CRC cells.

CRART16 may inhibit 5‑FU‑induced apoptosis 
through the MAPK signaling pathway
In the present study, we demonstrated that CRART16 
could promote 5-FU resistance in CRC cells by attenu-
ating apoptosis. Western blotting further showed that 

CRART16 noticeably suppressed the levels of the apop-
tosis-related proteins cleaved PARP, cleaved caspase-3 
and cleaved caspase-7 when exposed to 5-FU (Fig.  7a). 
In our previous study, based on RNA-seq, Gene Ontol-
ogy (GO) enrichment and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis, we found that 
the MAPK signaling pathway was obviously differentially 
enriched between Caco-2-CRART16 and Caco-2-NC 

Fig. 6  CRART16 sponges miR-193b-5p to modulate HMGA2 expression. a Schematic illustration of miR-193b-5p binding sequences in the 
HMGA2 3′ UTR. b The dual luciferase reporter assay was performed to measure the luciferase activity after co-transfection of miR-193b-5p mimics 
or NC with pmiR-RB-Report™-HMGA2 3′ UTR-WT vector or empty vector in 293 T cells. *p < 0.05. c The mRNA expression levels of HMGA2 in 
CRART16-overexpressing CRC cells, SW620/5-FU cells and their corresponding control cells were determined by RT-qPCR. *p < 0.05, **p < 0.01. d The 
protein expression levels of HMGA2 in CRART16-overexpressing CRC cells, SW620/5-FU cells and their corresponding control cells were assessed by 
western blotting. e The protein expression levels of HMGA2 in SW620-CRART16 and Caco-2-CRART16 cells transfected with miR-193b-5p mimics or 
NC were assessed by western blotting
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cells [17]. In the present study, western blotting con-
firmed that the protein level of p-ERK was upregulated 
in both SW620-CRART16 and Caco-2-CRART16 cells 
(Fig.  7b), suggesting that the MAPK signaling pathway 
was activated by CRART16. Collectively, these results 
preliminarily showed that CRART16 attenuated 5-FU-
induced apoptosis via the MAPK signaling pathway.

Discussion
In this study, we identified that lncRNA CRART16 
expression was strikingly upregulated in 5-FU-resist-
ant CRC cells. Functionally, we demonstrated that 

CRART16 promoted 5-FU resistance in CRC cells 
by attenuating apoptosis. Further mechanistic study 
revealed that CRART16 exerts its functions by spong-
ing miR-193b-5p in CRC cells. In addition, CRART16 
modulates the expression of HMGA2 by inhibit-
ing miR-193b-5p and activates the MAPK signaling 
pathway.

In recent years, several studies have indicated that 
lncRNAs play a vital role in 5-FU resistance. For instance, 
H19 is upregulated in recurrent CRC tissues and con-
tributes to 5-FU resistance by sponging miR-194-5p and 
then promoting SIRT1-mediated autophagy in CRC [19]. 
Conversely, it is downregulated and abates 5-FU resist-
ance through the miR-193a-3p/PSEN1 axis in hepatocel-
lular carcinoma [20]. HOTAIR confers 5-FU resistance 
by sponging miR-218 and activating NF-kB/TS signal-
ing [21]. Our previous work first found that CRART16 
promotes cetuximab resistance by enhancing ERBB3 
expression by binding to miR-371a-5p in CRC cells [17]. 
In the present study, we focused on the role of CRART16 
in 5-FU resistance in CRC and found that it was mark-
edly upregulated in 5-FU-resistant cells. Moreover, after 
overexpression of CRART16, 5-FU sensitivity was suffi-
ciently attenuated, as indicated by significantly decreased 
apoptosis, suggesting that CRART16 contributes to 5-FU 
resistance in CRC cells by decreasing apoptosis.

Recent studies have shown that lncRNAs can sup-
press the expression of miRNAs by acting as ceRNA 
sponges [22]. MiRNAs, a class of ncRNAs with lengths 
of 21–25 nucleotides [23], decrease the expression and 
thereby prevent the translation of their downstream 
target mRNAs by binding to complementary sequences 
located in the 3′ UTRs of mRNAs [24]. Over the past 
two decades, the crucial roles of miRNAs in cancer have 
been discovered [25]. It has emerged that miRNAs can 
participate in 5-FU resistance [26]. MiR-135b and miR-
182 contribute to 5-FU resistance in CRC by deregulat-
ing ST6GALNAC2 and further activating the PI3K/AKT 
pathway [27]. In vitro and in vivo, overexpression of miR-
15b-5p increases 5-FU-induced apoptosis and enhances 
5-FU sensitivity by negatively regulating its NF-κB1 and 
IKK-α targets [28]. Previously, CRART16 was shown to 
promote cetuximab resistance by sponging miR-371a-5p 
in CRC cells [17]. Due to the upregulation and chem-
oresistance role of CRART16, it is reasonable to assume 
that CRART16 promotes 5-FU resistance by sponging a 
certain tumor suppressive miRNA. Our results revealed 
that the transcript levels of CRART16 and miR-193b-5p 
were negatively correlated in CRC cells. The direct bind-
ing relationship between them was validated by a dual-
luciferase reporter assay. Several studies have indicated 
that miR-193b-5p can function as a tumor suppres-
sive miRNA in different malignancies, including gastric 

