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Background. Increasing evidence has shown that tumorigenesis correlates with aberrant epigenetic factors, such as DNA
methylation, histone modification, RNA m6A modification, RNA binding proteins, and transcription factors. However, it is
unclear that how epigenetic genes linked with alteration contribute to osteosarcoma’s incidence and clinical prognosis. We
developed an epigenetic modification-related prognostic model that may improve the diagnosis and prognosis of osteosarcoma.
Methods. We investigated the epigenetic modification-associated genes and their clinical significance in osteosarcoma in this
research. Our gene transcriptome data were obtained from the TARGET database and the GEO database. Bioinformatics
techniques were used to investigate their functionalities. &e diagnostic and prognostic models were constructed using univariate
and multivariate Cox regression. In addition, we developed a nomogram indicating the practicability of the prognostic model
described above. Results. A risk score model constructed based on four epigenetic modification-related genes (MYC, TERT,
EIF4E3, and RBM34) can effectively predict the prognosis of patients with osteosarcoma. Based on the risk score and clinical
features, we constructed a nomogram. Conclusion. Epigenetic modification-related genes have been identified as important
prognostic markers that may assist in osteosarcoma therapy therapeutic decision-making.

1. Introduction

&e most frequent primary malignant bone tumor is oste-
osarcoma, which is primarily caused by primitive malignant
bone mesenchymal cells [1, 2]. Osteosarcoma is most
common in teenagers and young adults, with an annual
incidence of around 4.4 per million [3, 4]. Patients with
chemotherapy drug-resistant and lung metastatic osteo-
sarcoma have a poor prognosis, with a 5-year survival rate of
only 20% [5]. In addition, patients with the same clinical or
pathological conditions receiving the same treatment pro-
tocol have different clinical outcomes due to their genetic
heterogeneity [6]. As a result, in-depth investigation of the
molecular processes underlying the development of osteo-
sarcoma is critical to identifying useful prognostic bio-
markers to assist patient risk stratification, which fits with
the precision medicine approach.

High-throughput sequencing technologies, gene chips, and
large-scale RNA-seq transcriptome sequencing have been
widely used to identify genes associated with various cancers,
elucidate carcinogenesis, and improve cancer treatment [7, 8].
Osteosarcoma has received a great deal of attention recently,
including the use of biomolecules and risk models to assess the
prognosis [9, 10]. &ese methods, however, have not yet been
used in clinical practice because of insurmountable obstacles
including the possibility of overfitting owing to limited sample
sizes [11]. Epigenetics is a concept that refers to dynamic and
heritable alterations in different DNA sequences [12]. Abnor-
malities in epigenetics may affect expression regulation and
influence the balance of expression of oncogenes, leading to
tumor development [13]. &e major epigenetic alterations in
cancer development include methylation of RNA, including
m6A modifications of RNA and histone modifications, which
are considered to be the most important factors in cancer
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development [14]. Previous studies have revealed the functions
of specific epigenetically related genes but have been deficient in
their examination of the whole of this complex system. Also, the
diagnostic and prognostic significance of these genes in the
treatment of osteosarcoma remains uncertain.We identified five
different types of epigenetic modification-related genes (EMGs)
in the current study, totaling 2397 genes, including m6A
modifications of RNA, histonemodifications, DNAmethylation
modifications, RNA binding proteins, and transcription factors
[15–19]. We obtained mRNA expression profiles and clinical
data from TCGA and GEO databases for patients with osteo-
sarcoma. We used differential gene expression linked to epi-
genetic alteration to build a predictive signature in the TARGET
cohort, and we verified themodel’s stability and reliability in the
GEO cohort. &en, to investigate its possible mechanism, we
performed a functional enrichment study.

2. Materials and Methods

2.1.DataProcessing. We obtained RNA-seq data and clinical
features from TARGET database for 88 patients with oste-
osarcoma. Our inclusion criteria for patients were as follows:
(1) histologically diagnosed with osteosarcoma; (2) available
expression profilings; and (3) overall survival time greater
than 30 days. We also downloaded RNA-seq data from the
GTEx database for 396 normal skeletal muscle samples. We
selected the dataset from the GEO database (ID: GSE21257)
to be used as the validation dataset. Epigenetic modification-
related genes were referred to as EMGs according to pre-
vious studies, including m6A-related genes, histone modi-
fication-related genes, RNA-binding proteins, transcription
factors, and DNA methylation enzymes (Table S1). &e R
package “limma” was used to perform differential expression
analysis of transcriptome data.&e thresholds for differential
genes (DEGs) were set at P value <0.05 and |log2FC| >0.5.

