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High-throughput mediation analysis of human
proteome and metabolome identifies mediators of
post-bariatric surgical diabetes control
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To improve the power of mediation in high-throughput studies, here we introduce High-

throughput mediation analysis (Hitman), which accounts for direction of mediation and

applies empirical Bayesian linear modeling. We apply Hitman in a retrospective, exploratory

analysis of the SLIMM-T2D clinical trial in which participants with type 2 diabetes were

randomized to Roux-en-Y gastric bypass (RYGB) or nonsurgical diabetes/weight manage-

ment, and fasting plasma proteome and metabolome were assayed up to 3 years. RYGB

caused greater improvement in HbA1c, which was mediated by growth hormone receptor

(GHR). GHR’s mediation is more significant than clinical mediators, including BMI. GHR

decreases at 3 months postoperatively alongside increased insulin-like growth factor binding

proteins IGFBP1/BP2; plasma GH increased at 1 year. Experimental validation indicates (1)

hepatic GHR expression decreases in post-bariatric rats; (2) GHR knockdown in primary

hepatocytes decreases gluconeogenic gene expression and glucose production. Thus, RYGB

may induce resistance to diabetogenic effects of GH signaling.
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G iven the major public health and personal burden of T2D,
the identification of new approaches to therapy for both
T2D and obesity is critical. Increasing evidence supports that

surgical approaches to T2D are effective for both long-term weight
loss and improved glucose metabolism, resulting in remission of
T2D in ≈90% of patients at 1 year and 45% at 5 years1–5, and that
these effects are superior to traditional nonsurgical diabetes man-
agement. Surgery’s beneficial effects have been attributed to weight
loss and improved insulin sensitivity, but improved glycemic control
occurs within days after RYGB, before substantial weight loss, sup-
porting an important role for weight-independent mechanisms6.
Additional metabolic effects of surgery which may contribute to
improved glycemic outcomes include increased postprandial insulin
and incretin hormone secretion7,8, reduction in circulating amino
acids9,10, alterations in bile acids, FXR signaling and FGF1911–15,
and changes in microbiome metabolism16–18, but preclinical studies
indicate these cannot fully explain clinical improvement19–21. Thus,
the primary molecular factors mediating improved metabolism and
remission of T2D in response to surgical procedures remain
uncertain.

To identify mediators of metabolic improvement after surgical
vs. medical therapy for T2D, we perform a retrospective
exploratory analysis of the SLIMM-T2D trial, in which partici-
pants with type 2 diabetes were randomized to Roux-en-Y gastric
bypass (RYGB) or nonsurgical diabetes weight manage-
ment (DWM), and fasting plasma proteome and metabolome
were assayed up to 3 years. Greater clinical improvement was
seen in RYGB than in DWM for multiple outcomes, including
reductions in body weight (assessed by BMI), glycemia (assessed
by HbA1c), triglycerides, HDL cholesterol, blood pressure, and
reductions in the number of antidiabetic, antihypertensive, and
lipid-lowering medications5. Moreover, all RYGB participants
achieved 10% weight loss before 3 months, whereas only 37% of
DWM participants achieved 10% weight loss before 3 months.
Given that participants in SLIMM-T2D were randomized to
either RYGB or DWM, we can infer causal effects of RYGB
(relative to the DWM control) on the outcomes at, for example,
one year, and then ask if any clinical outcome or analyte mea-
sured at 3 months mediates this causal effect. Identifying med-
iators among approximately 2000 measured analytes would be a
key step to develop new nonsurgical approaches to weight loss
and glycemic control in T2D. Many mediation methods are
available, but they have been found to lack power in high-
throughput studies22. A previous comprehensive comparison of
mediation methods concluded that the best balance between false
positive rate and power was offered by the joint significance
method23. The joint significance method23 in our example
assesses if two tests are jointly significant for each analyte: (I) is
RYGB associated with analyte abundance at 3 months? and (II) is
analyte abundance at 3 months associated with HbA1c at one
year given RYGB? The joint significance method was also
recommended by another comparative study22, where a
bootstrap-based method that assesses the product of effects I and
II24 performed only slightly worse than the joint significance test.
However, the bootstrap-based method could not be used in their
genome-wide application, since it was too computationally
expensive to perform sufficient numbers of bootstraps to reach
genome-wide significance22. The joint significance method was
also shown to control its false-positive rate in theory and to be
more powerful than the commonly-used product significance
method for mediation25. Another popular mediation test not
included in these comparative simulations is based on the
potential outcomes framework26. This framework supports very
general causal models, but also assesses significance with the
bootstrap or other resampling methods, and so is also compu-
tationally burdensome for high-throughput data.

Here we report the development of a mediation method
termed High-throughput mediation analysis (Hitman) and apply
this method to proteomic and metabolomic data from the
SLIMM-T2D randomized trial. We identify and validate the
growth hormone receptor (GHR) as a mediator of the metabolic
impact of RYGB (Fig. 1).

Results
Clinical characteristics of participants. Of the 38 SLIMM-T2D
participants, proteomic and metabolomic data at baseline, the
3 month time point, and at 1 year were available from 35 parti-
cipants. Metabolic characteristics of these 35 participants did not
differ between groups at baseline (Supplementary Data 1), and
HbA1c and BMI of those with proteomics or metabolomics
measurements did not differ from the SLIMM-T2D participants
within their group at any time point (Supplementary Fig. 1). After
3 years, no DWM participants achieved study-defined glycemic
goals (HbA1c < 6.5% and fasting glucose < 126 mg/dL), whereas
eight RYGB participants did, and seven of these eight participants
were not receiving any anti-diabetes medications5. The metabolic
characteristics per participant per time point are tabulated in our
Zenodo repository, which also includes participants’ diabetes
medication use per medication class per time point.

Longitudinal analysis of the plasma proteome. Fasting pro-
teomics were profiled at baseline, the 3 month time point, and
years 1, 2, and 3 in RYGB and DWM. At baseline (pre-rando-
mization), there were no statistically significant proteins (FDR <
0.15). For post-randomization time points, reduction in BMI was
greater in RYGB, so groups were compared both with and
without adjustment for each person’s BMI change. Differences in
the baseline-corrected proteome in RYGB vs. DWM (i.e., differ-
ences between groups in changes from baseline) emerged at the
3 month time point, with 14 significant proteins in the unadjusted
analysis and 8 in the BMI-adjusted analysis. Differences of
baseline-corrected protein abundance in RYGB vs. DWM per-
sisted at years 1, 2, and 3. The baseline-corrected log2 fold change
values for the 19 proteins differentially abundant with fold-
change absolute value >1.5 at any time point without BMI
adjustment are depicted in the heatmap in Fig. 2a. Statistics for all
comparisons in all analytes are presented in Supplementary
Data 2.

We observed several proteins with important roles in systemic
metabolism to be significant in unadjusted analyses at several time
points, but never significant with BMI adjustment. We considered
such analytes as potentially regulated by weight-dependent mechan-
isms. For example, proteins upregulated post-baseline included sex
hormone binding globulin (SHBG), upregulated at all post-baseline
time points, and adiponectin, upregulated at 12, 24, and 36 months.
Conversely, GHR was downregulated at all post-baseline time points;
leptin was downregulated at 12 and 24 months, while C-reactive
protein and insulin were downregulated at 12 and 36 months.
Multiple complement factor proteins were downregulated at 12, 24,
and 36 months, including complement factor H (CFH), C1s, and C5.

