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A B S T R A C T   

Deep Learning shows promising performance in diverse fields and has become an emerging technology in 
Artificial Intelligence. Recent visual recognition is based on the ranking of photographs and the finding of ar
tefacts in those images. The aim of this research is to classify the different cough sounds of COVID-19 artefacts in 
the signals of altered real-life environments. The introduced model takes into consideration two major steps. The 
first step is the transformation phase from sound to image that is optimized by the scalogram technique. The 
second step involves feature extraction and classification based on six deep transfer models (GoogleNet, 
ResNet18, ResNet50, ResNet101, MobileNetv2, and NasNetmobile). The dataset used contains 1457 (755 of 
COVID-19 and 702 of healthy) wave cough sounds. Although our recognition model performs the best, its ac
curacy only reaches 94.9% based on SGDM optimizer. The accuracy is promising enough for a wide set of labeled 
cough data to test the potential for generalization. The outcomes show that ResNet18 is the most stable model to 
classify the cough sounds from a limited dataset with a sensitivity of 94.44% and a specificity of 95.37%. Finally, 
a comparison of the research with a similar analysis is made. It is observed that the proposed model is more 
reliable and accurate than any current models. Cough research precision is promising enough to test the ability 
for extrapolation and generalization.   

1. Introduction 

The coronavirus disease (COVID-19) continues to spread globally 
with over 230 million confirmed cases and 4.7 million deaths worldwide 
as of October 2021 [1]. The coronavirus classes are subgroups of the (α, 
β, δ, γ) coronavirus [2]. The COVID-19 outbreak was caused by the se
vere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 2019 
[3]. The origin of the β community of coronaviruses has been confirmed 
to be SARS-CoV-2 [2]. By 2020, the exponential dissemination of the 
disease pushed the World Health Organization to declare COVID-19 as a 
pandemic. SARS-CoV-2 can spread in a number of forms, especially in 
polluted and overcrowded environments [4]. Governments and health
care institutions have introduced new policies to cope with over
crowding by implementing infection control systems [5]. 

The COVID-19 outbreak has triggered a drastic increase in interna
tional scientific collaboration. Deep Learning (DL) and Machine 
Learning have constructive impacts in the battle against Coronavirus [6, 

7]. DL involves using a dataset to help detect and avoid deadly illnesses. 
The healthcare industry requires support from emerging technologies, 
such as Artificial Intelligence (AI) [8], Internet of Things (IoT) [9], and 
big data [10], to deter the emergence of new Coronavirus diseases [4]. 
DL is best used to diagnose the virus and to correctly predict its propa
gation. The primary signs of COVID-19 include cough and exhaustion. 
Coughing is the consequence of several other illnesses and the effects of 
each infection differ; hence, diseases of the lung may impair the 
acoustics of cough [11]. 

The main objective of this research is to identify the observable 
characteristics of the COVID-19 cough, as demonstrated in Fig. 1. The 
proposed model, when provided with a coughing tone, would identify 
the sound as either sick or stable. To control the COVID-19 pandemic, 
wide-scale research is an imperative in areas such as X-ray, CT scan 
image of chest [2,12], and medical face mask detection [5]. Developing 
nations are experiencing a shortage of health care professionals and 
devices such as personal protective equipment. This could cause 

* Corresponding author. Department of Computer Science, Faculty of Computers and Artificial Intelligence, Benha University, Benha, 13518, Egypt 
E-mail addresses: mloey@fci.bu.edu.eg (M. Loey), ali.mirjalili@laureate.edu.au (S. Mirjalili).  

