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Abstract

Systemic infections, especially in patientswith chronic diseases,may result in sepsis: an

explosive, uncoordinated immune response that can lead to multisystem organ failure

with a highmortality rate. Patientswith similar clinical phenotypes or sepsis biomarker

expression upon diagnosis may have different outcomes, suggesting that the dynam-

ics of sepsis is critical in disease progression. A within-subject study of patients with

Gram-negative bacterial sepsis with surviving and fatal outcomes was designed and

single-cell transcriptomic analyses of peripheral blood mononuclear cells (PBMC) col-

lected during the critical period between sepsis diagnosis and 6 hwere performed. The

single-cell observations in the study are consistent with trends from public datasets

but also identify dynamic effects in individual cell subsets that change within hours.

It is shown that platelet and erythroid precursor responses are drivers of fatal sep-

sis, with transcriptional signatures that are shared with severe COVID-19 disease. It is

also shown that hypoxic stress is a driving factor in immune andmetabolic dysfunction

of monocytes and erythroid precursors. Last, the data support CD52 as a prognostic

biomarker and therapeutic target for sepsis as its expression dynamically increases in

lymphocytes and correlates with improved sepsis outcomes. In conclusion, this study

describes the first single-cell study that analyzed short-term temporal changes in the

immune cell populations and their characteristics in surviving or fatal sepsis. Tracking

temporal expression changes in specific cell types could lead to more accurate predic-

tionsof sepsis outcomesand identifymolecular biomarkers andpathways that couldbe

therapeutically controlled to improve the sepsis trajectory toward better outcomes.
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1 INTRODUCTION

Sepsis is an inflammatory syndrome caused by a systemic infec-

tion that can lead to multisystem organ failure and death. Sepsis

is responsible for a significant percentage of in-hospital healthcare

costs both in the United States and worldwide, and it is associated

with a high mortality rate.1,2 Despite many efforts, no targeted ther-

apeutics against sepsis have been developed in the last decades. One

acknowledged challenge is the complexity of the disease involving the

competing interplay between rampant inflammation (cytokine storm)

and, paradoxically, the almost simultaneous shutdown of the immune

system (immunoparalysis).3,4 Another sepsis challenge is that some

patients with nearly identical clinical phenotypes quantified by qSOFA

and APACHE scores die at every stage of the disease while others

survive.5 This supports the need to understand the molecular level

host response to sepsis, which has been studied in blood and periph-

eral blood mononuclear cell (PBMC) profiling studies by gene expres-

sion or proteomics methods.6 These studies identify several prognos-

tic biomarkers, such as lactate, procalcitonin, C-reactive protein (CRP),

ferritin, and erythrocyte sedimentation rate (ESR), which along with

clinical scores, are standardly utilized to evaluate sepsis patients and

determine their care.5

However, connecting these high-level observations to accurate clin-

ical outcomes presents an unresolved challenge, likely due to the com-

plexity and heterogeneity of this disease. Many studies have been

conducted to identify a potential sepsis molecular signature to gain

molecular insights into this heterogeneity, which could aid in diagno-

sis or treatment.7 Recently, the first single-cell analysis of the sta-

tus of immune cells in sepsis was reported, which identified abnor-

malmonocyte states associatedwith immune dysregulation.8 Here, we

apply the sameapproach to focus on the additional question of immune

cell trajectory immediately after diagnosis in sepsis survivor and non-

survivor outcomes. We performed single-cell transcriptomics analy-

ses in fatal or surviving sepsis using a within-subject study design of

PBMC collected from septic patients in the intensive care unit (ICU)

at 0 and 6 h post sepsis diagnosis. There is clinical utility in choosing

a 6-h time point, as sepsis resuscitation bundles (both in the United

States and internationally) have beenmodeled after landmark studies9

that demonstrated a significant reduction in mortality with aggres-

sive resuscitation in the first six hours after presentation. Additionally,

there is robust data10 that early administration of intravenous antibi-

otics in the first 60 min after the recognition of septic shock signifi-

cantly improves mortality. While subsequent trials (PROMISE, ARISE,

PROCESS) showed no difference in clinician-driven versus protocol-

driven resuscitation at 6 h, theCenters forMedicare andMedicaid Ser-

vices (CMS) and the Surviving Sepsis Campaign continue to advocate

for hospitals and clinicians to use the 6-h time point from initial Emer-

gencyDepartment presentation as a benchmark for resuscitation.11–13

Thus, this time point was chosen to assess molecular changes in the

patients after they had received their initial resuscitation (including

intravenous antibiotics, intravenous fluids, and vasopressor support).

Our timed analyses revealed the emergence and continuous

changes in abnormal immune cells, including new types of cells unique

to sepsis and classical cell-types present in both sepsis and healthy

controls, but with abnormal gene expression profiles and changes in

population ratios. Specifically, we observed that fatal sepsis is asso-

ciated with the expansion of platelets and erythroid precursors and

the immunosuppressive trend of monocytes. Additionally, we identi-

fied CD52 expression in lymphocytes as a potential biomarker and

therapeutic target for sepsis, where it correlated with increased lym-

phocyte activation and survival outcomes. At the cellular level, we

also observed a switch in the metabolic state from oxidative phospho-

rylation in survivors to glycolysis in nonsurvivors. Last, we observed

that fatal sepsis shared many gene signatures with severe COVID-

19 patients, indicating convergent molecular pathways in severe

disease. These included genes associated with increased platelet

activity, elevated erythroid precursors, and chemokine expression in

monocytes.

Overall, this study, which focused on within-subject analyses of

PBMCover time, offers auniqueperspectiveon thedynamic changes in

immune cells in fatal sepsis. Specifically, we identify abnormal immune

cell subsets, changes in functional pathways, and molecular signatures

at the single-cell resolution associatedwith fatal or surviving outcomes

in sepsis. This studyprovides foundationdata and identifies specific cell

subsets andmolecular pathways that can be further explored to better

predict and possibly modify sepsis outcomes.