Several proteins remained significant after BMI adjustment,
indicating potential weight-independence. These include
increases in (1) bone structural proteins integrin-binding
sialoprotein (IBSP), which was increased at all post-baseline time
points in the unadjusted analysis and at 3 and 12 months in the
BMI-adjusted analysis, and osteomodulin (OMD), which was
increased with and without BMI adjustment at 12, 24, and
36 months, (2) fibroblast growth factor 19 (FGF19), the
intestinally-derived target of bile acid and FXR signaling15, which
was increased with and without BMI adjustment at 36 months,
and (3) insulin-like growth factor binding protein IGFBP2,
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recently shown to be increased after RYGB27–29, potentially via
improved leptin sensitivity30, was increased at all post-baseline
time points in the unadjusted analysis and at the 3 month time
point in the BMI-adjusted analysis. Of the complement factors,
only complement factor B (CFB) remained significant after BMI
adjustment, at 12, 24, and 36 months.

Upregulation of IGFBP2 (>50%, FDR < 5% at all post-baseline
time points in SOMAscan, Supplementary Fig. 1a) was confirmed
by ELISA, which showed significant differences in baseline-
corrected values (p < 0.05) at 12, 24, and 36 months (Supple-
mentary Fig. 2b), and ELISA changes per person over time were
significantly correlated to corresponding SOMAscan changes
(r= 0.78, p < 10−7).

Longitudinal analysis of the plasma metabolome. At baseline
(pre-randomization), there were no significant differences in the
fasting metabolome between groups. Significant differences in
the baseline-corrected metabolome emerged at the 3 month time
point, with 96 metabolites differentially abundant in the unad-
justed analysis and 74 in the BMI-adjusted analysis; 45 metabo-
lites were common to both analyses.

Differences between arms of baseline-corrected metabolite
abundance persisted at years 1, 2, and 3. The baseline-corrected
log2 fold change values in RYGB vs. DWM for the 85 metabolites
differentially abundant with fold-change absolute value >1.5 at
any time point without BMI adjustment are depicted in the
heatmap in Fig. 2b. Although the color scale is the same as that in
Fig. 2a to permit comparison, fold changes were much greater for
the metabolome. For example, the BCAA-related metabolite
3−hydroxyisobutyrate was 88% lower in RYGB (i.e., down by >9-
fold) with significance in both the unadjusted and BMI-adjusted
analysis at the 3 month time point.

Prolylhydroxyproline, a marker of bone collagen degradation,
was increased in RYGB at the 3, 12, and 36 month time points,
and was also increased with BMI adjustment at the 3 and
12 month time points, again suggesting that postoperative bone
metabolic changes are independent of weight loss. The abundance
of metformin was reduced with or without BMI adjustment at
12 months, in agreement with reduced medication use in the
RYGB group. Interestingly, increases in the conjugated bile acid
glycochenodeoxycholate sulfate emerged with time, with sig-
nificance at the 12 month time point in unadjusted analysis and
both the 12 and 36 month time point in the BMI-adjusted
analysis.

Having both metabolites and proteins on the same subjects is
an advantage of our study, so we tested the correlation of top
metabolites’ vs. top proteins’ baseline-corrected changes at
3 months (Supplementary Data 2). Multiple analytes were highly
correlated. For example, the metabolite most correlated to GHR
was prolylhydroxyproline (r=−0.68, p < 10−5, FDR < 0.002);
prolylhydroxyproline was also negatively correlated with CNDP1
(beta-ala-his dipeptidase or carnosine dipeptidase 1; r=−0.65,
p < 10−4, FDR < 0.004) and positively correlated with IGFBP2
(r= 0.69, p < 10−5, FDR < 0.002). GHR and CNDP1 were
positively correlated to the BCAA-related metabolites beta-
hydroxyisovalerate and isovalerylcarnitine, and these were
negatively correlated with IGFBP2 (FDR < 0.08 for all these
correlations).

Proteomic and metabolomic integrative pathway analysis. We
integrated proteomics and metabolomics for pathway analysis by
creating a single, integrated dataset, and testing pathways from
the Small Molecule Pathway Database31, which has pathways
composed of both proteins and metabolites. We identified 50
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Fig. 1 Graphical overview shows study flow including clinical study schematic (top) and analysis (bottom). Differential analyte and pathway analysis
(bottom left) identified a network composed of top analytes from Valine, Leucine, and Isoleucine Degradation and Beta-Alanine Metabolism. Mediation
analysis (bottom right) identified GHR as mediator of decrease in HbA1c. Triangles denote measured proteins or metabolites, while circles denote proteins
or metabolites in the pathway not measured; symbols are colored according to between-group Z scores, using heat map indicated, with the orientation of
triangle also indicating up- or downregulation, respectively. Source data are provided as a Source Data file.
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differentially abundant pathways (FDR < 15%) between groups
without BMI adjustment at the 3 month time point.

The top-ranking pathways are presented in Fig. 3a. The top-
ranking pathway is Phospholipid Biosynthesis (Fig. 3b), whose top
analytes were choline (Supplementary Fig. 2c) and choline
phosphate (Supplementary Fig. 2d), both reduced in RYGB relative
to DWM at the 3 month time point. Choline was also reduced at 12
and 36 months, and the 3 month time point with BMI adjustment,
but choline phosphate was not significant in other comparisons.

The second pathway was Valine, Leucine, and Isoleucine
Degradation (schematic in Fig. 4a). Its top analytes (Fig. 4b),
reduced at the 3 month time point in both the unadjusted and
BMI-adjusted analysis, were the BCAAs valine and leucine, the
ketoacid 3-methyl-2-oxobutyrate (ketoisovalerate), and the valine
catabolic intermediate 3-hydroxyisobutyrate. All but
3-hydroxyisobutyrate were also reduced at 12 months; with
BMI adjustment, none were significant at 12 or 36 months,
suggesting an important contribution of weight loss during the
early postoperative period.

Similar patterns were observed for other ketoacids and
downstream acylcarnitines. For example, propionylcarnitine, a
C3 acylcarnitine product of valine and isoleucine metabolism, was
reduced in RYGB at the 3 month time point in both the
unadjusted and BMI-adjusted analyses (but not at later time
points with or without BMI adjustment) and was also the top
analyte of the related pathway Oxidation of Branched Chain
Fatty Acids.

Beta-alanine Metabolism’s (Fig. 5a) and Histidine Metabolism’s
top analytes were CNDP1 and its enzymatic product histidine.
Histidine was reduced after RYGB at the 3 month time point with

or without BMI adjustment but not later (Fig. 5b), and its
reduction was correlated with that of CNDP1 (r= 0.40, p= 0.02).
CNDP1 was reduced by 43% after RYGB at the 3 month time
point and was reduced at 12 months, and at the 3 month time
point with BMI adjustment (Fig. 5c). A previous study was unable
to validate SOMAscan CNDP1 measurements32. We measured
CNDP1 with ELISA and our ELISA-determined CNDP1 levels
showed little correlation with SOMAscan levels per time point, but
changes within person over time showed stronger correlation
(r= 0.21, p= 0.055). We confirmed significant reductions in
CNDP1 after RYGB, demonstrating a 68% decrease in baseline-
corrected change for RYGB vs. DWM (p= 0.004 at the 3 month
time point, Fig. 5d).