2.2. GO and KEGG Analysis. For the biological activities of
these differentially expressed EMGs, GO and KEGG analyses
were used to thoroughly study the functions. &e “clus-
terProfiler” program in R software was used to classify genes.
Functional enrichment studies for GO keywords and KEGG
pathways were carried out using a hypergeometric distri-
bution with a significance level of P< 0.05.

2.3. Developing a PPI Network and Module Screening. We
uploaded EMGs with differential expression to the STRING
database to analyze protein-protein interactions. &e PPI
network was further constructed and displayed using the
Cytoscape 3.8.0 program. &e MCODE was used to analyze
the relevant modules and genes of the PPI network, and the
number of nodes was required to be greater than 5. P< 0.05
was considered a significant difference.

2.4. Prognostic Model Construction. By using the R package
survival, we were able to perform a univariate Cox regression
analysis on the different EMGs in the training dataset. To
explore the potential important genes, a log-rank test was

conducted. Subsequently, we constructed a prognostic
model by multivariate Cox regression analysis and generated
a risk score to assess the patients’ prognosis using the sig-
nificant candidate genes screened. &e following formula
was used to calculate the risk score for each sample:

risk score � β1 ∗Exp1 + β2 ∗Exp2 + βn ∗Expn, (1)

where β represents the coefficient and Exp represents the
amount of gene expression. Based on the median value of the
risk score, we divided the osteosarcoma patients into a low-
risk group and a high-risk group. &e difference in overall
survival (OS) between the two groups was observed using
the log-rank test.We then performed ROC analysis using the
software package surviveROC to assess the predictive power
of our prognostic model. Finally, we selected a sample of 53
osteosarcoma patients in GSE21257, a dataset containing
prognostic information, as a validation to verify the pre-
dictive power of this prognostic model.

2.5. Establishment of a Predictive Nomogram. We con-
structed a nomogram based on risk score and other clinical
characteristics to provide clinicians with a tool to predict 1-,
3-, and 5-year survival rates for patients with osteosarcoma,
and we also assessed the agreement between predicted values
and observed patient information by calibration curves.

2.6. Gene Set Enrichment Analysis. We used Gene Set En-
richment Analysis (GSEA) [20] in the TARGET dataset to
examine differences between high- and low-risk patients
identified by prognostic models consisting of EMGs. Gene
sets with an FDR less than 0.25 and a normalized P value less
than 0.05 were deemed significant.

2.7. Chemotherapy Sensitivity Analysis. We evaluated NCI-
60 by using the CellMiner database (https://discover.nci.nih.
gov/cellminer) [21], which includes 60 different cancer cell
lines from nine different malignancies. We investigated the
relationship between the expression of EMGs in the model
and drug sensitivity by using Pearson’s correlation analysis.
Table S2 shows 263 drugs licensed by the FDA or in clinical
development.

2.8. Statistical Analysis. For statistical methods, we utilized
R software version 4.0.2 and multiple R packages, with a
two-tailed P value of 0.05 indicating statistical significance.
We performed univariate and multifactorial Cox regression
analyses using the survival package. &e survival package
was used to create Kaplan–Meier analyses and to plot
survival curves. Nomogram and calibration curves were
done using the “rms” program. ROC curves were plotted
over time using the “timeROC” software.

3. Results

3.1. EMGs with Differential Expression Found in Osteosar-
coma Patients. We used various sophisticated computa-
tional techniques to perform a comprehensive examination
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of the essential functions and prognostic values of EMGs in
osteosarcoma. Figure 1 depicts the research design. &e
osteosarcoma datasets obtained from TARGET included 88
tumor samples, while the GTEx databases had 396 normal
tissue samples. A total of 2397 EMGs were included in the
analysis, with 867 EMGs meeting the study’s screening
criteria (P< 0.05 and |log2FC|> 0.5), consisting of 454
upregulated and 413 downregulated EMGs. Figure 2 shows
the expression of these different EMGs.