2 RESULTS

2.1 Subject characteristics

To gain a molecular understanding of the immune state in surviv-

ing or non-surviving sepsis outcomes, we performed retrospectively

single-cell RNA sequencing on PBMCs from 5 hospitalized patients

with Gram-negative bacterial sepsis at 0 and 6 h post diagnosis. Three

patients survived (Survivor, S) and were discharged from the ICU; two

patients had fatal disease courses (Nonsurvivor, NS). Clinical parame-

ters (qSOFA and APACHE scores) were high and could not distinguish

between sepsis survivors and nonsurvivors, and all sepsis patients had

plasma cytokine levels that were dramatically elevated compared to

baseline nonsepsis volunteers (Table 1). These results are consistent

with the known phenomenon of the sepsis-induced cytokine storm.4

In contrast, re-stimulation of PBMC from the same sepsis patients

with LPS led to reduced TNF-α secretion as compared to PBMC from

nonsepsis controls (Table 1), suggesting monocytic deactivation that

has been reported in sepsis immunoparalysis.14 Flow cytometric anal-

ysis of PBMC was performed according to previously published gat-

ing strategies,15–17 and revealed different immune subset distribution

with sepsis patients, including increased neutrophils but reduced T

cell subsets, especially in the nonsurvivors (Fig. 1A and B). We also

observed the emergence of cell subsets that we were unable to define

with common PBMC surface antibodies (Fig. 1C, “other”). Together,

these data characterize clinical and peripheral immune profiles in sep-

sis. However, more detailed subsetting of specific immune cells and

insights into how temporal changes in their gene expression relate to
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F IGURE 1 Flow cytometric analysis of PBMC from healthy control (HC), non-survivor (NS), and survivor (S) sepsis patients at first blood
collection (T0). (A) Gating strategy. Neutrophils (CD66b+CD16+), FCGR3A+Monocytes (CD66b−SSCHiCD16+CD14low), CD14+Monocytes
(CD66b−SSCHiCD16−CD14hi), NK cells (CD66b−SSClowCD16+), T cells (SSClowCD3+), and B cells (SSClowMHCII+). (B) Frequency of immune cell
subsets in PBMC. (C) Immune cell proportions in PBMC
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TABLE 1 Characteristics of enrolled non-sepsis volunteers and sepsis patients at sepsis recognition (T0). Clinical parameters, cytokine levels
in the plasma, and supernatant following LPS stimulation (10 ng/mL) of PBMCs

Nonsepsis control (n= 2) Sepsis nonsurvivor (n= 2) Sepsis survivor (n= 3)

Gender Male Female Male Female Male Female Female

Age range 35-40 45-50 90-95 65-70 45-50 65-70 70-75

Sepsis etiology n/a n/a E.coli bacteremia E.coli bacteremia

APACHEII n/a n/a 18 38 31 41 19

SOFA n/a n/a 11 16 11 15 7

Time of death (days

post enrollment)

n/a n/a <30 1 n/a n/a n/a

Plasma cytokines (ng/mL)

Resistin 22.5 36.7 202 135.9 147 281 92

IL-6 N.D 0.002 30.2 142.3 133 2.48 0.31

IL-8 0.03 0.026 6.65 27.2 41.7 0.61 0.4

IL-10 N.D. N.D. 0.13 9.71 0.52 0.15 0.39

LPS-induced TNFα (ng/mL)

TNF-α 0.656 0.979 0.45 0.0046 n/a 0.047 0.1

Abbreviations: APACHE II, acute physiology and chronic health evaluation II; SOFA, sequential organ failure assessment; N.D., Not detected; n/a, not applica-

ble.

sepsis outcome were lacking, which we addressed by single-cell RNA

sequencing.

2.2 Single-cell transcriptomics identify immune
cell subsets associated with sepsis severity

Single-cell RNA-seq was performed on a 10× Genomics platform.

Consensus-based assignment of cell-types from all subjects revealed

11 cell-types: CD4+ T cells (24%), CD8+ T cells (8%), B cells (20%),

Natural killer (NK) cells (9%), CD14+ monocytes (16%), FCGR3A+

monocytes (11%), dendritic cells (DC) (3%), erythroid precursor cells

(2%), platelets (6%), neutrophils (1%), and common myeloid progeni-

tor cells (CMP) (< 1%) (Fig. 2A; Supplementary Table S1). Comparison

between the samples indicated variability between the individuals and

no striking changes between cell subsets within 6 h (Fig. 2B and C;

Supplementary Table S1). Among the sepsis patients, the female non-

survivor (P50) showed an immune profile that was distinct from the

ones in the male nonsurvivor (P34) and survivor samples. This individ-

ual showed advanced sepsis disease with fatality within 24 h, while

the other nonsurvivor passed away within 30 days and had cell dis-

tributions more similar to that of the survivors (Fig. 2C; Supplemen-

tary Table S1). Therefore, for subsequent analysis, P50 was designated

nonsurvivor, late-stage sepsis (NS LS) while P34 was labeled nonsur-

vivor, early-stage sepsis (NS ES). Sepsis fatality, even within 24 h, was

not unexpected in these studies, as these were patients admitted to

the ICU with sepsis/septic shock, multisystem organ failure, and high

qSOFA scores.