Retinol Metabolism’s top analyte was retinol (vitamin A),
whose baseline-corrected abundance decreased by 33% in RYGB
at the 3 month time point, when it was also decreased with BMI
adjustment, but over time retinol reverted towards baseline in
both groups (Supplementary Fig. 3a). Changes in retinol were
significantly correlated to changes in retinol-binding protein 4
(RBP4), shown in Supplementary Fig. 3b, over all time points
(r= 0.33, p= 0.001). Given the role of RBP4 as a mediator of
insulin resistance33, we measured RBP4 and its partner
transthyretin (TTR) in a random subset of 12 subjects by
quantitative western blot. From these western blots, RBP4 and
TTR were not different between-arms at the 3 month time point
(Supplementary Fig. 3c, d), but RBP4 changes (i.e., differences per
person over time) correlated significantly to RBP4 changes by
SOMAscan (r= 0.28, p= 0.03), and changes in both RBP4 and
TTR significantly correlated to each other (r= 0.63, p < 10−5) and
to changes in retinol (both r > 0.6, p < 10−4).

Fig. 2 Differentially abundant analytes with time. Heatmaps of a proteins and b metabolites. Heatmap of log2(RYGB/DWM) at all time points (post-
baseline log2 abundance values are baseline-corrected) for analytes that are differentially abundant at any time point (FDR < 0.15 and fold-change absolute
value > 1.5). The range of colors show log2(RYGB/DWM) from −1.6 to 1.6, which corresponds to fold changes from −3 to 3. Analytes with a larger
absolute value of fold-change are shown as only having fold change absolute value of 3, so that weaker fold changes are easily observed. Source data are
provided as a Source Data file.
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Development of high-throughput mediation analysis (Hit-
man). We sought to identify analytes whose change in abundance
at the postoperative 3 month time point mediated RYGB’s
improvement in diabetes control at one year. We know that
RYGB improves diabetes outcomes from prior studies, so we can
be confident that RYGB actually improves diabetes, as we
observe, rather than the opposite direction of effect (in which case
RYGB would exacerbate diabetes). A reasonable mediation
method to use would be the joint significance method. However,
one drawback of the joint significance test and other mediation
methods when the direction of the causal effect of the exposure
on the outcome is known is that they do not account for the
direction of effect of the mediator, so they could call as significant
an “inconsistent” mediator, which suppresses or inhibits the
causal effect (Fig. 6)34. For example, relative to DWM, RYGB
decreases the baseline-corrected abundance of retinol at the
3 month time point, and RYGB decreases baseline-corrected 1
year HbA1c (Fig. 6, left side). However, a decrease in retinol is
associated with an increase in HbA1c—a direction of mediation
inconsistent with RYGB decreasing HbA1c, so retinol does not
appear to mediate RYGB’s beneficial effect.

A second drawback of the joint significance and other
mediation methods is that they are intended for testing only
one or a few mediators. Thus they do not employ powerful
statistical methods for high-throughput data, such as linear
regression modeling with empirical Bayesian modeling of an
analyte’s variance with the R package Limma35, which has been
validated in multiple omics platforms, and is particularly
powerful for small sample sizes.

To address these limitations, we developed high-throughput
mediation analysis (Hitman). Hitman is designed for studies
where the exposure causes a significant change in the outcome in
the same direction as known a priori and high-throughput
mediators are assayed. Hitman improves power by accounting for
the direction of effect and by employing empirical Bayesian linear
modeling35. If a mediator’s direction of effect is consistent with

the prespecified direction of the causal effect of the exposure on
the outcome, its p-value from the joint significance test is halved.
Otherwise, its p-value becomes one. In the case of the inconsistent
mediator retinol, Hitman assigns a p-value of one. The
description of the algorithm, implemented in our R package
Hitman, mathematical proof that Hitman provides valid p-values
when there is a causal effect whose direction is known, and details
of our simulations and their results are provided in Supplemen-
tary Note 1.

Using simulations similar to those of Barfield et al.36 and
MacKinnon et al.23, we compared Hitman against the joint
significance test and the potential outcome mediation test26,
which had not been included in previous simulations. Consistent
with our mathematical proof, our simulation using 50 samples
demonstrates that Hitman properly controls its false positive rate
when the causal effect’s direction is known and specified prior to
the analysis. Our simulations also test the ability of the methods
to detect consistent mediators, and confirm that Hitman has
more power. For example, when the true causal mediation effects
are of a size termed “small”23, the joint significance and the
potential outcome mediation test identify mediation in <2.5% of
simulations, whereas Hitman identifies mediators in >6%, which
is significantly greater than both (odds ratio (OR)= 2.89, 95%
CI= [2.48, 3.39], p < 10−15). When the true effect is of “medium”
size23, the proportion of simulations that identified mediation by
the joint significance test and the potential outcome mediation
test were 53.9 and 57.4%, respectively, whereas Hitman identifies
68.5% (OR= 1.62, 95% CI= [1.52, 1.71], p < 10−15).

The directional nature of Hitman accounts for much but not all
of Hitman’s power, since the empirical Bayesian variance
estimation adds power, particularly with smaller sample sizes.
Smaller sample sizes are common in basic research with model
organisms, where variance between units in a group is expected to
be small. Using Limma35 also allows for testing high-throughput
data types that are not normally distributed, such as RNA-seq37.
We demonstrate the benefit of using Limma by simulating as

a

b Phospholipid Biosynthesis

Fig. 3 Phospholipid biosynthesis and other top-ranking differential pathways. a Top-ranking differential pathways. Graph illustrates –log10(p-values) and
false discovery rates (FDRs), with bars colored by FDR, from Limma Roast’s Mixed statistic87 (which is one-sided) adjusted with FDRs. b Phospholipid
biosynthesis network. Nodes are colored by between-group z-score, whereas unmeasured nodes are colored dark gray. Orientation of triangle also
indicates the directionality of regulation. Connections are from the Pathway Commons network. Source data are provided as a Source Data file.
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above but with only 15 samples. We also compare these simulations
against a simplified version of Hitman that does not use Limma,
which is applicable to scenarios other than high-throughput data.
We find with medium effect size that the joint significance and the
potential outcome method have power <7%, the simplified version
of Hitman that does not use Limma has power 11.8%, and Hitman
has the power of 16.1%, which is significantly greater than the others
(OR= 1.43, 95% CI= [1.32, 1.55], p < 10−15).

We next conducted omics simulations using datasets of 500
analytes where p-values were adjusted with the false discovery
rate (FDR). We simulated sample sizes of 15 and 50, either 1, 5, or
25 consistent mediators, and 200 analytes associated with the
exposure but not the outcome in three scenarios: (1) analytes are
independent and mediators are consistent; (2) analytes are
dependent on each other and mediators are consistent; and (3)
analytes are dependent on each other and there are an equal
number of consistent and inconsistent mediators of equal effect.
We compared the joint significance method, Hitman, and the
version of Hitman that does not use Limma. We did not include
the potential outcome mediation test in these simulations because
of its computational cost. We modeled dependence between
analytes based on the dependence structure from the GTEx
expression dataset38, which was adjusted for measured and
inferred39 covariates, like the processing by Oliva et al.40.

