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A real-world study of wearable sensors in Parkinson’s disease
Jamie L. Adams 1,2✉, Karthik Dinesh 3, Christopher W. Snyder4, Mulin Xiong5, Christopher G. Tarolli1,2, Saloni Sharma2,
E. Ray Dorsey 1,2 and Gaurav Sharma 3

Most wearable sensor studies in Parkinson’s disease have been conducted in the clinic and thus may not be a true representation of
everyday symptoms and symptom variation. Our goal was to measure activity, gait, and tremor using wearable sensors inside and
outside the clinic. In this observational study, we assessed motor features using wearable sensors developed by MC10, Inc.
Participants wore five sensors, one on each limb and on the trunk, during an in-person clinic visit and for two days thereafter. Using
the accelerometer data from the sensors, activity states (lying, sitting, standing, walking) were determined and steps per day were
also computed by aggregating over 2 s walking intervals. For non-walking periods, tremor durations were identified that had a
characteristic frequency between 3 and 10 Hz. We analyzed data from 17 individuals with Parkinson’s disease and 17 age-matched
controls over an average 45.4 h of sensor wear. Individuals with Parkinson’s walked significantly less (median [inter-quartile range]:
4980 [2835–7163] steps/day) than controls (7367 [5106–8928] steps/day; P= 0.04). Tremor was present for 1.6 [0.4–5.9] hours
(median [range]) per day in most-affected hands (MDS-UPDRS 3.17a or 3.17b= 1–4) of individuals with Parkinson’s, which was
significantly higher than the 0.5 [0.3–2.3] hours per day in less-affected hands (MDS-UPDRS 3.17a or 3.17b= 0). These results, which
require replication in larger cohorts, advance our understanding of the manifestations of Parkinson’s in real-world settings.
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INTRODUCTION
Parkinson’s disease (PD) is the world’s fast-growing neurological
disorder1 and results in motor2, cognitive3, psychiatric4, and non-
motor symptoms. Current means of assessing PD are largely
limited to episodic in-person assessments conducted in the clinic.
However, due to intra- and inter-day symptom fluctuations within
an individual and wide variability in disease characteristics across
individuals, collecting and assessing the data outside the clinic
environment is essential. Analyzing real-world data5–7 can help us
understand the natural history of the disease, longitudinal
progression, and efficacy of new treatments in PD.
Wearable sensors have seen increasing use over the past

decade for measuring different motor features of PD8–15. Wearable
sensors can provide continuous, objective, and longitudinal data
in both clinical and real-world settings. Several studies have used
wearable sensors to perform activity, gait, and motor assessments
in PD16–19. However, most studies to date have focused on in-
clinic assessments leaving the real-world experience of the patient
unexamined. Although some studies have reported real-world
data assessments, only a few20–22 have systematically assessed
tremor prevalence and impact. In this study we attempt to answer
several fundamental questions such as: what proportion of a day
do individuals with PD experience tremor?, what is the variation in
tremor amplitude and frequency over the course of a day?, and
how do these relate to the participant’s activities23. To effectively
summarize the fine-grained variations over time revealed by the
wearable sensor data, we also present a useful clock-based
visualization that allows physicians, researchers, and patients to
readily understand and interpret the results.
In this observational study, our goal was to examine the activity

profile and subsequently analyze the gait and tremor character-
istics of participants in the clinic and real-world using wearable
sensors.

RESULTS
Study population
Twenty individuals with PD and 22 controls were enrolled in the
study. Three individuals with PD were excluded from the analysis
due to sensor problems. Five controls were excluded from analysis
after age-matching participants with PD to the controls. Table 1
provides the characteristics of the study participants. Data from 17
PD (mean [standard deviation] age: 66.4 [11.3] years; 41.2%
women) and 17 control (64.0 [9.9] years; 76.5% women)
participants were used for analysis. The methodology of Stebbins
et al. 24 classified 8 of the PD participants as postural instability/
gait difficulty (PIGD), 7 as tremor dominant (TD), and 2 as
indeterminate motor phenotypes.