Analysis of immune subsets in all the sepsis patients indicated B

cell depletion that followed disease severity: 25% in healthy controls

(HC), 21% in S, 16% in NS ES, and 6% in NS LS (Fig. 2C; Supplementary

Table S1). CD4+ T cell lymphopenia was observed in NS LS (8% com-

pared to 20% in HC, S, and NS ES). We noted an increased proportion

of platelets in NS samples, especially in NS LS (34%). The proportion of

erythroid precursor cells was also increased with sepsis severity, from

1% in HC, 2% in S, to 6% in NS ES, and 10% in NS LS (Table S1). We

investigatedpotential gender effects among single-cell transcriptomics

and found that there were no batch effects related to gender differ-

ences with this small sample size (Supplementary Fig. S1). Together,

this immune subsetting data by scRNA-seq indicate that lymphocyte

subsets are reduced in sepsis, especially in fatal outcomes, and identify

the emergence of platelet and erythroid precursors in late-stage fatal

sepsis. However, no striking changes in immune subsetswere observed

within 6 h, prompting us to investigate transcriptional changes within

the individual cell types.

2.3 Platelet responses are a hallmark of fatal
sepsis with similar transcriptional pathways to severe
COVID-19 disease

The role of platelets in the development of sepsis pathophysiology is

increasingly recognized. Recent studies show that platelets are altered

in sepsis and that transcriptional and translational changes in platelets

are related to mortality.18 However, timed analysis during the crit-

ical early timepoints post sepsis diagnosis has not been performed.

Analysis of pathway module scores revealed that platelets in sepsis

patients presented with coagulation abnormalities (GO term coagu-

lation, GO:0050817) that was exacerbated over time, especially in

fatal disease (Fig. 3A). We also found increased platelet activation

(GO:0030168; Fig. 3B) and ATP production modules, which included

oxidative phosphorylation (OXPHOS) genes and glycolysis genes19
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F IGURE 2 Single-cell transcriptional profiling of PBMC from healthy controls and gram-negative sepsis patients. (A)Cell type UMAP
representation of all merged samples. A total of 11 cell types were identified by the consensus method. In total, 57,133 cells are depicted. (B)
Sample of origin UMAP representation of all merged samples. Cells were colored by the condition. (C)Bar plots showing the fraction of each
sample

(Fig. 3C and D). These results are consistent with previous studies that

have shown that platelet aggregation is fueled primarily by glycolysis,

and that reticulated platelets are more prothrombotic and hyperreac-

tive thanmature platelets.20 MHC class I-related genes such asHLA-A,

HLA-B,HLA-C,HLA-E, andHLA-Falso followed the same trendaccord-

ing to sepsis disease severity (Fig. 3E), indicating CD8 T cell dysregu-

lation by platelets.21,22 Translation initiation modules (GO:0006413)

were also changed in sepsis with the lowest score in nonsurvivors,

especially in theNSLS, indicating a halt in protein translation as a result

of disease (Fig. 3F). Conversely, interferon responsemodules, including

response to type I IFN (GO:0034340), IFN-γ (GO:0034341), and IFN-

β (GO:0035456) exhibited the opposite trend with increased scores

in sepsis, especially in the nonsurvivors (Fig. 3G–I). This phenomenon

might also reflect a general suppression of the protein synthetic appa-

ratus by type I IFN.23

We next focused on dynamic changes in the platelets within 6 -h.

Interestingly, analysis of 6-h trajectory transcriptional changes in indi-

vidual sepsis patients’ platelets shared pathways induced in platelets

in severe COVID-19 infections, suggesting that platelet transcriptional

changes are predictors of severe disease regardless of infection eti-

ology. The most distinguishing pathway, as identified by VENN dia-

gram, which was down-regulated in NS T0→T6 while up-regulated in

S T0→T6, was hemostasis (Supplementary Fig. S2A). We analyzed the

GO term “positive regulation of hemostasis” (GO:1900048; Fig. 3J)

and confirmed that only sepsis survivors exhibited an upward trend,

suggesting improved platelet function. Conversely, the most shared

pathways that were up-regulated in NS T0→T6 but down-regulated

in S T0→T6 included translation initiation, ribosome, and COVID-19

(Supplementary Fig. S2B). To further investigate shared pathways in

COVID-19 and sepsis, we investigated genes fromKyoto Encyclopedia
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F IGURE 3 Platelet transcriptional changes over 6 h are associatedwith sepsis severity. (A– I)Comparisons of pathwaymodule scores across
four conditions in platelets. The includedmodules contain genes related to (A)Coagulation, (B) Platelet activation, (C)OXPHOS, (D)Glycolysis, (E)
MHCClass II, (F) Translation initiation, (G)Response to type I IFN, (H) Response to IFN gamma, (I)Response to IFN beta. (J–O) Pathwaymodule
scores comparison between T0 vs. T6 in platelets. The includedmodules contain genes related to (J) positive regulation of hemostasis, (K)
COVID-19, (L) response to type I IFN, (M) response to IFN-β, (N)OXPHOS, and (O) glycolysis. The differences in scores associated with adjusted
P-values below 0.05, 0.01, 0.001, and 0.0001 are indicated as *, **, ***, and ****, respectively and “ns” – not significant. The significance analysis was
performed usingWilcoxon tests
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of Genes and Genomes Coronavirus disease - COVID-19 (hsa05171)

and found that the module scores were significantly increased in NS

T6 platelets and decreased in S T6 platelets (Fig. 3K). The COVID-

19 megakaryocyte (MK) cell trajectory study reported dysregulated

IFN responses inMK cells from patients with severe COVID-19 severe

patients, including increased metabolic activity of MKs along the dis-

ease trajectory.24 We investigated if IFN response modules changed

within the 6-h timeframe and observed that the IFN responses, includ-

ing type I IFN and IFN-β (Fig. 3L and M), were significantly increased

at T6 in NS LS but decreased at T6 in NS ES and S patients. Changes in

metabolic activity within 6 h included significantly increased OXPHOS

scores in NS LS at T6, while NS ES and S patients had significantly

decreased OXPHOS scores (Fig. 3N). The glycolysis score in NS ES

was also significantly decreased at T6 (Fig. 3O). Another COVID-19

study reported that circulating platelet-neutrophil, -monocyte, and -

T-cell aggregates were elevated in COVID-19 patients compared to

healthy donors.25 We used the ligand and receptor database from

iTalk26 to score these interactionsby calculating theproduct of average

receptor expression and average ligand expression in the respective

cell types (see Materials and Methods). Platelet-monocyte interaction

scores were significantly elevated in NS LS (Supplementary Fig. S2C).