We found that power increased with more samples and fewer
mediators, whether these mediators were consistent or incon-
sistent, and that including dependence from GTEx had little effect

on the results, most likely because its covariates were properly
accounted for. We also found that Hitman controls its FDR in all
scenarios and has the most power, with the greatest advantage
when N= 15. For example, in scenario 1 when N= 15 and there
was one true mediator, the joint significance method had power
of 31.5%, whereas Hitman had power of 42.4% (OR= 1.6, 95%
CI= [1.33, 1.93], p= 5*10−7).

Mediation analysis: analytes, clinical data, and pathways. We
applied Hitman to identify analytes whose early change (baseline
to 3 month time point) mediates HbA1c improvement at one year
(Supplementary Data 2). The only significant analyte was growth
hormone receptor (GHR; p= 10−4, FDR= 0.12; Fig. 6, right),
which was reduced by 24% in RYGB at the 3 month time point.
We also tested the change in proteins and metabolites at the
3 month time point vs HbA1c change at the 18, 24, and 36 month
time points. However, we found no significant protein or meta-
bolite mediators of HbA1c at these later time points, potentially
because after 12 months the number of participants with HbA1c
measurements declines substantially, or there are additional sec-
ondary changes, such as progressive weight loss or inter-
individual variation in diet or other factors (Supplementary
Data 1).

As a comparison to Hitman, we applied the joint significance
method to test mediation of proteins and metabolites whose
change at the 3 month time point mediates HbA1c improvement
at one year. We found similar top analytes, but with weaker
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Fig. 4 Branched chain amino acids (BCAA) and downstream metabolites. a Schematic of BCAA metabolic pathway showing measured analytes. KIC,
KMV, and KIV indicate the branched chain ketoacids ketoisocaproate, ketomethylvalerate, and ketoisovalerate, respectively. b Relative abundance of
measured analytes, aligned to position in pathway in (a). Data were analyzed by two-sided moderated t-tests; post-baseline time points were analyzed
using change from baseline. Data are reported as mean ± SEM on the log2 scale. Analysis was derived from samples from independent human participants.
RYGB at 0, 3, 12, and 36 months: n= 19, 18, 19, and 13; DWM: n= 19, 18, 16, 9. Nominal p-values are as follows: Leucine: 3 mo **= 0.001, 12 mo **=
0.0041, 36 mo *= 0.03; Isoleucine: 12 mo *= 0.017, 36 mo *= 0.036; Valine: 3 mo **= 0.0019, 12 mo **= 0.0013, 36 mo *= 0.016; KIC: 3 mo ***=
0.00016; KIV: 3 mo: ***= 0.00026, 12 mo: **= 0.0045. 3-OH-isobutyrate: 3 mo: #<0.0001; isovalerylcarnitine: 3 mo: #<0.0001, 12 mo: **= 0.002; 2-
methylbutyrylcarnitine: 0 mo: *= 0.025; propionylcarnitine: 3 mo: #<0.0001, 12 mo: *= 0.016. isobutyrylcarnitine: 0 mo: *= 0.024. Source data and FDRs
are available in Supplementary Data 2.
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significance, consistent with our simulations demonstrating that
Hitman offers significantly more power (Supplementary Note 1).
The top-ranking analytes identified by the joint significance
method were GHR (p= 2.3*10−4; FDR= 0.26) and prolylhy-
droxyproline (p= 10−3; FDR= 0.73). Prolylhydroxyproline was
also the second-ranking analyte in Hitman (p= 5*10−4, FDR=
0.32; Supplementary Data 2).
We next asked whether the early postoperative change

(baseline to the 3 month time point) in 40 clinical markers
mediated HbA1c improvement at one year. The top-ranking early

postoperative mediators identified by Hitman were 6 min walk
test distance and BMI (p < 0.03, FDR= 0.4; Supplementary
Data 2). Strikingly, GHR was more significant (by raw and
FDR-adjusted p-value) than any clinical markers, suggesting its
utility as a potential clinical biomarker.

We next sought to test the mediation of our integrated
pathways. Several approaches test pathway mediation41,42. We
utilized the Camera procedure to test pathway enrichment as it
can utilize Hitman’s scores and accounts for the correlation
between genes43. We first tested for pathways whose change at

a
b

d

Beta-alanine metabolism

c

Fig. 5 Beta-alanine metabolism. a Network nodes are colored by between-group z-score, whereas unmeasured nodes are colored gray. Orientation of
triangle also indicates the directionality of regulation. Connections are from the Pathway Commons network. b Log2 abundance of histidine measured by
metabolomics in samples from independent human participants at baseline, 3, 12, and 36 months from 19, 18, 16, and 9 DWM and 19, 18, 19, and 13 RYGB
participants. c Log2 abundance of CNDP1 measured by SOMAscan, measured in samples from independent human participants at baseline, 3, 12, 24, and
36 months from 19, 19, 16, 10, and 9 DWM and 19, 19,19, 15, and 14 RYGB participants. d CNDP1 plasma levels measured by ELISA at baseline, 3, 12, 24, and
36 months from 10, 10, 10, 6, and 4 DWM participants and 10, 10, 9, 5, and 6 RYGB participants, respectively. Data were analyzed by two-sided moderated
t-tests; post-baseline time points were analyzed using change from baseline. Data in b−d are reported as mean ± SEM. Nominal p-values are as follows:
b histidine: 3 mo: #<0.0001, 36 mo: *=0.019; c CNDP1 (SOMAscan): 3 mo: #<0.0001, 12 mo: ***=0.00014; 24 mo: **=0.0054; 36 mo: **=0.0067;
d CNDP1 ELISA: 3 mo: **=0.0036. Supplementary Data 2 includes FDRs and source data for (b/c); source data for d is provided as a Source Data file.

Fig. 6 GHR is a consistent mediator of change in HbA1c. Retinol is an inconsistent mediator (i.e., it suppresses or inhibits the causal effect; left side)
whereas GHR is a consistent mediator of HbA1c change at 1 year (right side). a X-axis represents log2 abundance change from baseline to the 3 month time
point, and Y-axis represents HbA1c change from baseline at 1 year. b Shows putatively causal links with arrows based on (A) and direction of change with
triangles pointed up (increase) or down (decrease). Source data are provided as a Source Data file.
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the 3 month time point mediate HbA1c improvement at 1 year,
but none were significant.

Given that improvements in glycemic control after RYGB are
known to be related to changes in insulin sensitivity and/or
insulin secretion44, we applied Hitman to identify analytes whose
change from baseline at the 3 month time point mediated insulin
secretion and insulin sensitivity change from baseline at 1 year
(Supplementary Data 2) and followed this with integrative
pathway mediation analysis. Insulin secretion, defined as the
change in insulin from 0 to 30 min during a mixed meal tolerance
test, was improved in RYGB vs. DWM, as expected (means of
changes: RYGB= 37.4, DWM= 0.808; p= 0.001). No single
analyte was identified as a significant mediator, but one pathway,
Caffeine Metabolism, significantly mediated improved insulin
secretion (FDR < 10−4). Similarly, insulin sensitivity, defined by
reduction in HOMA-IR, also improved in RYGB vs. DWM at 1
year (means of changes: RYGB=−2.12, DWM=−0.102;
p= 0.02). No individual proteins or metabolites were significant
mediators of insulin sensitivity, but many top-ranking analytes
were BCAA-related metabolites. Consequently, pathway analysis
identified Valine, Leucine, and Isoleucine Degradation as a
significant pathway mediator of insulin sensitivity (FDR < 10−7),
together with 12 other pathways, primarily involved in lipid and
amino acid metabolism (Supplementary Data 2).