Contents lists available at ScienceDirect 

Computers in Biology and Medicine 

journal homepage: www.elsevier.com/locate/compbiomed 

https://doi.org/10.1016/j.compbiomed.2021.105020 
Received 5 September 2021; Received in revised form 2 November 2021; Accepted 2 November 2021   

mailto:mloey@fci.bu.edu.eg
mailto:ali.mirjalili@laureate.edu.au
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2021.105020
https://doi.org/10.1016/j.compbiomed.2021.105020
https://doi.org/10.1016/j.compbiomed.2021.105020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2021.105020&domain=pdf


Computers in Biology and Medicine 139 (2021) 105020

2

significant problems in the emerging countries when compared to the 
industrialized countries, especially if the disease continues to spread at a 
rate similar to that of the West. It is important to develop effective means 
of early detection and diagnosis to reduce the death rates. Cough may 
play an important role in initial diagnostic tests [13–16]. 

All the sound classification methods employ machine learning and 
DL. Machine learning classifiers include support vector machine [17] 
and decision tree [18], while DL classifiers include the Convolutional 
Neural Network (CNN) models (AlexNet [19], VGGNet [20], GoogleNet 
[21], ResNet [22]). The CNN family is designed for high speed and 
performance in image classification. The main contributions of this 
research are as follows:  

1) A novel DL algorithm that can identify COVID-19 based on a subset 
of tone. 

2) The proposed model increases sound detection efficiency by intro
ducing scalogram technique to convert sound to image.  

3) Six models for DL training are implemented to get optimal efficiency. 

The present study is organized as follows. Section 2 of this paper 
reviews the extant literature. Section 3 explains the main features of the 
dataset. Section 4 displays the proposed COVID-19 cough sound model 
in an instructive manner. Section 5 reports the findings of the tests, and 
Section 6 presents the conclusions and potentials for future research. 

2. Related Works 

This section presents a survey of the latest literature on the diagnosis 
of COVID-19 using cough sounds. Subsequently, the latest assessment of 
DL toward cough sound scan analysis is addressed. This section compiles 
existing knowledge on the use of machine learning and DL in sound 
classification. The sound classification levels may be subdivided into a 
pre-processing stage, an extraction stage, and a classification stage. Most 
of the sound detection studies focus on sound construction and sound 
recognition based on traditional machine learning techniques [23–25]. 
The present research focuses on the classification and recognition of 
cough sounds produced by those with the COVID-19 virus. Schuller et al. 
[26] implemented a DL method to classify raw breathing and coughing 
of COVID-19 patients based on CNN. They adjusted the CNN method 
that utilizes breathing and coughing audio to recognize if a patient is 
infected with COVID-19 or if they are healthy. The proposed approach is 
almost greater than the conventional baseline. While the CNN model 
achieved an accuracy of 80.7%, with the current data available, a DL 
model is able to achieve the best performance. 

In [27], Bansal et al. proposed a CNN model for COVID-19 audio 
recognition based on mel-frequency cepstral coefficients (MFCC). Two 

methods were discussed to identify audio sounds in this study. The first 
process uses the spectrogram as an input to the MFCC algorithm. Second, 
the collection of image processing pipeline is assessed via the transfer 

learning dependent technique using the VGG 16 architecture. The 
outcome of the introduced model, with a high-quality results approach, 
produced 70.58% test accuracy with 81% sensitivity. In Ref. [28], the 
authors proposed a model to distinguish the COVID-19 sounds from the 
several types of non-COVID-19 sounds. They used 1838 cough and 3597 
non-cough sounds that were categorized into 50 classes for training and 
testing (70 COVID-19 and 247 healthy sounds). The study showed that 
the overall accuracy of DL-based multiclass classifier was 92.64%. 