Activity analysis
The proportion of time spent per day for different activities for
participants with PD and controls is reported in Table 2. In
comparison with the controls, individuals with PD spent less time
walking and similar amounts of time lying down and sitting. A
sample of the activity patterns of the participants over the full
duration of their sensor wear is illustrated in Fig. 1a (for an
individual with PD) and Fig. 1b (for a control participant) using a
clock-based motif for visualization. The observations from the
activity clocks were consistent with the self-reported activity logs
of both participants.

Gait analysis
The gait parameters for individuals with PD and for controls are
reported in Table 2. Individuals with PD took significantly fewer
steps (median [interquartile range]: 4980 [2835–7163] steps/day)
than controls (7367 [5106–8928] steps/day; P= 0.04). While step
duration was similar to that of controls, step length and gait speed
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were slightly lower for PD than controls. Cross-correlation analysis
quantified the inter-leg coordination, which was lower for
individuals with PD than controls.

Tremor analysis
The tremor proportion in the sitting and standing states, for most-
affected and less-affected hands among those with PD, and the
right hand for control participants, is illustrated in the Supple-
mentary Fig. 1. The median tremor proportion per day for most-
affected hands of the participants with PD was (median [range]:
6.5 [1.5–24.6] % or 1.6 [0.4–5.9] h) higher than that of less-affected
hands of the participants with PD (2.2 [1.4–9.4]% or 0.5 [0.3–2.3] h;
P= 0.003) and the right hand of unaffected controls (1.6
[1.1–2.5]% or 0.4 [0.3–0.6] h; P < 0.001). Also, less-affected hands
of participants with PD (defined as MDS-UPDRS 3.17a or 3.17b=
0), had a higher tremor proportion in comparison with the right
hand of the control participants (P= 0.003). The multiple
comparison analysis results are provided in the Supplementary
Note 1. We also observed that the median tremor proportion

per day for most-affected hands of the participants with TD motor
phenotype was (median [range]: 17.9 [2.5–24.6]% or 4.3 [0.6–5.9]
h) significantly higher than that of the participants with PIGD
motor phenotype (2.7 [1.5–4.1]% or 0.7 [0.4–1.0] h; P= 0.004).
There was a strong correlation between the proportion of time
with tremor and the MDS-UPDRS maximal at-rest tremor score for
both OFF (right hand: r= 0.79; P= 0.002; left hand: r= 0.48; P=
0.11) and ON (right hand: r= 0.50; P= 0.04; left hand: r= 0.45; P=
0.07) assessments. The real-world tremor proportion correlated
strongly with the in-clinic tremor proportion reported on the MDS-
UPDRS (right hand: r= 0.88; P < 0.001; left hand: r= 0.87; P <
0.001) among participants with PD. We observed a strong and
statistically significant correlation between most-affected hand
tremor proportion and constancy of the rest tremor (MDS-UPDRS
3.18 ON assessment) (r= 0.84 and P < 0.001).
To examine the variation in hand tremor amplitude over the

course of sensor wear, we augmented the activity clock to also
depict the variation in rhythmicity index, which characterizes the
intensity of quasi-periodic movements characteristic of tremor

Table 1. Characteristics of the study population.

Characteristic Parkinson’s disease (n= 17) Controls (n= 17)

Demographic

Age, mean [standard deviation] 66.4 [11.3] 64.0 [9.9]

Sex, women % 41.2 76.5

Ethnicity, white % 100 100

Hispanic ethnicity % 0.0 0.0

Education, 4-year college degree or higher % 94.1 47.1

Currently employed or student % 17.6 41.2

Currently married or in a domestic partnership % 94.1 82.4

Clinical

Hoehn & Yahr stage 1.9 [0.8] N/A

Years since diagnosis, mean [standard deviation] 4.8 [4.0] N/A

Montreal Cognitive Assessment score (0–30)b, mean [standard deviation] 27.2 [2.1] 27.9 [1.5]