Validation of growth hormone receptor as candidate mediator.
GHR was decreased by 24% at the 3 month time point after
RYGB, relative to DWM, with similar reductions of 35, 28, and
30% at 12, 24, and 36 months, respectively. Robust GHR med-
iation led us to hypothesize that reductions in plasma GHR
reflected reduced tissue content or altered receptor shedding, and
thus could be associated with reduced growth hormone (GH)
signaling. In the liver, GH is best recognized as a determinant of
insulin-like growth factor 1 (IGF1) secretion during periods of
nutritional sufficiency, but GHR also exerts complex pro-
diabetogenic effects on glucose metabolism via IGF1-
independent pathways45. Indeed, IGF1 was not identified as a
mediator by Hitman, and neither SOMAscan nor ELISA mea-
sures of IGF1 differed between groups at the 3 month time point
(Supplementary Fig. 4). Levels of IGFBP1 and IGFBP2, which are
repressed by GH signaling, were increased in RYGB vs. DWM at
multiple time points (Fig. 2a and Supplementary Fig. 2). Plasma
GH levels did not differ at the 3 month time point, but were >6-
fold higher in baseline-corrected RYGB vs. DWM at 12 months
(Supplementary Fig. 4). Collectively, these data support the
hypothesis that pathway-selective growth hormone resistance in
post-RYGB participants could contribute to sustained improve-
ments in glucose metabolism46.

Given that reduction in plasma GHR was a top-ranking mediator
of improvements in glycemia, we asked whether expression of Ghr
in the liver (where Ghr is most highly expressed) is similarly reduced
after experimental bariatric surgery in rodents. We analyzed Ghr
expression in liver of HFD-fed rats 8 weeks after vertical sleeve
gastrectomy. Expression of Ghr was reduced by 26% (p < 0.05) in
VSG-treated as compared with sham rats (Fig. 7b). Thus, reductions
in hepatic Ghr follow both VSG and RYGB47 forms of bariatric
surgery in rodents, paralleling the reduction in plasma GHR we
observed in humans following RYGB.

Given that changes in hepatic transcriptional patterns could
reflect both the direct impact of surgery and secondary effects of
altered metabolism, we next investigated whether experimental
reduction of Ghr could affect glucose metabolism in a cell-
autonomous fashion in mouse primary hepatocytes. siRNA-
mediated Ghr knockdown led to a > 90% reduction in expression
of Ghr and 50% reduction in expression of Igf-1 (Fig. 7c, d) as

well as increased expression of the GH signaling inhibitors Socs1
and Socs2 (Fig. 7e). Furthermore, Ghr knockdown enhanced
insulin action to repress gluconeogenesis, as revealed by (1)
increased insulin-mediated suppression of cAMP-stimulated
glucose production (Fig. 7f), and (2) downregulation of the
gluconeogenic enzymes G6pc and Pepck (Fig. 7g). Therefore,
inhibition of hepatocyte GH signaling reduces transcriptional
activation of gluconeogenesis and reduces glucose production.
Since these key pathways contribute to hyperglycemia in T2D,
reductions in GH signaling could contribute to improved glucose
metabolism.

Discussion
RYGB yielded weight loss and improvement in multiple clinical
parameters. Our proteomic and metabolomics analysis in the fasting
state revealed both weight-dependent and -independent protein and
metabolite changes. Weight-dependent changes included decreases
in insulin, leptin, proinflammatory proteins, amino acids, and lipid-
related metabolites; these changes are consistent with improved
insulin sensitivity, loss of adipose mass, and reductions in inflam-
mation observed in prior studies of RYGB9,10,48,49. In contrast, the
differential abundance of several analytes linked to bone or bile acid
metabolism remained after BMI adjustment, suggesting weight-
independent mechanisms underlying these changes. For example,
the highly abundant bile acid and FXR ligand glycochenodeox-
ycholate sulfate and the intestinal FXR-dependent hormone FGF-19
were upregulated at later time points even with BMI adjustment in
participants randomized to RYGB, consistent with prior reports in
patients post-RYGB11,12,14,15 and in those with hypoglycemia after
gastric bypass50.

Valine, Leucine, and Isoleucine Degradation was the most sig-
nificantly changed pathway at the 3 month time point between
groups and a significant HOMA-IR pathway mediator. There were
robust post-RYGB decreases in BCAA and multiple downstream
catabolic intermediates, including C3 and C5 acylcarnitines. Our
results are in agreement with reduced BCAA in response to RYGB
in nonrandomized studies9,10,51,52 and prior findings of increased
BCAA in insulin resistance53,54. Lower BCAA levels post-RYGB
may be a consequence of weight loss-related improvements in
insulin sensitivity or altered microbial metabolism18, but may also
contribute directly to improved insulin sensitivity55. Our data reveal
a marked 88% reduction in the valine catabolic intermediate
3-hydroxyisobutyrate at the 3 month time point, which is particu-
larly interesting since 3-hydroxyisobutyrate can exit mitochondria
and serve as a signaling molecule, promoting muscle lipid uptake
and insulin resistance56,57.

The significant protein putative mediator of improved glycemic
control was GHR, which was reduced after RYGB. GHR at the
3 month time point is a more significant mediator of glycemia at
1 year than any clinical markers, including BMI, indicating that
GHR may have clinical significance as a biomarker of bariatric
surgery or as a therapeutic target. In agreement, liver Ghr
expression was significantly reduced after VSG in rats with
dietary obesity. These data are consistent with the >50% reduc-
tion in Ghr mRNA expression and protein (assessed by PCR and
immunohistochemistry) in liver and multiple intestinal segments
recently reported at both 9 days and 9 weeks post-RYGB in
mice47. These reductions in Ghr were also observed in weight-
matched mice, indicating weight-independence. In our human
cohort, reduction in GHR was closely correlated with reductions
in BCAA-related metabolites, which have also been linked to
improved post-surgical metabolism.

Beyond reductions in GHR content, we observed changes in
plasma levels of downstream targets of GH signaling, with a robust
increase in IGFBP1 at the 3 month time point and both IGFBP1 and
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IGFBP2 at 12, 24, and 36 months; these changes are concordant with
reduced GH effect within IGF1-independent pathways regulating
hepatic and systemic metabolism. The time course of these effects
provides potential clues. Reduction in GHR at the 3 month time
point was accompanied by an increase in the GHR-dependent target
IGFBP147. By contrast, increases in GH measured by ELISA were not
observed at the 3 month time point, but only emerged at 12 months.
Taken together, these data support the hypothesis that late post-
operative increases in GH may reflect both acquired GH resistance
following RYGB, together with the reversal of obesity- and
inflammation-associated reductions in GH secretion58. The emer-
gence of increases in GH at 12 months in the surgical group could
also contribute to sustained lipolysis in adipose tissue59. Additional
experiments will be required to identify the tissue-specific changes in
GH action associated with improved metabolic control after RYGB in
patients with T2D.