The increased aggregation score to monocytes may explain the unex-

pected appearance of the platelets in the PBMC fraction. This aggrega-

tionwas specific tomonocytes, as platelet-neutrophil and -T-cell scores

were decreased (Supplementary Fig. S2D and E).

Together, our study confirms the theory that platelet coagulation,

activation, and energy consumption are functionally linked to sepsis

disease severity and identifies shared pathways with COVID-19 dis-

easeprogression. Further, our timedanalysis reveals that theseplatelet

responses are dynamic, changing within a 6-h window, especially in

the late stages of fatal sepsis. These data implicate platelet dysfunc-

tion as prognostic for disease progression in many infections and sug-

gest that targeting these cell types may be important to prevent fatal

outcomes.

2.4 Hypoxic stress is a driving factor for
erythropoiesis in sepsis with shared pathways in
COVID-19 infection

Based on the immune profiling results, which revealed the emer-

gence of erythroid precursors especially in NS LS (see Fig. 2B and

C), we investigated transcriptional changes in these cells. Only traces

of these cell types are typically present following PBMC isolation

by gradient centrifugation, therefore their high levels may suggest

abnormal expansion and activation in the oxygen-limiting sepsis envi-

ronment. Indeed, erythrocyte precursors can be generated through

stress erythropoiesis27 as a response tohypoxic conditions.28,29 To test

whether these cells were responding to hypoxia, we analyzed the aver-

age HIF1A expression in each cell. To avoid the drop-out events known

as artifacts in single-cell studies, we removed cells with HIF1A “zero”

expression, which left us with 32,185 cells. The HIF1A had the high-

est expression in NS LS, followed by NS ES, HC then S (Fig. 4A). We

investigated dynamic transcriptional changes in erythroid precursors

by identifying differentially expressed genes (DEGs) in T0 versus T6.

Only the NS LS patient exhibited statistically significant DEG, with the

inflammatory protein S100A9 being significantly increased at T6 (adj.

P-value< 0.001, log2FC= 0.34).

Wenext examined gene expression differences in the erythroid pre-

cursor cells of sepsis patients and healthy controls (Fig. 4B). Erythroid

precursors in sepsis expressed genes related to hypoxic stress (hydro-

gen peroxide catabolic process, erythrocyte differentiation, cofac-

tor catabolic process, and cellular oxidant detoxification). The down-

regulated pathways in sepsis versus HC included cytoplasmic transla-

tion, ribonucleoprotein complex assembly, and RNA splicing, suggest-

ing that erythroid precursors in sepsis underwent a halt in protein

translation. Our results suggest a strong association between erythro-

poiesis and fatal sepsis outcomes. This association was also found in a

study on COVID-19 infections,24 which proposed that erythroid cells

are pivotal components of an unfavorable course of COVID-19. We

also investigated if other immune cells were responding to hypoxia and

found that monocytes from the sepsis nonsurvivors had the highest

HIF1A expression compared to the other patients and other cell types

(Fig. 4C). Combined, our findings indicate that sepsis drives hypoxic

stress that is associated with disease severity as well as dysfunctional

erythropoiesis, which is a shared mechanism in many disease etiolo-

gies, including COVID-19 infection.

2.5 Monocyte transcriptional changes occur
within hours of sepsis recognition and reflect
immunosuppression

Monocytes are innate immune cells that sense and respond to

pathogen invasion by producing inflammatory cytokines and mediat-

ing pathogen killing. However, a dysregulated monocyte response can

be damaging and fatal. Studies have found that in sepsis, monocytes

may produce a flood of inflammatory cytokines triggering a “cytokine

storm”, causing widespread inflammation that can lead to a collapse in

blood pressure, coagulation abnormalities, and ultimately organ fail-

ure and death. In the later stages, patients who survived the cytokine

storm may die from immunosuppression, called “immune paralysis” in

its extreme form.30 Moreover, the proinflammatory and immunosup-

pression stages might overlap.31 The stages at which the immune sys-

tem transits from proinflammatory to suppressive at the cellular and

molecular level have not been well studied, mostly because analyses

are only performed at a single snapshot in time. To address this ques-

tion, we analyzed samples from the same patients within 6 h of sep-

sis diagnosis, providing a picture of the timed trajectory of monocytes

during this critical timewindow. Investigation of theGOTerm cytokine

activity (GO:0005125) indicated that most cytokines were higher in

sepsis nonsurvivors (NS) compared to survivors (S) (Fig. 5A; Supple-

mentary Fig. S3A). However, when investigating changes between T0

and T6, we found that the cytokines were down-regulated in the

NS patients from T0 →T6, especially in NS LS (Fig. 5B and C; Sup-

plementary Fig. S3B and C). The observation may indicate that the
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F IGURE 4 Elevated erythroid precursor cells are associatedwith hypoxic stress. (A)The expression of the HIF1A gene in erythroid
precursors across four conditions. Violin plots are ordered according to the decreasing average value of HIF1A expression. (B) Pathway
enrichment when comparing erythroid precursors in sepsis vs. HC. All the GO terms are aligned to representative ones by Revigo70 with a
similarity of 0.4. The top 10 -log10 adjust P-values were selected shown in the heatmap. Color red are up-regulated pathways in sepsis patients.
The color blue is downregulated pathways in sepsis patients. (C) The comparison of expression of HIF1A in the four conditions. Heatmap coloring
represents log-normalizedmean gene expression counts averaged across all cells