MDS-UPDRS—total rest tremor score (3.17a–3.17e), mean [standard deviation], range 2.0 [1.6], 0.0–4.0 N/A

MDS-UPDRS—total motor score (0–132)a, mean [standard deviation] 20.9 [7.9] 2.2 [2.1]

Timed Up and Go, mean [standard deviation] s 10.4 [2.6] 8.4 [1.1]

10-m Walk Test, mean [standard deviation] s 4.7 [1.1] 4.1 [0.5]

Values are mean [standard deviation] unless otherwise noted. MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale; N/A not
applicable.
aHigher score indicates greater disability.
bHigher score indicates greater cognitive function.

Table 2. Comparison of activity and gait parameters for participants with and without Parkinson’s disease.

Motor features Parkinson’s disease, median [interquartile range] Control, median [interquartile range] P-value

Activity metrics

Lying proportion, h/day 9.1 [8.1–9.9] 8.3 [8.0–9.8] P= 0.65

Sitting proportion, h/day 10.7 [9.7–11.6] 10.3 [8.9–12.6] P= 0.73

Standing proportion, h/day 3.3 [2.5–4.3] 3.6 [2.6–4.0] P= 0.47

Walking proportion, h/day 0.9 [0.5–1.3] 1.4 [0.9–1.6] P= 0.04

Gait metrics

Steps per day 4980 [2835–7163] 7367 [5106–8928] P= 0.04

Step length, m 0.52 [0.50–0.55] 0.54 [0.50–0.55] P= 0.28

Gait speed, m/s 0.91 [0.88–0.98] 0.92 [0.86–0.97] P= 0.47

Step duration, s/step 0.58 [0.56–0.59] 0.58 [0.57–0.59] P= 0.22

Step co-ordination 0.25 [0.24–0.27] 0.30 [0.26–0.34] P= 0.01
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recorded by the sensors (see Methods section). As an example,
rhythmicity index profiles for the same participants (described
previously in Fig. 1a, b) with and without PD are shown in Fig. 1c,
d, respectively. In general, the magnitude of the rhythmicity index
is highest for the sitting intervals, followed by the standing
intervals, and then lying down intervals, which have the lowest
values of the rhythmicity index. Note that the lying down intervals
in our analysis comprised both sleeping and non-sleeping
intervals. Control participants exhibited a very low rhythmicity
index, typically below the threshold (threshold value= 3.3), as
exemplified in Fig. 1d. Additional clock visualizations for other
participants with and without PD are included in the Supplemen-
tary Material (Supplementary Figs. 2–4). A scatter plot and

heatmap illustration showing the joint behavior of rhythmicity
index and peak frequency for participants with and without PD are
included in the Supplementary Material (Supplementary Figs. 5
and 6).

DISCUSSION
Wearable sensors are capable of measuring key motor features of
PD outside the clinic. In this observational study, we assessed
motor characteristics for participants with PD using wearable
sensors in both clinical and real-world settings. Combined with
intuitive and interpretable visualization, such as the 24-h clock
format that we introduced, these data and analyses provide new

Fig. 1 Clock visualization of activity and tremor for a PD and a control participant. A 24-h clock format visualization for a activity for a
participant with PD and b activity for a control participant, c activity, tremor, and medication for a participant with PD, and d activity and (lack
of) tremor for a control participant. Data over the duration of sensor wear is depicted in the polar plots, with the brown marker in the
innermost and the outermost circle representing the start and end of the sensor wear duration, respectively. The concentric circles each
represent different days and the magenta markers (located at 12 AM position) indicate the transition from one calendar day to the next. The
activity is classified into one of four classes (lying, sitting, standing, and walking) for each 2-second interval and represented as a
corresponding color-coded dot in the polar plot. Each color-coded bar on the polar plots in (c) and (d) jointly represent the rhythmicity index
and activity state over a 2-s interval, with the color identifying the activity state and the height of the bar indicating the rhythmicity index
(tremor amplitude). The black circle above each radius represents the rhythmicity index threshold, which is set to a value of 3.3. The yellow
capsule-shaped markers below each radius represent the medication intake timings for the participants with PD.
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insights into the lives of individuals with PD. Analysis of gait
activity revealed that individuals with PD walked less than the
controls—a finding that has also been reported in prior studies.
One of the studies17, which monitored 220 individuals with PD
over approximately 100 days, found that, on average [standard
deviation], they walked 72 [39] min per day, which was similar to
60 [32] min per day in our study of 17 participants with PD.
We also assessed important gait features such as steps per day,