Given that GH excess (due to acromegaly or pharmacologic use
of GH in adults) is associated with increased glucose levels and
diabetes in humans60, a net reduction of GH signaling would be
expected to improve systemic metabolism. Indeed, rodent models
with experimental ablation of either Gh or Ghr have increased
healthspan, delayed aging, and improved insulin sensitivity45,61.
Mice with liver-specific ablation of Ghr have impaired gluco-
neogenesis, with overt hypoglycemia62. Moreover, inhibition of
GH action by the GHR antagonist pegvisomant improves sys-
temic insulin action in humans46.

Our data in isolated primary hepatocytes with experimental
knockdown of Ghr provide further support for an important role
for reduction in GHR-dependent signals as a mediator of
improved glucose metabolism. Efficient Ghr knockdown reduced
expression of gluconeogenic enzymes Pepck and G6pc, and
enhanced the action of insulin to repress glucose production.
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Fig. 7 GHR is reduced after bariatric surgery in humans and rodents and regulates hepatic glucose metabolism. a GHR in plasma is reduced after RYGB
in humans, measured by SOMAscan in samples from independent human participants at baseline, 3, 12, 24, and 36 months from 19, 19, 16, 10, and 9 DWM
and 19, 19,19, 15, and 14 RYGB participants. b Ghr expression in liver, assessed by qRT-PCR, from diet-induced obese rats, 8 weeks post-VSG bariatric
surgery (VSG) or sham controls (Sham) (n= 13 VSG, n= 15 sham). c–g Expression of GH signaling/axis genes, assessed by qRT-PCR, in cells treated with
siRNA targeting Ghr (si-Ghr) or non-targeting scrambled control siRNA (NT-ctrl) (n= 6 per group). c Ghr, d Igf-1, and e Socs1/2 in mouse primary
hepatocytes treated with siRNA-Ghr or NT-control. f Glucose production in response to insulin, cAMP, and insulin/cAMP after si-Ghr or NT-ctrl. g
Expression of gluconeogenic genes G6pc and Pepck in response to si-Ghr or NT-ctrl. Data are reported as mean ± SEM. For a the p-values are nominal,
using a two-sided T-test; FDRs are reported in Supplementary Data 2. For b–e and g two-sided t-tests were applied; for f two-way ANOVA with
Bonferroni’s multiple comparison test was applied in GraphPad Prism. P values are as follows: a: GHR: 3 mo: ***= 0.00099; 12 mo: #<0.0001, 24 mo: **=
0.0024, 36 mo: **= 0.0013. b: *= 0.0155, c: # <0.0001, d: # <0.0001; e: Socs1: *= 0.017, Socs2: ***= 0.0002; f: basal vs. insulin in NT control: *=
0.0322; basal vs. cAMP in NT control: ***= 0.0004; NT control vs. siGHR in cAMP + insulin: *= 0.0328. g: G6pc and Pepck both #<0.0001. Source data
for a is provided in Supplementary Data 2. Source data for panels b–g are provided in the Source Data file. For expression analysis, two independent
experiments were performed, while glucose production data represent a single experiment.
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Taken together, our study adds to the growing evidence that
RYGB decreases GHR-dependent signaling in the liver, and
supports that this reduction may contribute to lowering of glu-
cose and robust improvements in diabetes control63–66.

We have developed and applied a mediation method that can
be applied to studies where samples are randomized to a treat-
ment (or can be modeled as randomized given covariates) whose
causal effect on the outcome is consistent with prior knowledge
and these samples’ potential mediators are assayed. As others
have noted67, mediation analyses can be misled by confounding
variables, such as an unmeasured factor that both affects GHR at
the 3 month time point and (independently of GHR) affects
HbA1c at one year. To avoid confounding among measured
mediators, some high-throughput mediation approaches
decompose measured analytes to identify latent mediators that
are independent of measured confounders42,68. However, these
latent mediators are composed of multiple analytes and can be
difficult to interpret and follow-up experimentally. Furthermore,
in complex biological systems, many potential confounders are
unmeasured, such as microbiome changes in this study, so con-
founders’ impact often cannot be prevented by decomposing
measured analytes. To avoid confounding, it is helpful to control
for relevant covariates. For example, in this study Hitman ana-
lyzed changes within individuals, which obviates the need to
control for some demographic variables. For our omics simula-
tions, we measured inter-gene dependence in GTEx after con-
trolling for previously identified covariates and unknown factors
using surrogate variable analysis (SVA)39, which decreased
dependence. However, Hitman tests mediators individually and
does not attempt to control for confounders or inter-analyte
dependence, so its results should be considered exploratory, like
other causal mediation methods that test analytes individually in
omics datasets41. Future work should focus on combining Hit-
man with methods that consider multiple mediators simulta-
neously, such as pathway analyses41, and account for some level
of confounding69.

As required for a directional (“one-sided”) test, the direction to
be tested in Hitman is defined using prior knowledge before
Hitman is applied70; this must be the same as the observed
direction of the exposure’s effect on the outcome. The question of
when directional tests are appropriate is often debated, but the
primary criteria are that the direction of the test should align with
prior evidence71 and the scientific hypothesis72–75. These two
criteria are related since scientific hypotheses are based on prior
evidence. For example, multiple studies (including ours) have
found that RYGB causes a robust decrease in HbA1c. This pro-
vides confidence that RYGB truly decreases HbA1c, which sup-
ports the hypothesis that there exist mediators of RYGB’s
decrease in HbA1c. If the observed causal effect is not in the pre-
specified direction or no information about the direction of a
potential causal effect is available, then Hitman should not be
applied, as the approach of using a directional test is invalid, and
the false positive rate could be inflated by two-fold.

Here we are interested in consistent mediators, which can
explain the causal effect of the exposure on the mediator and the
mechanism of action76. The mediation hypothesis in the incon-
sistent direction is that there exist mediators that suppress or
inhibit RYGB’s reduction of HbA1c. Detecting inconsistent
mediators could be of value, as these mediators could be blocked
to enhance RYGB’s reduction of HbA1c. If these exist, though,
their effect size should be small relative to the magnitude of
RYGB-related reduction of HbA1c. If only inconsistent mediators
are of interest, though, Hitman can be slightly modified so that
consistent mediators are assigned a p-value of one and the p-value
of inconsistent mediators are halved. Without this modification,
Hitman has no power to detect inconsistent mediators.

We acknowledge that profiling semi-quantitative plasma meta-
bolomics and proteomics, with emphasis on the secreted proteome,
cannot fully define the pleiotropic effects of bariatric surgery,
including both weight-dependent and weight-independent changes
in complex inter-organ communication, gut microbiome effects,
tissue-specific protein abundance, or flux in metabolic pathways.
Moreover, medication usage, activity, and diet composition could
impact both clinical and omics differences between groups in the
human cohort. Although studies in rodents cannot fully recapi-
tulate human systemic metabolism, we were able to identify and
validate changes in Ghr and related pathway genes under con-
trolled experimental conditions. The analytes we have identified
and validated can be modulated in future studies to determine
whether they can be utilized for non-surgical control of glucose
metabolism in T2D, and our mediation method can be applied in
translational omics studies.