NS patients had already passed the proinflammatory stage and had

instead begun immune shutdown. The proinflammatory cytokines up-

regulated in NS compared to Smonocytes, but down-regulated at time

T6 included CCL2, CCL7, and NAMPT. The chemokines CCL2, CCL7

are vital for the recruitment of CC-chemokine receptor 2-positive

(CCR2+) monocytes.32 CCL2 and CCL7 expression were also enriched

in the bronchoalveolar fluid from patients with severe COVID-19.33

The only cytokine that was consistently up-regulated in NS T0 ver-

sus T6 but down-regulated in S T0 versus T6 was NAMPT (Fig. 5B-D;

Supplementary Fig. S3B-D). NAMPT has been reported as a biomarker

in sepsis and sepsis-induced acute respiratory distress syndrome

(ARDS) inmultiple studies.34–37 TheNAMPT/TLR4 inflammatory path-

way has also been studied as the COVID-19-induced ARDS drug

target.38 The cytokines down-regulated over time in NS monocytes,

but up-regulated in S monocytes at T6, included TNFSF10/TRAIL, an

immunoregulator that mediates leukocyte apoptosis which had been

reported to enhance survival in murine polymicrobial sepsis.40, and

TNFSF13B/BAFF, a stimulatory factor for B cells41,42 (Fig. 5D; Supple-

mentary Fig. S3D). These data suggest that fatal sepsis is associated

with mixed effects on lymphocyte responses, which may be mediated

bymonocytes.

To profile metabolic changes in monocytes, we investigated the

genes that belong to OXPHOS and glycolysis modules, and exam-

ined correlation with HIF1A, which was the most highly expressed in
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F IGURE 5 Fatal sepsis patients exhibit immunosuppressive pathways inmonocytes. (A-D)Differential expression genes in CD14+

monocytes from (A)NS versus S, (B)NS LS T0 versus T6, (C)NS ES T0 versus T6, (D) S T0 versus T6. Volcano plots were preparedwith R package
EnhancedVolcano.71 (E and F) The correlations between the HIF1A expression andmodule score for (E)OXPHOS and (F) glycolysis in CD14+
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monocytes (see Fig. 4C). The OXPHOS modules from all conditions

were negatively correlated with HIF1A (Fig. 5E; Supplementary Fig.

S3E). On the other hand, the glycolysis modules were positively corre-

lated with HIF1A (Fig. 5F; Supplementary Fig. S3F). Within the group

of sepsis survivors, the metabolic activity in CD14+ and FCGR3A+

monocytes was dominated byOXPHOS at both time points. Moreover,

the FCGR3A+ monocytes in S had more OXPHOS energy consump-

tion at T6.Overall, monocytes from the sepsis nonsurvivors had shifted

energy consumption from OXPHOS to aerobic glycolysis, potentially

indicating host defense activation such as production of reactive oxy-

gen species (Fig. 5G). However, within the 6 h timeframe, both CD14+

and FCGR3A+ monocytes from sepsis nonsurvivors exhibited a drop

in their glycolysis module scores (Fig. 5G; Supplementary Fig. S3G).

One group had demonstrated that defects in the energy metabolism

of leukocytes underlie immune paralysis in sepsis, and restoring the

ability of immunotolerant leukocytes to mount a glycolytic response

might represent a promising novel therapeutic approach to revert the

immunotolerant state of sepsis.43 The energy shift to glycolysis, and

the decrease in glycolysis consumption at T6 in NS suggest that these

monocyteswere undergoing immune suppression at the point of sepsis

recognition. In contrast, the glycolysis scorewas increased at T6 in sep-

sis survivors. We also observed that the HLA-DR module score, as an

indicator ofmonocyte antigen-presenting function,44 wasdecreasedat

T6 in the NS LS, indicating immune suppression. However, in the S and

NS ES monocytes, the HLA-DR expression was increased at T6, espe-

cially in S (Fig. 5H; SupplementaryFig. S3H). Together, thesedata reveal

dynamic transcriptional changes inmonocyteswithin 6hof sepsis diag-

nosis, which follow opposite trends in surviving and fatal outcomes.

Fatal sepsis is associated with heightened inflammatory andmetabolic

activity that is down-regulated over time, while improved sepsis out-

comes are associatedwith the restoration ofmonocyte functionwithin

6 h.

2.6 CD52 is a prognostic biomarker for beneficial
outcomes in sepsis and is associated with lymphocyte
activation

Our preliminary analysis indicated severe lymphopenia in sepsis, espe-

cially in the NS LS (see Fig. 2). We further investigated the transcrip-

tional profile of the lymphocytes in sepsis patients and whether it

changed over 6 h. Evaluation of activation module scores for CD4+,

CD8+ T cell, and B cells (GO terms T cell activation, GO:0042110; B

cell activation, GO:0042113) indicated increased activation over 6 h

in surviving sepsis patients (Fig. 6A; Supplementary Fig. S4A). In con-

trast, NS ES had significantly decreased activation scores over time in

all lymphocytes (Fig. 6B; Supplementary Fig. S4B). NS LS also exhibited

activation scores that decreased significantly, but only in CD4+ T cells,

mainly due to the severe CD8+ T cell and B cell lymphopenia (Fig. 6C;

Supplementary Fig. S4C).