gait speed, step duration, and step coordination. Gait analysis
revealed that, compared with controls, the participants with PD
had similar step duration, step length, and walk speed, and poorer
coordination between the two legs. Gait speed, considered as the
sixth vital sign25,26, is an important indicator of survival in older
adults27,28. Few studies have analyzed gait speed in PD for real-
world settings. While one study29 reported an average [standard
deviation] gait speed of 0.83 [0.16] m/s, slightly smaller than our
study (0.91 [0.07] m/s), another study30 estimated the average gait
speed of 0.66 [0.14] m/s. The same study30 estimated the average
[standard deviation] steps per day to be 4099 [2673] steps/day,
which was lower than the 5650 [3331] steps/day that we observed
in our study. The demographic data of this study30 which reported
a lower gait speed revealed that individuals had more advanced
PD (average Hoehn and Yahr31 stage of 2.8 and baseline MDS-
UPDRS motor score of 34.8) in comparison with our study (average
Hoehn and Yahr stage of 1.9 and baseline MDS-UPDRS motor
score of 20.9), which may explain the different findings. Table 3
provides a comparison of steps per day and gait speed reported in
recent studies.
Importantly, our study analyzes tremors at home and quantifies

the duration, frequency, and amplitude of tremors experienced by
individuals with PD over the course of their daily lives outside the
clinic. Tremor amplitude was dependent on the activity with the
highest tremor amplitudes occurring in sitting intervals and lowest
during the lying down (and likely asleep) intervals. The latter
finding is consistent with prior reports indicating that the rest
tremor in PD abates during sleep32. To our knowledge, this is the
first time tremor has been objectively measured in relation to
activity over significantly longer durations that includes a full
diurnal cycle. Data from our wearable sensor-based study also
allows us to assess the proportion of time over which individuals

with PD experience tremors within the course of their normal lives.
Participants with PD in our study experienced tremors in their
most-affected hands for a median [range] 1.6 [0.4–5.9] h/day.
Notably, we also found that individuals with an MDS-UPDRS 3.17a
or 3.17b score of zero (considered a “less-affected hand” in our
study), had a tremor in this hand for median [range] 0.5 [0.3–2.3]
h/day. This finding is further evidence that episodic in-clinic
assessments and clinical scales may miss symptoms that are
variable. A clinical-epidemiological study33, conducted in 2016,
recruited 100 individuals with PD who underwent standard clinical
assessments, which included a neurological examination and a
standard questionnaire. In the questionnaire, the participants were
asked to mention the total number of hours with tremors on a
typical day. Based on the questionnaire response data collected,
the study reported a median of 3 h with tremor which was higher
than the median of 1.6 h reported in our study. Part of the
difference could be explained by the fact that while the
questionnaire responses only indicated the aggregate durations
of tremors, our analysis focused on sensors placed on the forearm
which likely missed tremors in other regions of the body, such as
the thumb, chin, and legs. We also eliminated walking portions
during analysis which could have excluded re-emergent tremor. A
wearable sensor-based study34 performed 24-h monitoring of 25
participants with PD (average Hoehn and Yahr stage of 3.5 and
MDS-UPDRS motor score of 46.0) in a rehabilitation center. This
study reported that the tremor activity was high in the morning
and reduced in the night, a finding similar to what we have
reported. Also, the study reports that the average tremor
proportion of 18.5% and 10% in the sitting and standing/walking
intervals in comparison with 14.8% and 9.7% during the sitting
and standing intervals, respectively, in our study. The difference in
the tremor proportion in the sitting intervals can be attributed to
the fact that the individuals in the mentioned study had more
advanced PD in comparison with the individuals in our study.
Another wearable sensor study21 analyzed tremors of 13 PD
participants during the OFF and ON medication over a 2-h
duration during which the participants performed six activities of
daily living. The study showed a median tremor proportion of
≈35% during OFF medication which was higher than ≈28% found
during the in-clinic OFF medication (that comprised of UPDRS