Methods
Clinical study. All relevant ethical regulations for work with human participants
were followed, and informed consent was obtained from all participants. The
protocol was approved by the Partners Healthcare Institutional Review Board, and
an independent data monitoring committee reviewed patient safety.

We performed a retrospective, exploratory analysis of fasting plasma samples
from the Surgery or Lifestyle with Intensive Medical Management in the Treatment
of Type 2 Diabetes (SLIMM-T2D) clinical trial (clinicaltrials.gov:NCT01073020),
in which 38 individuals with T2D and obesity were randomized to RYGB using
standard operative protocols (n= 19) or nonsurgical intensive diabetes weight
management (DWM; n= 19) and followed longitudinally for 3 years; pre-specified
primary study outcomes were previously reported5. Metabolic assessments were
performed at baseline (pre-randomization) and repeated at the 3 month time point
(defined as achieving 10% of initial body weight loss or at 3 months, permitting
assessment at similar weight loss in both groups) and at 12, 18, 24, and 36 months.

Blood samples were obtained after an overnight fast and analyzed for HbA1c,
plasma glucose, lipids (Quest Diagnostics), and insulin (Mercodia ELISA);
additional aliquots were stored at −80 °C and used for the current analysis.
Samples with HbA1c were available from 19, 19, 19, 17, 16, and 15 participants
from the RYGB arm, and 19, 19, 18, 11, 10, and 10 participants from the DWM
arm at the baseline, 3, 12, 18, 24, and 36 month time points. Groups were
metabolically similar at baseline5.

Meal tolerance and 6 min walk testing were performed at baseline and at 3 and
12 months as described77. In brief, Ensure (9 g protein, 40 g carbohydrate, 6 g fat)
was consumed over 5 min, and blood was sampled at 30, 60, and 120 min. Insulin
sensitivity was calculated by HOMA-IR, while insulin secretion was calculated as
the change in insulin from 0 to 30 min during the meal test.

Proteomic profiling and validation. Plasma proteome profiling was performed
using the high-throughput DNA aptamer-based SOMAscan assay platform
(SomaLogic, Inc.)78. The abundance of 1129 proteins (enriched for extracellular
proteins) was quantified as relative fluorescent units (RFU), normalized, calibrated,
and log2-transformed. Samples were available at baseline, 3, 12, 24, and 36 month
time points for 19, 19, 19, 15, and 14 participants in the RYGB arm, and for 19, 19,
16, 10, and 9 participants in the DWM arm (Supplementary Data 1).

Selected proteomic data were validated by ELISA in a subset of fasting plasma
samples, including IGFBP2 (22-BP2HU-E01, ALPCO, NH), CNDP1 (F34010,
LifeSpan Biosciences, WA), growth hormone (DGH00, R&D Systems, MN), and
total IGF-1 (DG100, R&D Systems, MN). RBP4 and TTR were assayed by
quantitative western blotting using polyclonal anti-human RBP4 (Dako) and anti-
human TTR (Dako) with standard curves of purified human RBP4 or TTR (Sigma)
on each blot79. Changes per individual over time were tested for positive
correlation to corresponding SOMAscan changes with a one-sided test of Pearson
correlation.

Metabolomic profiling. Plasma metabolomics were profiled using a commercial
semi-quantitative mass spectrometry-based platform (Metabolon, Inc.) as
described80,81. In brief, samples were prepared using the automated MicroLab
STAR® system from Hamilton Company. Several recovery standards were added
prior to extraction for QC purposes. To remove protein, dissociate small molecules
bound to protein or trapped in the precipitated protein matrix, and to recover
chemically diverse metabolites, proteins were precipitated with methanol under
vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by cen-
trifugation. The organic solvent was removed using the TurboVap® (Zymark); after
overnight storage under nitrogen, samples were reconstituted in solvents prior to
separation using ultrahigh performance liquid chromatography-tandem mass
spectroscopy (UPLC-MS/MS) with scan range 70–1000 m/z. Each reconstitution
solvent contained a series of standards at fixed concentrations to ensure injection
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and chromatographic consistency. Raw data were extracted, and peaks were
quantified by area-under-the-curve.

The majority of metabolites were identified by confirming a structure with a
minimum of two orthogonal properties (here, an accurate mass m/z, accurate mass
fragmentation, and a retention time) from a pure reference standard acquired
under identical analytical conditions. These metabolites have confidence level 1, as
per the Metabolomics Standard Initiative82. Those metabolites not officially
confirmed based on a standard have confidence level 3 and their biochemical name
is marked with an asterisk (*) in the metabolite annotation (Supplementary Data 2
and 3); these are primarily lipids.

Quality control was ensured by assessment of instrument and process
variability, determined by calculating the median relative standard deviation (RSD)
for the (a) internal standards added to each sample prior to injection into the mass
spectrometers, and (b) endogenous metabolites present in 100% of technical
replicates of a large pool of extensively characterized human plasma. Values for
median RSD for instrument and process variability were 5 and 9%, respectively.

This dataset had 17% of values missing, and the metabolite average abundance
from non-missing values was strongly negatively correlated with the metabolite’s
proportion of missing values (Spearman rho=−0.59, p < 10−15). This indicated
that missingness is abundance-dependent, i.e., data were missing not at random
(MNAR)83. For MNAR data, potential imputation approaches include imputing
half of the minimum abundance per metabolite (HM) and quantile regression
imputation of left-censored data (QRILC), which imputes the left-censored data by
randomly drawing values from a truncated normal distribution84.

Metabolites that had missing values in more than 85% of samples were filtered
out, leaving the dataset with 10% missing values. Missing values were imputed with
HM, and abundance values were log2-transformed. Samples were available at
baseline, 3, 12, and 36 months from 19, 18, 19, and 13 participants in the RYGB
arm and from 19, 18, 16, and 9 participants in the DWM arm. Metabolomics were
not profiled at 24 months due to cost. Metabolomics data are provided in
Supplementary Data 3.

Differential abundance of proteomics, metabolomics, and pathways. To test
differential abundance of log2 normalized analytes between groups at baseline, we
applied two-sided moderated t-tests with the R package Limma35,85, and accounted
for multiple hypothesis testing by controlling the FDR with the Benjamini
−Hochberg method86. We analyzed proteins and metabolites separately. Limma
applies linear regression modeling with empirical Bayesian methods to improve
each analyte’s variance estimation using analytes’ shared systematic variance. At
post-baseline time points, we calculated change in analyte abundance from baseline
for each individual, and then applied moderated t-tests to test if these changes
varied by group. We repeated these post-baseline analyses accounting for each
person’s BMI change as a covariate.

Significance for this and other analyses of high-throughput data (either from
SOMAscan or Metabolon) was defined as FDR < 0.15. However, significance for
analytes measured without high-throughput platforms, such as clinical data (e.g.,
BMI) or proteins analyzed by ELISA, was defined as p < 0.05.

To test the correlation of top metabolites to top proteins, we tested the
correlation of baseline-corrected changes, and chose top analytes as those shown in
the heatmaps in Fig. 2a, b.