We next applied DEG analyses between T0 versus T6 in all patients’

lymphocytes (Fig. 6D–F, only the genes with |log2FC| > 0.25 and

adjusted P-value < 0.05 are shown). To our knowledge, no studies

have investigated transcriptional response changes of individual

cell types within hours in sepsis patients; however, a study utilizing

cecal ligation and puncture as a mouse model for sepsis reported

reduced CD4+ T cell activation in the spleen after 6 h, consistent

with our current data.45 We therefore investigated the transcripts

that were reported in this mouse study: CCR2, CCR6, CD3, CD48,

CD52, CD80, ITGB7, SELL, SLAMF6, and Thy1. Of all these genes, only

some of them were significantly changed between T0 and T6 in sepsis

(Fig. 6D-F). Our analysis identified that CD52, a surface glycoprotein

involved in lymphocyte activation, was the most relevant biomarker to

predict lymphocyte status and disease outcome. CD52 expression was

increased over 6 h in the T and B cells of survivors, but not in sepsis

nonsurvivors (Fig. 6D-F). We investigated the other markers, however,

did not observe consistent trends associated with protection. To

validate that CD52 is correlated with improved lymphocyte function,

we plotted CD52 expression against GO term T cell activation and B

cell activation module scores. In CD4+ T cells, we observed significant

positive correlations in all conditions (Fig. 6G), while in B cells, there

were significant positive correlations in the HC, NS LS, and S, but

not in the NS ES patient (Supplementary Fig. S4D). Together, our

data indicate that increased CD52 expression within hours of sepsis

recognition is associated with improved sepsis outcomes. Here, CD52

may act to promote restoration of protective lymphocyte responses,

and thereforemay serve both as a biomarker for sepsis progression, or

as a therapeutic target to promote immune homeostasis.

3 DISCUSSION

Sepsis is a dysregulated systemic inflammatory response,which results

in organ injurywithmortality rates of 15–25%.13,46 Themolecular level

heterogeneity of sepsis makes the study of the dynamics of the indi-

vidual cell types the ideal tool for understanding sepsis progress and

response. However, from over 1000 single-cell transcriptomics studies

that have been published to date,47 only 3 have studied sepsis.8,48,49

These studies focused specifically on only two groups of cells: mono-

cytes andmyeloid-derived suppressor cells. In contrast, our study used

monocytes across each condition. R‑values from Pearson’s correlation, exact 2-sided P-values, and the 95% confidence intervals are shown on
each graph. Each dot represents a single cell. Only cells with HIF1A expression≠ 0were included in the analysis. Green, orange, red and blue points
represent cells fromHC, NS ES, NS LS, and S samples, respectively. (G) The percentage of cells with ATP-related pathwaymodules in CD14+

monocytes across healthy controls and sepsis conditions at T0 and T6. The color saturation indicates the average expression level, and the circle’s
size indicates the percentage of cells expressing a givenmodule. (H)HLA-DR-related genes expression in CD14+ monocytes across healthy
controls and sepsis conditions at T0 and T6. Violin plots are orderedwith the decreasing expression average value of HLA-DR-associated genes.
The color saturation indicates the average expression level, the darker the color, the lower the average expression level
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F IGURE 6 CD52 expression correlates with lymphocyte activation. (A-C) T cell activation pathwaymodule score comparison between T0
and T6 in T cells. (A) Survivors (S), (B)Nonsurvivor early stage (NS ES), and (C)Nonsurvivor late stage (NS LS). The differences in scores associated
with adjusted P-values below 0.05, 0.01, 0.001, and 0.0001 are indicated as *, **, ***, and ****, respectively. The significance analysis was performed
usingWilcoxon tests. (D-F)Differential gene expression analysis showing up- and down-regulated genes with |log2FC|> 0.25 and adjusted
P-value< 0.05 across all 5 sepsis patients between T0 and T6 in (D)CD4+ T cells, (E)B cells, (F)CD8+ T cells. (G)CD52 expression and its
correlation with the T cell activation pathwaymodule score in CD4+ T cells across four conditions. R‑values from Pearson’s correlation, exact
2-sided P-values, and the 95% confidence intervals are shown on each graph. Each dot represents a single cell. Only cells with CD52 expression ≠ 0
were included in the analysis. Green, orange. red and blue points represent cells fromHC, NS ES, NS LS, and S samples, respectively
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the centrifuge gradient-based approach to isolate PBMC before per-

forming single-cell RNA-seq, which expanded the cell subsets investi-

gated. We additionally collected samples at two different time points

from differing outcomes in sepsis, which provided temporal details of

the immune response in severe sepsis. These focused analyses were

able to identify specific immune cell subsets and gene expression pat-

terns over time that correlated with beneficial or fatal outcomes. Our

results are consistent with the previous studies both in single-cell

and bulk sepsis transcriptomic studies, but also bring details not seen

in other studies, notably molecular changes that occur within hours.

Based on this data, future studies evaluating additional time points

(such as 24 h and post-discharge) would be relevant to investigate

whether the first 6 h are predictive of recovery in surviving sepsis

patients. We report in this study that the peripheral blood cell compo-

sition of nonsurvivors is more “distant” from healthy controls than the

blood cells of survivors, and that severe lymphopenia occurs in fatal

sepsis. We also explored cell types that were not previously investi-

gated in sepsis single-cell studies, such as platelets and erythroid pre-

cursors, and observed distinct changes in monocytes and lymphocytes

within 6 h. Neutrophils are a dominant cell subset in the blood with

established antimicrobial but also inflammatory roles in sepsis50,51;

however, we were unable to investigate this subset given that most

neutrophils are not recovered in the PBMC fraction, and technical

issues exist with scRNA-seq of this cell type.

We found that plateletswere expanded in sepsis patients, especially

in fatal outcomes. Examination of transcriptional changes over time

in platelets from the nonsurvivor sepsis patient revealed increased

expression of genes related to coagulation, platelet activation, and

ATP production modules, including OXPHOS genes and glycolysis

genes. These changes were also reported in a COVID-19 MK study,24

suggesting that platelet dysfunction is a shared feature of both dis-

eases, and indicative of clinical severity. This study identified increased

metabolic activity ofMKs compared to healthy controls. Another study

from Holmsen et al.52 demonstrated a correlation between platelet

energy demand and aggregation. Consistent with this, we found that

the platelets in nonsurvivor sepsis patients had dramatically reduced

translation initiation pathways along with the induction of the IFN

response pathways, suggesting a general suppression of the protein

synthetic apparatus by IFN.23 We also observed that the transcrip-

tional changes in platelets in fatal sepsiswere similar to severeCOVID-

19 patients, including lasting IFN responses, increased metabolic

activity, and elevated circulating platelet-monocyte aggregates. Sev-

eral studies focus on using antiplatelet agents such as aspirin with

sepsis,53,54 and a recent COVID-19 study demonstrated that aspirin

prescriptionwas associatedwithdecreasedmortality rates forCOVID-

19 positive patients enrolled at the Veterans Health Administration.55

Coagulation disturbances (bleeding and/or clotting) are prominent

clinical concerns in sepsis and COVID-19 and deserve further inquiry.