Table 3. Comparison of steps per day and gait speed for participants with Parkinson’s disease from recent observational studies from 2004 to 2019.

Study Sample size Age, years Disease
duration, years

Mean Hoehn &
Yahr stage

Mean [SD] steps
per day

Mean [SD] gait
speed, m/s

Current study 17 66.4 [11.3] 4.8 [4.0] 1.9 5650 [3331] 0.91 [0.07]

Pradhan et al. 46, 2019 30 68.6 [5.9] 7.8 [5.0] 1.4 6417 [2796] NA

Toosizadeh et al. 30, 2015 15 71.2 [6.3] 5.9 [5.3] 2.8 4099 [2673] 0.66 [0.11]

Weiss et al. 47, 2014 40 (fallers) 66.5 [8.2] 6.1 [4.0] 2.9 3131 [3097] NA

67 (non-fallers) 64.0 [9.8] 5.2 [3.1] 2.4 3553 [3257] NA

Nakae et al. 48, 2014 10 NA 12.6 [5.6] NA NA 0.83

Wallén et al. 49, 2014 66 73.1 [5.8] NA 2.5 4730 [3210] NA

Lord et al. 50, 2013 89 67.3 [9.9] NA 2.0 5452 [2501] NA

Cavanaugh et al. 51, 2012 33 67.1 [8.8] 4.4 [4.2] 2.4 10,261 [4333] NA

Nakae et al. 52, 2011 9 66.4 [5.3] 9.2 [2.2] NA NA 0.99

Ford et al. 53, 2010 12 NA NA 2.0 8996 NA

Sue Lord et al. 29, 2008 12 70.5 [3.3] 8.0 [3.0] 2.9 NA 0.83 [0.16]

Skidmore et al. 54, 2008 24 70.0 [9.0] 7.5 [3.8] 2.7 3981 [1448] NA

Xanthopoulos et al. 55, 2008 16 71.0 [11.0] 7.0 [4.2] NA 4378 [2057] NA

Busse et al. 56, 2004 10 67.1 [8.2] NA NA 3818 0.99 [0.16]

All estimated measures reported in this table are mean [standard deviation] values unless otherwise noted. NA not available. Studies were selected from a
PubMed search using “Gait activity”, “Gait speed”, and “Parkinson’s disease” and included studies where wearable sensors were worn outside a clinical setting in
the real world.
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assessments for about 0.5 h) for the most-affected hand in our
study. Finally, and importantly, our tremor analysis revealed a
difference between individuals classified as having tremor-
dominant PD vs. those with postural instability/gait difficulty PD.
Although these findings should be replicated in larger studies, it
demonstrates the potential of wearable devices for use as
objective measures and/or disease classification in PD.
While the study provides new insights, it is not without