Other studies before the COVID-19 pandemic, such as [29], intro
duced a transfer learning model to classify cough sound events. Neural 
network models are constructed from two stages, pretraining and 
fine-tuning, and then the decoded details are collected by a Hidden 
Markov Model (HMM). In this research, three cough HMMs and one 
non-cough HMM are added to the proposed model. The tests were per
formed on a dataset obtained from 22 patients who suffered from mul
tiple respiratory disorders. Their proposed method shows that the 
qualified deep model can reach a high degree of precision of 90%. Hee 
et al. [30] proposed a machine learning classifier for asthmatic and 
healthy children. The dataset included 1192 cough samples from asth
matic children and 1240 cough samples from healthy children. Features 
such as MFCC were derived from the audio. The learned machine 
learning algorithm was generated with a Gaussian Mixture Mod
el–Universal Context Model. The study showed that the overall sensi
tivity and specificity of machine learning classifier were 82.81% and 
84.76%, respectively. In Ref. [31], Amrulloh et al. introduced a classi
fication model for pneumonia and asthma. Their approach quantified 
the sound features by MFCC, Shannon entropy, and non-Gaussian, and 
these characteristics were found to form the basis for artificial neural 
network classifiers. The proposed approach reached 89% sensitivity and 
100% precision. The findings demonstrate how our approach could be 
used to discriminate between pneumonia and asthma in open areas. 

Most of the above research studies used mathematical analyses and 
machine learning to accurately identify COVID-19 infection. Fewer 
studies were found to utilize transfer learning and CNN of cough sound 
datasets for the variables of coronavirus patients and stable patients. 
Therefore, further studies are needed on DL with streamlined efficiency 
metrics. As per the literature review presented here, it is advised to use 
cough sounds for the diagnosis of COVID-19. The new paradigms tend to 
be quicker and more successful in combatting the COVID-19 pandemic. 

3. Dataset characteristics 

A wide range of difficult data collection methods is expected in 
COVID-19 patients. A database of respiratory sounds documented dur
ing acute COVID-19 infection is presented in Ref. [32]. The aim of the 
Coswara project is to establish a diagnostic method for COVID-19 

Fig. 1. The proposed COVID-19 cough sound classification model.  
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pertaining to respiratory, cough, and speech sounds [33]. The dataset 
contained accessible deep_cough recordings from 92 COVID-19 positive 
patients and 1079 stable tones. The Sarcos1 (SARS COVID-19 South 
Africa) dataset is extremely limited with only 8 COVID-19 cases and 13 
healthy cases. Both Coswara and Sarcos are imbalanced because positive 
subjects are overshadowed by nonpositive subjects. 

This study conducted its experiments based on CoughDataset. The 
CoughDataset dataset is based on Coughvid.2 The dataset is organized 
into five classes (COVID-19, Healthy, Lower, Upper, and Obstructive) 
and includes 3325 sound files with 16 KHz, mono, 1 s duration. The 
proposed DL model was trained and tested on COVID-19 (755 sound 
files) and healthy (702 sound files) classes, as shown in Fig. 2. 

In order to render the proposed model in a public dataset, the model 
was built to provide cough classification. This cough classifier is used by 
the diagnostic engine to assess whether or not a sound is related to 
COVID-19. To evaluate the classifier, we used the CoughDataset data 
and the COVID-19 and non-COVID-19 sounds from the dataset. 
CoughDataset is a rich archive with data from an incredibly broad range 
of COVID-19 patients. This set comprises 3325 sounds divided into five 
main groups (755 of COVID, 702 of healthy, 1032 of lower, 186 of 
obstructive, and 650 of upper). The current method used 1457 cough 
sounds for preparation and research. 

4. The proposed model 

The architecture diagram of the proposed DL cough classification 
model is shown in Fig. 3. The introduced model includes two main 
components: The first component is the feature extraction, and it 
transforms sound to image based on scalogram, while the second 
component is the feature extraction and classification model based on 
the DL models (GoogleNet, ResNet18, ResNet50, ResNet101, Mobile
Netv2, and NasNetmobile). GoogleNet, ResNet, MobileNet, and NasNet 
are amongst the most widely used DL transfer learning models [34–36]. 
The proposed model used DL models for feature extraction and classi
fication in the training, validation, and testing stages. 