3.2.GOandKEGGAnalysis ofEMGswithDifferentExpression
Levels. To investigate the functions and possible mecha-
nisms of these EMGs, we classified them as up- or
downregulated according to their expression. We next
utilize these differentially expressed EMGs to perform
functional enrichment analysis. According to the findings,
downregulated differentially expressed EMGs were sub-
stantially enriched in the mRNA, ncRNA modification,
and processing associated pathways. Differentially
expressed EMGs that were upregulated were substantially
enriched in RNA splicing and mRNA processing-associ-
ated pathways. RNA transport was shown to be abundant
in both upregulated and downregulated differentially
expressed EMGs during KEGG analysis. Figure 3 shows
further information.

3.3. PPI Network Construction and Identification of Key
Modules. We used Cytoscape software to analyze a PPI
network with 531 nodes and 2941 edges constructed from
the STRING database [22] (Figure 4(a)) to investigate the
function of differentially expressed EMGs in osteosarcoma.
We identified the four most important modules by Cyto-
scape software. Module 1 had 30 nodes and 423 edges
(Figure 4(b)). Module 2 had 52 nodes and 486 edges
(Figure 4(c)). Module 3 had 44 nodes and 269 edges
(Figure 4(d)). Module 4 had 15 nodes and 67 edges
(Figure 4(e)).

3.4. Prognosis-Related Hub Epigenetic Modification-Related
Genes. After identifying 867 differentially expressed EMGs
genes, we calculated the association between differentially
expressed EMGs and OS by univariate Cox regression
analysis and Kaplan–Meier method, and the results of the
study showed that 53 candidate EMGs genes were signifi-
cantly associated with OS (Table S3). Following this, the
effect of these 53 potential hub EMGs onOSwas investigated
using multivariate Cox analysis, which revealed that four
hub EMGs were independent prognostic indicators for
osteosarcoma patients (Table 1).

3.5. Construction and Validation of the Prognostic Model.
We then constructed a prognostic model based on the four
key EMGs using the previously described method. And, a
survival analysis was performed to analyze its predictive
power. Based on the median risk score, the 88 osteosarcoma
patients were divided into two groups: a low-risk group and
a high-risk group. &e results showed that the high-risk

group had a lower overall survival rate than the low-risk
group (Figure 5(a)). We further analyzed the predictive
power of the markers comprising these four EMGs by means
of a time-dependent ROC analysis. &e area under the ROC
curve (AUC) for this EMGs risk score was 0.861 after one
year, 0.772 after three years, and 0.771 after five years
(Figure 5(i)), indicating that it has a good diagnostic per-
formance. Figures 5(c), 5(e), and 5(g) show the gene ex-
pression heatmap, patient survival, and risk score of the
prognostic model consisting of four EMGs in the low-risk
and high-risk groups. Subsequently, we performed the same
analysis on the GSE21257 dataset to analyze whether the
prediction model consisting of the four EMGs had the same
predictive performance in the cohort of osteosarcoma pa-
tients. In the GSE21257 dataset, the results showed that
patients in the high-risk group had a worse OS than patients
in the low-risk group (Figures 5(b), 5(d), 5(f ), 5(h), and 5(j)).
&ese findings above suggest that our prognostic model has
high sensitivity and specificity.

3.6. =e Prognostic Model Risk Score and Clinical Features.
To understand whether our risk score might predict the
prognosis of patients with osteosarcoma independently of
other clinical characteristics, we subsequently performed a
multivariate Cox regression analysis including age, sex,
metastasis, and risk score in the TARGET dataset and age,
sex, grade, and risk score in the GEO dataset. Figure 6 shows
that our risk scores can predict patient prognosis inde-
pendent of other clinical characteristics.

We analyzed the relationship between risk scores and
clinical characteristics of patients with osteosarcoma in the
TARGET dataset and found that risk scores were sub-
stantially higher in patients in the metastatic group than in
those in the nonmetastatic group (Figure 7(c)). However,
there were no significant differences in age and gender in
the TARGET dataset (Figures 7(a) and 7(b)). However,
there were differences in the GEO dataset (Figures 7(d)–
7(f )).