limitations. The study had a relatively small sample with generally
mild disease. The stage of PD can affect the analyses we
performed and we plan to stratify by disease stage in larger
studies. While the wearable-sensor-based motor analysis for in-
clinic durations could be validated by cross-checking against the
video recorded in the clinic, for the real-world data outside of the
clinic, the participant activity diaries varied in detail and could not
provide validation comparable to the video. Some participants
provided detailed activity logs which were helpful; one such
instance identified high tremor amplitude durations during the
waking lying down intervals for a participant with PD (described in
the Results section). The rhythmicity index, which measures the
amplitude of the rhythmic motion in hands, allowed us to identify
intervals with high amplitude rhythmic motion of the hands.
Although by using an appropriate threshold, we are able to
exclude most deliberate movements when identifying intervals
with tremors, one current limitation is that we cannot eliminate
deliberate rhythmic movements that have a frequency typical of
tremors. In-clinic duration activities such as finger tapping and
pronation/supination and real-world activities such as brushing
teeth and scrubbing dishes result in high rhythmicity index, thus
contributing to the tremor proportion. However, such deliberate
rhythmic motions occur infrequently and for rather short
durations as evidenced by a small median tremor proportion of
0.4 h/day for control participants. Our specific sensor placements
posed problems for the analysis of leg tremor analogous to the
hand tremor analysis presented in this paper. Specifically, from
checking the in-clinic videos for the participants, we found that
several of the participants rested their hands on the leg sensor
when sitting due to which the leg sensor also recorded the hand
tremor. Future studies should explore alternative leg sensor
placement to avoid this cross-contamination.
Our study, which started as a single point observational study

allowed participants that were willing to participate in longitudinal
observations at six, nine, and twelve months from the initial
observation. Although accelerometer data from the wearable

sensors were recorded for these additional visits, the meaningful
longitudinal analysis could not be conducted because the
participants had several changes in medications and dosage over
the course of the study and the number of participants was too
small to attempt analyses of smaller groups in which these
parameters were constant over the longitudinal duration.
In this study, wearable sensors added to evidence that gait

activity is reduced in individuals with PD in their natural
environment. In addition, an innovative algorithm combined with
multiple sensors was able to quantify the amplitude of rest tremor,
determine its onset and termination, its relationship to physical
states, and its total duration in the real world. These new insights
advance our understanding of the motor features of PD and could
in the future provide valuable information to improve care and
enhance the evaluation of therapies. Larger and longer-duration
studies are required to replicate these findings and to evaluate
how they change over time.

METHODS
Study overview and design
We conducted an observational study in individuals with PD and in
controls without a movement disorder using accelerometers packaged in
BioStampRC® wearable sensors developed by MC10 Inc. (Lexington, MA,
USA). The University of Rochester’s institutional review board approved the
procedures used in the study, and there was full compliance with human
experimentation guidelines. We recruited individuals with PD from clinics,
study interest registries, and regional support groups. Control participants
were comprised of unaffected spouses, family members, friends, and
community members. Participants with PD had at least two of the four
cardinal features (rest tremor, bradykinesia, cogwheel rigidity, and
difficulty with gait or balance) on the exam and no better alternative
explanation for the condition as determined by the investigators. All
participants provided written informed consent before study participation.
In the clinic, participants underwent the Montreal Cognitive Assess-

ment35 and signed a video waiver form before providing basic
demographic data and medical history. Participants were outfitted with
five self-adhesive wearable accelerometer sensors with one on each
anterior thigh, one on each anterior forearm, and one on the trunk as
shown in Fig. 2a. Participants were video-recorded undergoing standard
clinic assessments including the Movement Disorder Society—Unified
Parkinson Disease Rating Scale (MDS-UPDRS) Part III36, Timed Up-and-Go37,
and Ten-Meter Walk test38. Three physicians experienced in PD (JA, CT, SS)
and certified by the MDS-UPDRS motor score online certification39

performed all motor assessments.

Fig. 2 Sensor placement and cloud-based web portal for accessing data. a A study participant wearing the sensors at five different locations
on the trunk and each limb, and b web-portal for accessing the recorded sensor data over the duration of sensor wear. As part of the written
consent for participation in the study, the participant shown in (a) provided permission for their image to be used.
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After the in-clinic (approximately 1 h) assessments, participants wore the
sensors in the real world (out of clinic) for an additional continuous interval
totaling approximately 44 h (sensors were worn during sleep). Participants
were asked to complete an activity log to supplement the sensor data for
the non-clinic durations. The activity log included information about daily
activities along with information on the participant’s PD medication
schedule, if applicable. An example of an activity log is shown in
Supplementary Table 1. At the end of the 2-day real-world monitoring
period, the sensors and activity logs were mailed back to the research
team, and the data were extracted via Bluetooth and uploaded to the
MC10 cloud storage through Wi-Fi. The raw sensor data stored in the MC10
cloud were accessed and downloaded via the MC10 Web Portal, shown in
Fig. 2b, and used for analyses.