4.1. Scalogram 

A scalogram is the real value of the Continuous Wavelet Transform 
(CWT) coefficients of a wave [37]. This study adopts the scalogram 
approach in two measures. First, the 1-D electrocardiogram (ECG) sig
nals are preprocessed for noise reduction. Second, 2-D scalograms uti
lizing CWT are used with the preprocessed signals. The ECG transforms 
the signal from the time to the frequency domain based on CWT, as 
shown in Fig. 4. Low frequency and high frequency noise are removed by 
convolution using an average filter. The CWT utilizes internal products 
to calculate the resemblance of a wave and an examination function like 
the Fourier transform. The CWT of a function f(s) at a scale (x > 0) is 
calculated using equation (1). ϑ(s) is a continuous function in both the 
time domain and the frequency domain called the father signal. x is the 
continuously varying values of the scale parameter, and y is the position 
parameter. The outcome of the CWT coefficients is a matrix filled with 
wavelet located by scale and position. The goal of the father signal is to 
provide the generation root feature of the children signals. ECG is 
calculated by scale parameter and father signal in CWT [38,39]. 

CWT(x, y)=
1

⃒
⃒x|0.5

∫∞

− ∞

f (s) ϑ

⎛

⎝s − y
x

⎞

⎠ ds (1)  

4.2. DL models 

There are several efficient pre-train CNN that have the potential of 
passing learning. However, they require training and analysis of the 
dataset at their input layer. Several combinations and methods are 
applied to build the networks. In 2014, new transfer learning CNN 
model was proposed by C. Szegedy et al. [21] at Google. GoogleNet 
object classification deep network is composed of feature extraction 
network and classification network, as shown in Fig. 5. It contains 22 
convolutional layers [34,35]. GoogLeNet has inception layers, each of 
which conducts a particular method of convolution and then concate
nates the filters together for the next layer [40]. Nine inception modules 
are stacked vertically in sequence. At the global average pooling layer, 
the ends of the inception modules are linked to the global average. Many 
visual functions have also significantly gained from the deep models. A 
tendency to sharpen increasingly difficult issues and improve scoring 
precision has been observed over the years. The preparation of neural 
network becomes complicated and often degrades as the precision be
gins to saturate. 

Residual Network is also referred to as ResNet [22]. Residual 
Learning is structured to resolve many of the problems associated with 
DL. Deep ResNet smartly attempts to master several low-, mid-, and 
high-level features. The individual network is trained to retrieve minor 
fragments of knowledge. The idea of ‘residual’ may be understood as 
throwing away the functionality acquired throughout the previous 
layer. ResNet was inspired by VGGNet architecture. ResNet has several 
models, such as ResNet18/50/101. ResNet18 has 18 convolution layers 
with 3 × 3 filter, as shown in Fig. 6. Furthermore, ResNet50 and 
ResNet101 have 50 layers and 101 layers, respectively, and each block 
has 3 convolution layers with 3 filters (1 × 1, 3 × 3, and 1 × 1). Each 
2-layer block is replaced with this 3-layer bottleneck block, as illustrated 
in Fig. 7. Data Augmentation is a methodology that can be extended to 
diversity databases to enhance the preparation of recognition. During 
the preparation, the photos were not changed at all. Data convergence 
enhances the efficiency of the classification [34,41,42]. 

MobileNetV2 and NasNetMobile are DL models for mobile devices. 
The design of MobileNetv2 comprises a total of 155 layers and 164 links 
[43,44]. MobileNetv2 is inspired by mobile architecture based on 
depth-wise separable convolutions. The Global Average Pooling [45] 
layer was applied, which greatly decreases forward error estimation 
failure. The training weights were standardized using a batch normali
zation layer [46]. NasNet is a modular CNN that consists of simple 
building blocks that have been optimized using reinforcement learning 
[47]. A cell is made up of just a few operations, and these are replicated 
time and again due to the required size of the network. Mobile edition 
(NasNetMobile) comprises of 12 partitions of 5.3 million values and 564 
million multiply-accumulates (MACs). 