Our results support the potential for antiplatelet therapies for the

treatment of severe sepsis.

Further investigation of the erythroid precursor subset that was

expanded in fatal sepsis revealed the upregulation of genes related

to hypoxic stress and apoptosis, reflective of the hypoxic environ-

ment in severe sepsis that leads to emergency erythropoiesis. Inter-

estingly, in a longitudinal COVID-19 study,24 erythroid cells were

also identified as a hallmark of severe disease with defined molec-

ular signatures linked to a fatal COVID-19 disease outcome. We

also observed that erythrocyte expansion and expression of genes

related to hypoxic stress were significant predictors of fatal outcomes.

Within the erythroid precursor subset,we identified that inflammatory

alarmin S100A9 expression dynamically changed in fatal sepsis, with

significant increases at T6. S100A9, together with and S100A8 and

S100A12, were previously reported as biomarkers for higher risk of

death in septic shock patients.56 S100A9was also identified in a human

bone marrow erythropoiesis study,57 which reported its up-regulation

at the last stage of maturation of nucleated red blood cell precursors.

Together with these studies, our data suggests that S100A9 expres-

sion reflects stress erythropoiesis and is associated with rapid fatal-

ity in sepsis. S100A9 may serve as a valuable biomarker to stratify

sepsis severity, in addition to the clinical scores and other plasma

markers.

Consistent with previous studies showing that monocytes play a

significant role in the sepsis pathogenesis,30,31 we observed aber-

rant gene expression and pathway changes in the monocytes of sep-

sis patients. Overall transcriptional profiles indicated that monocytes

were in a hyperinflammatory state in sepsis nonsurvivors. However,

focused analyses within the 6-h time window revealed that mono-

cytes from NS patients were undergoing immune suppression, includ-

ing decreased pro-inflammatory cytokine andHLA-DR expression, and

reduced glycolysis energy consumption at T6. Within the 6-h time

window, we also identify CD52 as the biomarker for B and T cell

activation that correlates with beneficial outcomes. CD52 is a gly-

coprotein expressed on the surface of mature lymphocytes, mono-

cytes, dendritic cells, and NK cells,58 therefore surface expression

could be quantified to predict sepsis progression. Most CD52 targeted

therapeutic approaches aim to delete CD52-expressing cells, such as

the monoclonal antibody alemtuzumab, which treats chronic lympho-

cytic leukemia and multiple sclerosis.59 However, our study suggests

that promoting CD52 signaling may be beneficial to improving lym-

phocyte function. In fact, in a study using alemtuzumab, one patient

with aggressive multiple sclerosis developed sepsis after treatment.60

Additionally, CD52 had been proposed as a prognostic biomarker

in breast cancer, where it is correlated with improved outcomes

likely due to increased immune tumoricidal activity.61 CD52 might

therefore serve as a biomarker for sepsis prognosis and provides a

new therapeutic target for sepsis patients, however, determining its

influence on sepsis therapy would require an expanded sample size

study.

In conclusion, results from this study indicate that the initial status

of the sepsis patient and the dynamic changes in cell behavior during

the critical period following diagnosis significantly affect sepsis out-

come. Therapeutic intervention to modify these immune trajectories

may therefore lead to improved outcomes in these patients that could

be identified by biomarkers reported in this study, such as CD52 or

S100A9. Future studies that focus on these dysfunctional cell subsets

at the individual level, addressing their metabolic dysfunction or how
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to promote their recovery from exhaustion, may provide therapeutic

and prognostic strategies for sepsis, which could be applicable to other

fatal diseases such as COVID-19.

4 MATERIALS AND METHODS

4.1 Human blood collection and harvest of
PBMCs

4.1.1 Enrollment

Peripheral blood was collected from nonsepsis donors from the River-

side Free Clinic and septic patients with signed informed consent and

approval of the University of California, Riverside (UCR, #HS-17-707),

and Riverside University Health System (RUHS, #1024190-3) Institu-

tional ReviewBoard. Sepsis patient enrollment was performed accord-

ing to the following inclusion criteria: (1) Admission to Intensive Care

Unit; (2)Agegreater thanor equal to18years old; (3) Suspectedor con-

firmed infection; (4) qSOFA score ≥ 2 (qSOFA variables: altered men-

tation [GCS ≤ 13], systolic blood pressure < 100 mm Hg and respira-

tory rate> 22 breaths/min) and/or; (5) Lactate greater than or equal to

2.0 mmol/L and on vasopressor therapy to maintain MAP > 65 mmHg

after 30mL/kg intravenous fluid bolus.

4.1.2 PBMC analysis

Blood was recovered in Vacutainer glass collection tubes with heparin

(BD Biosciences). PBMCwere isolated by gradient centrifugation with

Histopaque-1077. Plasma was recovered for cytokine quantification

by cytokine bead array (BD Biosciences) and resistin ELISA (Pepro-

tech). Cell aliquots were frozen in liquid nitrogen. Following blood

draw, PBMC isolation was performed within 24 h through density gra-

dient centrifugation, and cells were stored immediately in liquid nitro-

gen. Flow cytometry characterization of PBMC involved incubation

with Human TruStain FcX™ (Biolegend) and staining with primary Abs:

CD14 (HCD14, Biolegend), CD16 (3G8, Biolegend), CD66b (G10F5,

eBioscience), CD3 (OKT3, eBioScience). Samples were acquired on a

BD LSRII and analyzed on FlowJo (v10).