Wearable sensor data collection
Tri-axial accelerometer data were collected from the sensors at a sampling
rate of 31.25 Hz. The activity states were determined based on posture
information obtained using the data from the trunk sensor and thigh
sensors. The gait and the tremor analyses were performed in the walking
and non-walking states, respectively, identified during the activity analysis.
Due to the rhythmic nature of the walking activity, the tremor analysis
excluded the walking intervals.

Activity analysis
Each sensor observation period was partitioned into non-overlapping 2 s
windows and for each 2 s window, activity analysis was performed using a
previously described technique8. For each 2-s interval, a posture was
determined based on the combination of the dominant axis (x, y, or z) for
the trunk and thigh sensors. The postures were categorized as lying down,
sitting, and standing/walking. Walking durations were further distin-
guished from standing by identifying the quasi-periodic acceleration
patterns associated with walking by using the normalized auto-correlation
analysis of the trunk sensor data as previously described40.

Gait analysis
Using the accelerometer data obtained from trunk and thigh sensors
during each 2-s walking interval, we estimated step count, step duration,
gait speed, and coordination between the legs for each participant using
previously developed techniques40. Periodic steps while walking result in
strong auto-correlation peaks at lags corresponding to the step duration.
Hence normalized auto-correlation of trunk sensor data was used to
estimate step count and step duration. Unlike methods that count steps by
matching against templates developed for controls, the auto-correlation is
computed from data for a single participant, and the methodology,
therefore, has the advantage that it adapts to individual impairments in
gait, although it may miss counting individual isolated steps. To estimate
coordination between legs while walking, we computed normalized cross-
correlation between left and right leg sensor data. The strength of the
cross-correlation peaks at a one-step lag characterize how well sensor data
from one (left) leg predicts the sensor data for the other (right) leg, serving
as a proxy for coordination. Step length was estimated using an empirical
method41. Step length was divided by step duration to estimate the
gait speed.

Tremor analysis
The tremor analysis aimed to quantify PD tremor, which is rhythmic in
nature, has a typical frequency and is more prevalent in the hands14. Since
different hands exhibited different ranges of tremor amplitude and
frequency, we analyzed “most-affected” and “less-affected” hands sepa-
rately. A hand was considered “most-affected” if the MDS-UPDRS maximal
at-rest tremor score (MDS-UPDRS 3.17a–3.17b) for the hand ranged from 1
to 4 and “less-affected” hands were identified by an MDS-UPDRS maximal
at-rest tremor score of 0. For the PD cohort, there were 16/34 (47%) most-
affected hands and 18/24 (53%) less-affected hands. The hands of all
control participants had an MDS-UPDRS maximal at-rest tremor score of 0
and the right hand was analyzed. Using the accelerometer data obtained
from the forearm sensors during each 2-s non-walking interval, we
computed a rhythmicity index and a peak frequency (over a frequency
range of 3–10 Hz), which represented the amplitude and frequency of
rhythmic motion of the hands, respectively. Based on the in-clinic video
assessment, a threshold value was then determined to separate intervals
with rhythmic movements from those without. The (estimated) tremor

proportion was quantified as the fraction of two-second intervals for which
the rhythmicity index exceeded the threshold. The following section
provides a detailed description of the algorithm used for the tremor
analysis.