3.7. Building a Predictive Nomogram. &e four discovered
hub EMGs were then used to create a nomogram, which
allowed physicians to assess the survival of patients with
osteosarcoma (Figure 8). By using the score table in the
nomogram, each of the included variables was scored based
on the previous results. &e scores of all included factors
were then summed to obtain the total patient score, and the
predicted 1-, 3-, and 5-year survival rates for each patient
were obtained based on the total score.

3.8. GSEAAnalysis. We used the GSEA method to compare
the enrichment of GO and KEGG between the high-risk and
low-risk groups. Based on the notation derived from GO
functional enrichment analysis, cytosolic transport and
endosome to lysosome transport were substantially enriched
in the low-risk group (Figure 9(b)). We also found nine
KEGG pathways were enriched in the high-risk group at an
FDR of 0.05 (Figure 9(a)). By using the Hallmarks gene set
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from the TCGA dataset to perform GSEA analysis, it was
obtained that apical junction and apoptosis were statistically
significant, similar to the results obtained for KEGG
(Figure 9(c)).

3.9. Expression of Genes with Prognostic Efficacy and Sensi-
tivity of Cancer Cells to Chemotherapy. To discover genes
predictive of drug sensitivity, we examined the expression of
these genes in NCI-60 cell lines and observed how they

RNA expression data
of osteosarcoma from

TARGET (n=88)

Normal skeletal
muscle samples from

GTEx (n=396)

Differently expressed genes
between tumor and normal tissue

Differently expressed EMGs
related genes between tumor and

normal tissue

Functions and
pathways analysis

Univariate Cox regression analysis
to identify hub EMGs

PPI network and
module screening

Multivariate Cox regression
analysis to select prognosis

related hub EMGs

Gene-based risk score 
development in TARGET cohort

Validation cohort
GSE21257

EMGs
Nomogram

Clinical parameters
analysis

ROC
analysis

Prognostic risk
assessment

GSEA
analysis

chemotherapy
sensitivity analysis

Figure 1: Whole procedures for analyzing EMGs in osteosarcoma.
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Figure 2: &e differentially expressed EMGs in osteosarcoma. (a) Heat map. (b) Volcano plot.
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correlate with drug sensitivity. TERT and MYC were
strongly correlated with chemotherapeutic drug sensitivity,
as shown by the findings, which were statistically significant
(P< 0.01) (Figure 10). TERT and MYC, for example, have
been linked to enhanced drug sensitivity of cancer cells to
nelarabine, palbociclib, hydroxyurea, cytarabine, fluphen-
azine, fludarabine, carmustine, and other drugs.

4. Discussion

Although many advances have been made in diagnosis and
treatment in recent decades, patients with osteosarcoma still
have low survival rate. Future research should be aimed at

discovering genes that have prognostic value. Currently,
there are few biomarkers with high sensitivity for patients
with osteosarcoma. And, in past studies, bioinformatic
studies were often limited to a single database or single gene
prognostic value, and this approach has limitations. Many
elements of epigenetic alteration controlling gene expression
that interfere with tumor development have been discovered
by scientists in recent decades [23, 24]. Today’s hot topics in
oncology research include DNA methylation, m6A modi-
fication of RNA, and histone modification. Previous studies
focused on the prognosis and function of individual epi-
genetically related genes. By using bioinformatics methods
of analysis, we screened genes that can be used in the
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Figure 3: KEGG pathway and GO enrichment analysis of aberrantly expressed EMGs. (a) Upregulated EMGs. (b) Downregulated EMGs.
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(a) (b)

(c) (d)

(e)

Figure 4: PPI network construction and identification of key modules. (a) PPI network of differently expressed EMGs; (b–d) critical module
from the PPI network.
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Table 1: Four epigenetic modification-related genes significantly associated with OS in the TARGET cohort.