To identify differentially abundant pathways, we constructed an integrated
dataset of proteins and metabolites for samples that had both data types, where we
averaged SomaLogic probes that had identical gene symbols. We applied Limma’s
Roast method to this dataset against Small Molecule Pathway Database31 pathways.
We were interested in pathways that change, even if, for example, proteins tend to
increase and metabolites tend to decrease, so we reported statistics from Roast’s
“Mixed” test, which tests if a pathway’s analytes tend to change without regard to
direction (i.e., if analyte changes have large absolute values), so a pathway can be
significant even if some analytes go up and others go equally down87.

To plot top nodes in a network, we plot the most significant analytes as nodes
with edges between them from the Pathway Commons88 network version 9. When
disconnected nodes can be easily connected, we add less significant or unmeasured
intermediates. Nodes are colored by their t-statistics, which had sufficiently high
degrees of freedom to approach z-scores, and were labeled as such.

In plots of individual analytes with standard error of the mean (SEM), ordinary
(i.e., unmoderated) SEM are displayed.

Mediation analysis. We tested mediation of each clinical variable with the causal
chain: group → clinical variable change → clinical outcome change. We tested each
clinical variable’s mediation by defining group as a binary variable representing RYGB or
DWM per individual; clinical variable change as each clinical variable’s change between
baseline and the 3 month time point per individual; and clinical outcome change as the
change in clinical outcome between baseline and 12 months per individual.

We tested mediation of analytes with the causal chain: group→ analyte change→
clinical outcome change, with analyte change as each analyte’s change (on the log2
scale) between baseline and the 3 month time point per individual and the clinical
outcome change as the change between baseline and 12 months (or in some cases later
time points). As a comparison to Hitman, we similarly tested the mediation of
analytes using the joint significance method and using the counterfactual approach
with the mediation package26 in the R software. In our simulations to evaluate

methods, the number of significant simulations was compared statistically with a two-
sided Fisher exact test in the R software. We tested these Hitman results against
pathways from the Small Molecule Pathway Database (SMPDB)31 with the CAMERA
pre-ranked pathway analysis method43 from the Limma package.

Validation studies in rodent model of bariatric surgery and in primary mouse
hepatocytes. The study complied with all relevant ethical regulations for animal
testing and research. All protocols were reviewed and approved by the University
of Michigan (Ann Arbor, MI) and Joslin Diabetes Center Animal Care and Use
Committees. Rat bariatric surgery was performed in high fat diet (HFD) fed male
mice as described89. Liver tissue was dissected 8 weeks postoperatively and flash-
frozen for subsequent RNA extraction.

Primary hepatocyte isolation and siRNA-mediated gene knockdown. Primary
hepatocytes were isolated from wild-type C57Bl6 male mice at age 8 weeks. After
anesthesia (pentobarbital, 50 mg/kg), the vena cava was cannulated (30G) and the
portal vein was cut for drainage. The liver was perfused for 5 min with 20 mL of
perfusion solution (NaCl 140 mM, Tricine 25 mM, KCl 5.5 mM, EGTA 0.5 mM,
KH2PO4 0.5 mM, Na2HPO4 0.3 mM, pH 7.4) and then for 5 min with 25 mL of
digestion buffer (Eagle’s balanced salts (NaCl 115 mM, NaHCO3 25 mM,
D-Glucose 5.5 mM, KCl 5.5 mM, CaCl2 0.3 mM, Na2HPO4 0.8 mM, MgSO4

0.8 mM), 1% penicillin/streptomycin and collagenase type II) for 5 min. The liver
was harvested and minced; the cell suspension was filtered through a 100 μm cell
strainer; cells were collected via centrifugation (200 × g, 3 min), and the pellet was
resuspended in 15 ml of complete DMEM (glucose 450 mg/dL) containing 10%
fetal bovine serum (FBS) and 1% penicillin/streptomycin. The cell suspension was
mixed with 10 ml of Percoll and centrifuged at 340 × g, 10 min); the pellet was
resuspended in 25 mL complete DMEM, centrifuged again (200 × g, 5 min), and
resuspended in 10 mL complete DMEM. Cells were counted and seeded at 1 × 105

cells/mL onto collagen-coated plates.
Pools of four siRNAs targeting GHR or non-targeting controls (Horizon-

Dharmacon) (final concentration 20 nM) were added to a mixture of OptiMEM
(Gibco) and transfection reagent (DharmaFECT, 15 μl per 1 ml OptiMEM); the
mixture was added to collagen-coated wells (200 μL/well) and incubated for 20 min
at room temperature (RT). Freshly isolated primary hepatocytes (n= 6 in si-GHR;
n= 6 in non-targeting controls) were added to each well (800 μL/well), and
medium containing siRNA and transfection reagents was replaced after 24 h.

Hepatocyte glucose production. At 48 h post-seeding, cells were incubated in
serum-free medium for 4 h, washed twice with PBS, and incubated for 2 h with
DMEM containing glutamine, sodium lactate, and sodium pyruvate, in the pre-
sence or absence of pCPT-cAMP (100 μM, Sigma) and/or 10 nM insulin. After 2 h,
the supernatant was collected, centrifuged twice (200 × g, 3 min, 340 × g, 3 min);
50 μL of the supernatant were used for glucose quantification (Thermo). The
attached hepatocytes were washed once with PBS and frozen in −80 °C.

RNA extraction and gene expression. RNA from primary hepatocytes and liver
tissue was extracted using TRIzol reagent using the manufacturer’s protocol. cDNA
was synthesized using random hexamers (High-Capacity cDNA Reverse Tran-
scription Kit, ThermoFisher-Applied Biosystems). Real-time quantitative PCR was
performed using SYBR green qPCR Supermix (Biorad) and QuantStudio 6
(Applied Biosystems). Primers are provided in Supplementary Table 1. Gene
expression was quantified using the ddCt method.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The SOMAscan proteomics and clinical data generated in this study have been deposited
in the Gene Expression Omnibus database under accession code GSE122279. The
metabolomics data are provided in Supplementary Data 3. SOMAscan proteomics,
metabolomics, clinical data, and the R/Bioconductor85 code to reproduce this article’s
main results are publicly available on GitHub at https://github.com/jdreyf/slimm-t2d-
omics and at Zenodo at https://doi.org/10.5281/zenodo.548574690. A Source Data file is
included. All remaining data generated or analyzed during this study are included in this
published article (and its supplementary information files).

Code availability
The Hitman R package is available at https://github.com/jdreyf/Hitman, which depends
on the ezlimma package (https://github.com/jdreyf/ezlimma). We generated plots from its
companion package, ezlimmaplot (https://github.com/jdreyf/ezlimmaplot). SOMAscan
proteomics, metabolomics, clinical metadata, and the R/Bioconductor85 code to reproduce
this article’s main results are available on GitHub at https://github.com/jdreyf/slimm-t2d-
omics and at Zenodo at https://doi.org/10.5281/zenodo.548574690. To reproduce the
headline results with one click even when software versions of dependencies change, data
and code have also been deposited in a Code Ocean capsule at https://doi.org/10.24433/
CO.9548519.v2, which is open, exportable, reproducible, and interoperable.
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