Algorithm for computing rhythmicity index, peak frequency,
and tremor proportion
To compute rhythmicity index and peak frequency, we first performed a
moving mean subtraction on the recorded 3D accelerometer data to
remove the effect of gravity. Next, to obtain the direction of dominant
hand motion, we applied principal component analysis42 to the mean
subtracted 3D accelerometer data and chose the first principal component.
The first principal component was then analyzed and visualized in the
frequency domain using spectrogram analysis43. Since our focus was on
estimating the amplitude and frequency of rhythmic motion of the hands,
parameters of spectrogram analysis were chosen to provide a high-
frequency resolution. From the spectrogram we calculated the magnitude
short term Fourier transform (STFT) and integrated it along the time axis to
obtain time-integrated magnitude STFT (TIM-STFT). The presence of
rhythmic motion showed a clear signature in the TIM-STFT: around the
fundamental frequency and its harmonics, the TIM-STFT clearly exhibited
sharp peaks that tapered down to relatively low values for neighboring
frequency regions in either side. These peaks were absent in the absence
of rhythmic motion and a higher peak to neighborhood amplitude ratio
represented a higher amplitude of rhythmic motion in the hands. For
quantitative evaluation, a peak frequency and rhythmicity index were
therefore computed as follows. First, the frequency corresponding to the
peak in the TIM-STFT occurring in the 3–10 Hz tremor frequency range was
identified as the peak frequency and an approximate bandwidth of 1 Hz
around the peak frequency was identified as the peak region. Frequency
bands with 1 Hz bandwidth located 2 Hz away from the peak on either side
were identified as the neighborhood region. The rhythmicity index was
then computed as the ratio of the sums of the TIM-STFT in the afore-
mentioned peak and neighborhood regions.
Based on the in-clinic video assessment, as described in the following, a

threshold value was then determined to separate intervals with rhythmic
movements from those without. From the participant group, two PD and
two control participants were chosen. The in-clinic sensor data for these
participants were synchronized with the corresponding in-clinic videos.
The rhythmicity index was computed for 2-s intervals, and the
synchronized videos for the corresponding durations were manually
examined to identify whether or not these included rhythmic movements
(either due to tremor or voluntary), and a threshold was determined such
that the computed rhythmicity index for intervals with typical non-
rhythmic deliberate movements was below the threshold and for intervals
with rhythmic movements (deliberate or not) was above the threshold.
Note that a high rhythmicity index can be a result of deliberate (e.g., in-
clinic assessment activities such as finger tapping, pronation/supination of
hands) or non-deliberate (e.g., PD tremor) rhythmic motion of the hands.
Among PD participants with tremors, however, the deliberate rhythmic
motion intervals occupy a much smaller fraction of time than non-
deliberate rhythmic motion intervals. To quantify the relative amount of
time with high amplitude rhythmic motion, we computed tremor
proportion as the fraction of 2-s intervals for which the rhythmicity index
exceeded the threshold.

Statistical analysis
Due to the small sample size, we chose to perform non-parametric tests to
analyze differences in activity, gait, and tremor between PD and control
groups. To assess differences in activity (proportion of time spent lying,
sitting, standing, and walking) and gait parameters (step count, step
duration, gait speed, and co-ordination between legs) between PD and
control groups and to assess pairwise differences in tremor proportion
between the most-affected and less-affected hands of PD and the right
hand of control participant groups, we analyzed the data using the
Wilcoxon rank-sum test44. The Spearman correlation coefficient44 was used
to assess the relationship between the proportion of the observed period
with tremor and clinician-rated MDS-UPDRS maximal at-rest tremor score.
All the hypothesis tests were one-sided and a significance level of P= 0.05
was used. Median and range/interquartile range were reported as
summary statistics. Statistical analysis was performed using MATLAB®

(version 2019b, MathWorks, Natick, MA).
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The sensor accelerometry and MDS-UPDRS assessment-task annotation data for each
participant, and demographic and clinical assessment data for all participants are
available at IEEE DataPort with identifier “https://doi.org/10.21227/g2g8-1503”45.

CODE AVAILABILITY
The code is being considered for licensing by the University Technology Transfer
office and is therefore not publicly available. We expect that upon licensing and
deployment of the code, other researchers using these sensor systems will be able to
access the analysis via a cloud-based service.
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