A time-domain signal is converted into a frequency-domain signal 
using a scalogram, and the signal is analyzed on multiresolution. 
Nevertheless, the mechanism retains the morphological difficulty of 
signal processing. This indicates that current basic classifiers-based 
machine learning can be poor at predicting complex signals. We per
formed a picture to DL of CNN, which exhibits optimum efficiency for 
the recognition of visual morphology. No attempt has been made to 
equate the output of DL models with the feedback of the 2-D matrix 
using wavelet transform. Thus, the present study concentrated on 
designing the most representative DL models (GoogleNet, ResNet18, 
ResNet50, ResNet101, MobileNetv2, and NasNetmobile) that are most 
commonly used for image classification. The use of scalogram to depict 
signal characteristics and its capacity to distinguish biometrically are 
the novelties of this study. As described in Section 5, the proposed model 
was tested with input signal in the form of picture, as is appreciated for 
DL models. 

1 https://coughtest.online.  
2 https://coughvid.epfl.ch. 
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5. Experimental results 

The introduced DL model is performed in the transfer mode with the 
suggested initial training setup (batch norm decay = 0.5, batch norm 
epsilon = e− 3, dropout = 0.5, weight decay = e− 3). The learning rate of 
0.01, with batch size = 8, was automatically reduced until it reached 
e− 5. This decreased the preparation period without lowering the effi
ciency levels. The DL models were trained for 20 h on a single NVidia 
2070 RTX with the CUDA and Deep Neural Network library (CuDNN) in 
Tensorflow and MATLAB. 

The dataset is split into 70% training images, 15% validation images, 
and 15% testing images. Both labeled and evaluation data were used in 
our experiment. The validation accuracy is a classification score for 
checking the learning method during the process. It enables the identi
fication of overfitting as a potential trigger. If the accuracy of assessment 
and training is different, it signifies that overfitting has already 

happened. The test’s consistency depends on how the data is learned 
from training. The split ratio depends on the volume of the dataset. To 
ensure the greatest degree of model efficiency, an effective balance must 
be struck between training and testing. Furthermore, a straightforward 
response is not possible concerning the process or parameter takes one 
over the top. It was observed that the model output increased as more 
samples were used [48]. Stochastic Gradient Descent with momentum 
(SGDM) [49] was chosen as the optimizer technique in the current study 
to improve detector performance. The setup of the DL models is shown 
in Table 1. Table 1 displays the findings from each DL transfer models 
with initial learning rate at 0.01 and the number of epochs at 20. The 
batch size was set to 8 and early-stopping was allowed if an accuracy 
change was not seen. The best optimizer strategy was found to be SGDM, 
which aims to change the weight parameters. 

To prevent over-fitting issues with the DL net, we employed the 
dropout approach [50]. Loss function L(x, y) was used as the teaching 

Fig. 2. The dataset statistics used in the proposed model.  

Fig. 3. The proposed cough sound classification model.  
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Fig. 4. Scalogram of an electrocardiogram of COVID-19 cough sounds.  

Fig. 5. GoogleNet architecture.  
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criteria, which is described as the total of binary and box loss functions, 
as illustrated in equation (2) 

L(x, t)= Lcl(xc) + δ[b> 0]Lre(k, k*) (2)  

where the bounding boxes of k and k* are denoted by [ka,kb,kw,kh], w is 
the width and h is the height of the box, and xc represents the expected 

Fig. 6. ResNet18 architecture.  

Fig. 7. Resnet50 and Resnet101 architecture. The table below shows the 
number of each block. 

Table 1 
DL models setup.  