Gene symbol Coef HR HR.95L HR.95H P value
MYC 1.693788 5.440048 1.192569 24.81544 0.028714
TERT 1.101408 3.008399 1.320102 6.855882 0.008773
EIF4E3 −0.90781 0.403405 0.115026 1.414777 0.026192
RBM34 1.057254 2.878456 1.068718 7.752752 0.036489
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Figure 5: Risk score analysis of four-genes prognostic model in TARGET and GEO cohort. (a), (c), (e) (g), and (i) represent TARGET
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Figure 6: Cox regression analyses for the risk score. Univariate and multivariate analysis for (a, c) TARGET dataset; (b, d) GEO dataset.
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prediction of osteosarcoma patients’ prognosis and per-
formed related genes function prediction analysis, which will
help future experimental validation and research. In addi-
tion, epigenetic regulation-related genes regulate gene ex-
pression through RNA-binding proteins and transcription
factors; therefore, we collected five types of EMGs. By an-
alyzing these EMGs, we constructed a prognostic model that
can accurately predict osteosarcoma patients’ prognosis and
validated the model using another dataset.

In our study, 2397 epigenetic modification-related
genes in normal samples from the GTEx dataset and os-
teosarcoma samples from the TARGET dataset were ana-
lyzed, and we obtained 867 DEGs. On the other hand, using
Cox regression analysis, we found that 53 DEGs were as-
sociated with OS. We further constructed a prognostic
model consisting of 4 genes validated in the GEO dataset.
Our study found that high-risk group patients had more
metastases and shorter OS time than in the low-risk group.
Also, we obtained after statistical analysis that our risk
score is predictive of patient survival independently of
other clinical information. We also found high expression
of certain EMGs were associated with increased resistance
to some FDA-approved chemotherapeutic agents, and

these results suggest that targeting tumor resistance genes
may hold therapeutic promise for patients in the high-risk
group.

&is study’s prognostic model was made up of four
epigenetic modification-related genes (MYC, TERT, EIF4E3,
and RBM34). MYC is one of the most extensively studied
cancer-causing genes, having been linked to the develop-
ment, maintenance, and advancement of a variety of cancers
[25–27]. Gene amplification, chromosomal translocations,
activation of superenhancers, changes in cell signaling, al-
tered protein degradation, and mutations are among the
mechanisms that cause these changes [28–30]. TERT is
typically active only during early embryonic development
and in cells with high proliferative capacity, whereas it is
dormant in the majority of somatic cells in adults. TERT, on
the other hand, is reactivated in most malignancies, and by
lengthening telomeres, it contributes to cancer development
and progression. TERT is one of the two main components
of the larger telomerase complex, which adds particular
short repetitive DNA sequences to telomeres to lengthen
them. EIF4E is a powerful oncogene that is found in about
30% of human malignancies [31, 32]. EIF4E participates in
mRNA export and translation by binding the methyl 7
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Figure 7: &e risk score in two groups divided by clinical characteristics. (a–c) TARGET dataset; (d–f) GEO dataset.
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Figure 8: Nomogram for predicting OS of osteosarcoma patients in TARGET cohort. (a) Predictive nomogram. (b–d) Calibration curve.
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guanosine cap present on the 5′ end of mRNAs. Typically,
these transcripts encode proteins associated with prolifer-
ation, survival, invasion, and metastasis [33, 34]. &e RNA-
binding protein RBM34 has been shown to be overexpressed
in recurrent prostate cancer [35].

To exploit the underlying mechanism of the signature,
we carried out the GSEA method. &e results indicated that

the high-risk patients were mainly involved in tumor de-
velopment by activating cell apoptosis, gap junction, and
epithelial-mesenchymal transition (EMT). In terms of bi-
ological process, the gene sets were mainly enriched in ly-
sosomal transport and endosome to lysosome transport,
suggesting that patients in the high-risk group might reg-
ulate tumor progression in the autophagy pathway.
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Figure 9: GSEA analysis. (a) KEGG, (b) GO, and (c) Hallmark gene set.
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To the best of our knowledge, this is the first research to
develop a predictive signature in osteosarcoma based on
epigenetically modified genes. Our study, however, had some
limitations. Further confirmation of the signature’s efficacy in
additional independent prospective trials and functional tests
of the identified genes is required in this research. Beyond
this, we need more prospective clinical studies and larger
sample sizes to assess the diagnostic performance of the
prognostic model. As a result, there is still more work to be
done before the results can be applied to clinical practice.

5. Conclusion

A new epigenetically modified-related gene signature was
created, and it demonstrated significant clinical utility in
predicting the OS of patients with osteosarcoma. &e sig-
nature may serve as a reliable biomarker for the early de-
tection and prognosis of osteosarcoma.
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