Fig. 7  CRART16 activates the MAPK signaling pathway. a Cleaved 
and total PARP, caspase-3, caspase-7 levels were measured by 
western blotting. Tubulin was used as an internal reference. b ERK 
and p-ERK levels were measured by western blotting. GAPDH was 
used as an internal reference. c Schematic diagram of the mechanism 
of CRART16 in 5-FU resistance
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cancer [29], acute myeloid leukemia [30], and breast can-
cer [31]. Consistently, in our study, rescue experiments 
demonstrated that overexpression of miR-193b-5p sig-
nificantly reversed CRART16-induced 5-FU resistance in 
CRC cells.

Our study established that CRART16 upregulates 
the expression of HMGA2 by sponging miR-193b-5p 
in CRC cells. HMGA2, a member of the high-mobility 
group A (HMGA) gene family, encodes a small non-
histone chromatin-associated protein without intrinsic 
transcriptional activity that can modulate transcription 
by remodeling the chromatin architecture [32, 33]. The 
HMGA2 protein is normally expressed abundantly dur-
ing embryogenesis, but its expression is hard to detect 
in terminally differentiated tissues [32, 34]. Numerous 
studies have revealed that HMGA2 is overexpressed in 
many cancer cells [35], and overexpression of HMGA2 
is correlated with progression and a poor prognosis in 
various malignancies, including CRC [36–40]. Further-
more, several studies have demonstrated that HMGA2 
participates in 5-FU resistance in some malignancies, 
such as CRC [39, 41, 42], breast cancer [43, 44], and liver 
cancer [45]. For example, Zheng et al. [41] revealed that 
HMGA2 could promote 5-FU resistance, which could 
be reversed by miR-9-5p, in CRC cells. Wu et al. [39, 42] 
indicated that HMGA2 expression was upregulated by 
lncRNA PCAT6-mediated sponging of miR-204, ulti-
mately contributing to 5-FU resistance in CRC cells, 
which could be reversed by silencing HMGA2. Consist-
ently, in our study, we detected that HMGA2 was upreg-
ulated in 5-FU-resistant CRC cells and was modulated by 
the direct binding of CRART16 to miR-193b-5p. Taken 
together, we conclude that CRART16 contributes to the 
5-FU resistance of CRC cells by upregulating HMGA2 
expression by suppressing miR-193b-5p.

In this study, we found that CRART16 could inhibit 
apoptosis induced by 5-FU in CRC cells. Consequently, 
we tried to reveal the mechanism by which CRART16 
modulates apoptosis. Based on previous works involv-
ing RNA-seq and GO enrichment and KEGG pathway 
analysis, we found that mRNAs in the MAPK sign-
aling pathway were remarkably enriched in Caco-2-
CRART16 cells versus Caco-2-NC cells [17]. Several 
studies have demonstrated that the ERK/MAPK signal-
ing pathway might be an essential pathway of apopto-
sis in different malignancies [46–48]. Consistent with a 
present study, we found that the protein level of p-ERK 
was upregulated in CRART16-overexpressing CRC 
cells. Collectively, these results suggest that CRART16 
could activate the MAPK signaling pathway to inhibit 
5-FU-induced apoptosis in CRC cells. Intriguingly, 
overexpression of HMGA2 was found to upregulate the 
expression level of p-ERK in prostate cancer cells [49]. 

In addition, the downregulation of p-ERK by shPP4R1 
transfection was restored by HMGA2 overexpression in 
non-small-cell lung cancer (NSCLC), whereas HMGA2 
silencing attenuated the expression level of p-ERK 
induced by PP4R1 overexpression [50]. Overall, we 
concluded that CRART16 inhibits apoptosis induced by 
5-FU through the MAPK signaling pathway modulated 
by HMGA2 in CRC cells.

Although there are still some limitations in our study, 
it provides a direction for following research. Only two 
cell lines were used in this study, which may have a cer-
tain influence on the extrapolation of the experimental 
results. We will carry out validation experiments on pri-
mary cells and perform in vivo experiments in the follow-
up works.

Conclusions
In summary, CRART16 contributes to reducing the sen-
sitivity of CRC cells to 5-FU by upregulating HMGA2 
via suppression of miR-193b-5p, thereby activating the 
MAPK signaling pathway (Fig.  7c). Thus, CRART16 
could be a promising therapeutic target for improving the 
effectiveness of 5-FU-based chemotherapy in CRC.
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