Model Layers Batch Size Epoch Learning Rate Optimizer 

GoogleNet 22 8 20 0.01 SGDM 
ResNet18 18 
ResNet50 50 
ResNet101 101 
MobileNetv2 53 
NasNetMobile cells  
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score class c. δ[b> 0] represents the boxes of non-background at 0. The 
regression loss involves the bounding box andthe classification loss Lcl 
represented in equation (3): 

Lcl(xc* )= − log(xc* ) (3) 

The regression loss Lre is calculated as given in equations (4) and (5): 

Lre(m,m*)=
∑

j∈(a,b,w,h)

VL1

(
mj − m*

j

)
(4)  

where, 

VL1(q)=

⎧
⎪⎪⎨

⎪⎪⎩

1
2
*q2, if |q| < 0

|q| −
1
2
, otherwise

(5)  

5.1. Performance evaluation 

Testing can show a good outcome that proves the reliability of the DL 
models. The confusion matrix is a technique to calculate the research 
statistical performance. The six statistical measurements include accu
racy, sensitivity, specificity, precision, F1 score, and the Matthews 
Correlation Coefficient (MCC). The confusion matrices for the two 
groups (COVID-19 and Healthy) are shown in Fig. 8, and Fig. 9. For a 
measurement close to the truth, accuracy = (NTP+NTN)/((NTP+NFP)+
(NTN+NFN)) where NTP is the number of correctly labeled, NFN is the 
number of mislabeled, NTN is the number of correctly labeled instances 
of the rest of the classes, and NFP is the number of mislabeled instances of 
the rest of the classes. For the GoogleNet model, the confusion matrix of 
the test is shown in Fig. 8(a) and the overall accuracy is 90.7%. The 
performance of the three ResNet models (ResNet18/50/101) are illus
trated in Fig. 8(b,c,d) and the overall accuracy is 94.9%, 90.7%, and 
91.7% respectively. Resnet18 achieved the highest accuracy due to the 

Fig. 8. Confusion matrix of GoogleNet, ResNet18, ResNet50, and ResNet101.  
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Fig. 9. Confusion matrix of MobileNetv2 and NasNetMobile.  

Fig. 10. Sensitivity and specificity for all DL models.  

Fig. 11. Precision, F1 score, and the Matthews Correlation Coefficient for all the DL models.  
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small dataset. In Fig. 9, the DL mobile models show that the overall 
accuracy is 88.9% and 89.9% for MobileNetv2 and NasNetMobile 
respectively. 

The accuracy of the DL models’ predictions was measured quanti
tatively. The two widely employed classification efficiency indicators 
are sensitivity and precision. For the measurements, Sensitivity = NTP/

(( ​ NTP + NFN ​ ))/((NTP+NFN)) and Specificity = NTP/((NFP+NTN)). 
Fig. 10 introduces the sensitivity and specificity for the six DL models. 
The highest sensitivity of 97.22% is achieved by ResNet101, which re
fers to the test’s ability to recognize the cough sounds of patients with 
COVID-19. A test with the high specificity of 95.37% for ResNet18 de
termines that the test is able to recognize patients who do not have 
COVID-19. 

For measurements, the Precision = NTP /(NTP + NFP), F1 score = 2* 
NTP / (2 *NTP + NFP + NFN))) and MCC = NTP*NTN − NFP* NFN /

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(NTP + NFP)*(NTP + NFN)*(NTN + NFP)*(NTN + NFN)

√
. Fig. 11 in

troduces the precision and F1 score and MCC for the six DL models. The 
highest precision of 95.33% is achieved by ResNet18, which suggests 
that this model returns more pertinent outcomes than the others. A test 
with a high F1 score of 94.88% for ResNet18 determines the efficiency of 
the DL model. Finally, the MCC indicates that the more accurate sta
tistical rate provided a strong score in each of the four uncertainty 
matrix groups. The best MCC is for ResNet18 of 89.82%. Further data 
collection is required to determine the ability of the deep transfer 
models to be much more reliable. Despite its positive precision rates, the 
proposed research needs to be repeated on a wider scale, since it may 
also be applied for other medical applications. 