4.1.3 10X Genomics

For single-cell sequencing, thawed PBMC live cells were recovered

by column-based dead cell removal kit (Miltenyi), and viable cells

were confirmed by hemocytometer counting (>85% viable). A total

of 15,000 cells per sample were loaded onto the 10x genomics plat-

form, and cDNA libraries were prepared according to the manufac-

turer’s instructions (Chromium Next GEM Single Cell V3.1). Samples

were sequenced at the UCSD Genomics center on the NovaSeq plat-

form at 250M reads/sample.

4.1.4 Process and quality control of the single-cell
RNA-seq data

The Cell Ranger Software Suite (v.3.1.0) was used to perform sample

de-multiplexing, barcode processing, and single-cell 5′ unique molecu-

lar identifier (UMI) counting. Specifically, splicing-aware aligner STAR

was used in FASTQs alignment. Cell barcodes were then determined

based on the distribution of UMI counts automatically. The following

criteriawere applied to each cell of four sepsis samples and twohealthy

controls: gene number between 200 and 6000, UMI count> 1000, and

mitochondrial gene percentage < 0.2. After filtering, a total of 57,133

cells were left for the following analysis. Finally, all samples’ filtered

gene-barcodematrixwas integratedwith Seurat v.362 to remove batch

effects across different samples.

4.1.5 Dimensionality reduction, clustering, and
consensus-based cell-type annotation

We first analyzed scRNA-seq data from 57,133 cells with 4761 cells

on the average per sample. Two-time points were analyzed per sep-

sis patient. UniformManifold Approximation And Projection was used

to visualize the cell populations (Fig. 2A and B). The filtered gene bar-

codematrixwas normalized using “LogNormalize”method fromSeurat

package v.3 with default parameters. In the next step, the vst method

implemented in the FindVariableFeatures function of the Seurat pack-

age was applied to find the top 2000 most variable genes. It was fol-

lowed by the principal component analysis (PCA), and the application

of the uniform manifold approximation and projection algorithm for

cell data visualization performed based on the top 50 principal com-

ponents. Then the graph-based clustering was performed by applying

the FindClusters function of the Seurat package on the PCA-reduced

data. With the resolution set to 1.0, 57,133 cells were grouped into 34

clusters. The first method of assignment of cell types to cell clusters

was based on their canonical markers: B cells (MS4A1), CD14+ mono-

cytes (CD14 and LYZ), CD4+ T cells (IL7R, CCR7, and CD27), CD8+

T cells (CD8A), DCs (FCER1A, CST3, CD123, and GZMB), erythroid

precursors (GYPB and AHSP), FCGR3A+ monocytes (FCGR3A and

MS4A7), neutrophils (JAML and SERPINB), NK cells (GNLY andNKG7),

and platelets (PPBP). Independently from this initial marker-based

cell type assignment, we applied cell-type annotation tools SingleR63

and scCATCH.64 The SingleR program first identifies genes with sig-

nificant variation between cell types in the reference data set, com-

pares each cell’s scRNA-seq data with each sample from the refer-

ence data set, and performs iterative fine-tuning to select the most

likely cell type of each cell. The microarray dataset from Human Pri-

mary Cell Atlas Data with assigned labels was used as the reference.

Finally, each cluster was assigned a cell type with the highest percent-

age of cells assigned to that type by SingleR. The third applied method

of cell type assignment was scCATCH, where cell types are assigned

using the tissue-specific cellular taxonomy reference databases65–67

and the evidence-based scoring protocol. Our final assignment of cell
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types to clusters was based on the consensus of the three methods

mentioned above as follows: first, each cluster was assigned a cell

type selected by most methods if possible. If each method gave a dif-

ferent result, then the priority was given to the assignment based

on canonical markers. If the markers-based assignment was inconclu-

sive, the consensus assignment was based on the results from SingleR

method.

4.1.6 Differential gene expression analysis and
functional annotation of genes

The MAST method68 from the Seurat v.3 package (implemented in

FindAllMarkers function)was usedwith default parameters to perform

differential gene expression analysis. A difference in gene expression

was considered significant if an adjusted P-valuewas below0.05. The

false discovery rate (FDR) adjustment was performed by MAST. Only

genes with FDR-adjusted P-values < 0.05 were considered in the sec-

ond step of DEG analysis, where we analyzed differences between the

results of the comparisons listed earlier. Pathway enrichment analysis

was performedby clusterProfiler69 using databaseGeneOntologybio-

logical process terms (GO-BP) and Kyoto Encyclopedia of Genes and

Genomes pathways. The clusterProfiler program was used for statisti-

cal analysis and visualization of functional profiles for DEGswith FDR-

adjusted P-value< 0.05.

4.1.7 Comparison of module scores

We used cell module scores to measure the degree to which indi-

vidual cells expressed certain predefined expression gene sets. The

AddModuleScore function from the Seurat v.3 package with default

settings was used to perform all calculations and comparisons of

module scores. We compared the expression of modules such as

T cell activation (GO:0042110), B cell activation (GO:0042113),

coagulation (GO:0050817), platelet activation (GO:0030168),

OXPHOS, glycolysis, MHC class I, MHC class II, translation initiation

(GO:0006413), response to type I IFN (GO:0034340), response

to IFN-γ (GO:0034341), response to IFN-β (GO:0035456), Coro-

navirus disease - COVID-19 (hsa05171), and HLA-DR related

genes. The lists of genes defining these modules were prepared

based on Gene Ontology and literature. Genes without detectable

expression in our data were ignored. The sets of genes defin-

ing the modules used in our analysis are listed in Supplementary

Table S2.

4.1.8 Statistics

The statistical tools, methods, and significance thresholds for each

analysis are described in the Results orMaterials andMethods section

or in the figure legends.
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