5.2. Comparative analyses and discussions 

The outcomes of the introduced model concerning the use of DL 
models in CoughDataset with scalogram images of COVID-19 patients 
and healthy individuals is shown in Fig. 12. Fig. 12 illustrates how our 
proposed model can classify data with high accuracy. Furthermore, the 
use of scalogram with DL models to depict signal characteristics and its 
capacity to distinguish biometrically are the novelties of the present 
study. Most of the related studies focus on the classification of cough 
sounds based on machine learning. Performance comparison of different 
methods in term of Accuracy (AC) is illustrate in Table 2. A related study 
presented in Refs. [26,27] used a small dataset, which included the real 
COVID-19 cough sound dataset. Much of the above study is based on the 
classification of cough and non-cough tones. By analyzing the perfor
mance of DL transfer models in handling COVID-19 cough sounds with 
the SGDM, we find that the performance measurement of all the DL 
models increases sharply in the case of cough signals with strong fre
quency. Although our recognition model performs the best, its accuracy 
only reaches 94.9% based on SGDM optimizer, the accuracy of the 
training data, and the attempt to check the labelling of the data. How
ever, any flaw in the marking of the data that managed to slip past our 
scrutiny is likely to affect the recorded results. This effect is more 

Fig. 12. Representative classifier outcomes of DL models.  

Table 2 
Performance comparison of different methods in term of Accuracy.  

Reference Methodology Dataset Result 

[26] CNN 1427 80.7% 
[27] CNN 871 70.5% 
[28] CNN 317 92.6% 
Proposed DL transfer model 1457 94.9%  
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pronounced where the data amounts to be comparatively small. 
The observations of the present study and those from the other 

separate studies listed in the Related Works section, indicate that 
distinct latent features of cough sounds can be used for effective DL 
diagnosis of various respiratory disorders. The cough sound may be used 
as a preliminary diagnostic instrument since it differentiates healthy 
coughs from the COVID-19 coughs. We investigate the possibility of 
using the scalogram of sound as feedback to DL models to determine 
which model performs the best at categorizing medical images to sound. 
ResNet and GoogleNet are found to have high accuracy in this research 
and are called deep versions of DL transfer models. NasNetMobile and 
MobileNetv2 have high accuracy for mobile versions. The tests are 
conducted on one dataset for measurement which contains audio wave 
files. ResNet18 was 4.17%, 4.17%, and 3.24% more accurate than 
GoogleNet, ResNet50, and ResNet101 respectively. The NasNetMobile 
had 0.92% higher accuracy than MobileNetv2. The studies use the sce
nario in order to determine the efficiency and consistency of the current 
classification model. The findings reveal that the maximum classifica
tion accuracy is obtained by the ResNet18 model on the cough sound 
from the checked COVID-19 dataset. The experimental findings for the 
DL classifier demonstrate how it fits the cough sounds of COVID-19 
patients better than other CNN classifiers. Therefore, it can prove 
more successful in diagnosis by sparing the doctors the intense workload 
involved with the initial sounding of the COVID-19 cough. 

6. Conclusion and future works 

The present study has introduced novel DL models for cough sound 
classification by focusing on tone, which would help curb the spread of 
COVID-19. The proposed model integrates two main components. The 
first one involved transforming sound waves to a picture, which was 
implemented using scalogram. The second component is the generation 
of universal features accompanied by additional classification using 
deep transfer models (GoogleNet, ResNet18, ResNet50, ResNet101, 
MobileNetv2, and NasNetmobile). The CoughDataset used includes 
1457 wave cough sounds of 755 patients and 702 healthy individuals. 
While our recognition model is the most reliable, its accuracy is still at 
94.9%. Cough research precision is promising enough to test this model 
for extrapolation and generalization. The results demonstrated that 
ResNet18 is the model most effective at classifying the cough sound 
relative to the other models evaluated on a smaller dataset. This study 
has been compared with others studies on COVID-19 cough sounds, and 
it was found to be more predictive and important than all of the estab
lished classifiers. 

The outcomes of the current study signal important contributions for 
future studies in machine learning and DL. Our results can be compared 
with another common type of time frequency representation named 
spectrogram. Despite its positive precision rates, the proposed research 
needs to be repeated on a wider scale in order to be employed in other 
medical applications. 
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