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Abstract

Fast and accurate prediction of ambient ozone (O3) formed from atmospheric photochemical 

processes is crucial for designing effective O3 pollution control strategies in the context of 

climate change. The chemical transport model (CTM) is the fundamental tool for O3 prediction 

and policy design, however, existing CTM-based approaches are computationally expensive, and 

resource burdens limit their usage and effectiveness in air quality management. Here we proposed 

a novel method (noted as DeepCTM) that using deep learning to mimic CTM simulations to 

improve the computational efficiency of photochemical modeling. The well-trained DeepCTM 

successfully reproduces CTM-simulated O3 concentration using input features of precursor 

emissions, meteorological factors, and initial conditions. The advantage of the DeepCTM is its 
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high efficiency in identifying the dominant contributors to O3 formation and quantifying the O3 

response to variations in emissions and meteorology. The emission-meteorology-concentration 

linkages implied by the DeepCTM are consistent with known mechanisms of atmospheric 

chemistry, indicating that the DeepCTM is also scientifically reasonable. The DeepCTM 

application in China suggests that O3 concentrations are strongly influenced by the initialized 

O3 concentration, as well as emission and meteorological factors during daytime when O3 is 

formed photochemically. The variation of meteorological factors such as short-wave radiation can 

also significantly modulate the O3 chemistry. The DeepCTM developed in this study exhibits 

great potential for efficiently representing the complex atmospheric system and can provide 

policymakers with urgently needed information for designing effective control strategies to 

mitigate O3 pollution.
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1 Introduction

The ambient ozone (O3) exerts great damages in human health (Murray et al., 2020; Wang 

et al, 2020.) and natural ecosystem (Grulke and Heath, 2020), leading to 365 thousand 

premature deaths worldwide in the year 2019. In China, O3 has gained increased attention 

recently due to worsened O3 pollution in recent years (Lu et al., 2020; Ding et al., 2019a). 

The ambient O3 is mainly formed from two important precursors of nitrogen oxides (NOx) 
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and volatile organic compounds (VOC) through complex photochemical processes in which 

both anthropogenic emissions and meteorological factors are involved (Gipson et al., 1981; 

Hu et al., 2021). Many studies suggested that the unexpected O3 increases in China might be 

due to both unbalanced precursor (i.e., NOx and VOC) emission controls and meteorological 

conditions favorable for O3 formation (Wang et al., 2019; Ding et al., 2019a; Ma et al., 

2019; Yang et al., 2021). Therefore, the design of effective control strategies requires 

accurate and quick estimation of the O3 response to variations in emissions and meteorology.

However, predicting the O3 response to emissions and meteorology variations is challenging 

due to the high nonlinearity associated with atmospheric photochemical processes (Seinfeld 

and Pandis, 2012). The chemical transport model (CTM) is the fundamental tool for 

simulating the O3 concentrations with the inputs of precursor emissions and meteorological 

factors across time and space. However, due to its large computational burdens associated 

with solving multiple differential equations (Brasseur and Jacob, 2017), most previous 

studies performed scenario analysis to investigate the influence of meteorology and 

emissions separately, either by reducing emissions under constant meteorological conditions 

or by modulating meteorology under constant emissions (Gilliland et al., 2008; Xing et al., 

2011a). The nonlinear response of O3 to emission changes has also been explored with 

advanced CTM-based tools (Dunker et al., 2002; Xing et al., 2011b; Wild et al., 2012; Kwok 

et al., 2015; Xing et al., 2017a; Turnock et al., 2018), but these tools are generally resource 

intensive and limit the exploration of nonlinear O3 responses to combined variations in 

emissions and meteorology. For instance, studies have revealed that future climate change 

may challenge efforts to continually improve air quality (Stowell et al, 2017; Hong et 

al., 2019). Yet the question of how meteorology influences the effectiveness of emission 

controls still has not been well addressed. A method to efficiently quantify the influence of 

meteorological variations on the response of O3 to emission changes is therefore urgently 

needed.

The reduced-form models have been gained great attention for their high efficiency 

in predicting atmospheric composition and estimating health effects. For example, the 

Intervention model for air pollution (InMAP) was designed to be an alternative to CTMs 

for estimating air quality response by solving a steady-state solution to reaction-advection-

diffusion equation (Tessum et al., 2017). The response surface model (RSM) was designed 

to create the nonlinear response of air pollution to precursor emissions through statistic 

regression based on multiple CTM simulations (Xing et al., 2011b). Such reduced-form 

models can be further implemented into integrated assessment model for optimizing the 

control strategy, and be also helpful for data assimilation and emission inventory inversion 

based on the nonlinear response of concentrations to emissions provided by the reduced-

form models (Xing et al., 2020a; 2020b).

Deep learning technology, such as convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), has demonstrated skill in representing the highly nonlinear and 

interactive relationships in the atmospheric system (Cabaneros et al., 2019; Kelp et al., 

2020). Our previous studies suggest that the air pollution response to emission changes 

can be inferred from the baseline concentrations of certain chemical indicators determined 

by the emissions and meteorology (Xing et al., 2020c). It is expected that pollutant 
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concentrations are also predictable from emissions and meteorology using deep learning 

methods. More importantly, deep-learning representations of the geophysical relationships 

of CTMs can substantially enhance the efficiency of predicting the O3 response by avoiding 

the complex numerical calculations in CTM, and thus enable examination of the O3 response 

to emissions and meteorology in a much higher dimensional space than traditional CTM 

studies. Such methods would provide essential information to policymakers to understand 

air pollution formation mechanisms and design proper control policies to continually 

improve air quality. While, the major concern about the deep learning models is about 

its interpretability. Besides, the feature selection in deep learning models is also challenging 

for well reproducing the whole atmospheric system which has a great number of variables in 

the CTM simulation.

Overall, the key questions are how to design a suitable neural network and how well such 

a network can replicate the CTM in revealing the inner relationships between O3 and 

emissions and meteorology. To address these questions, we propose a novel deep learning 

neural network structure (noted as DeepCTM) to reproduce the CTM-predicted O3. The 

properties of the new DeepCTM are examined for its ability to capture the nonlinearity of 

the O3 response to emissions and meteorology.

2 Methods

2.1 Dataset preparation

To establish the dataset for DeepCTM training, we used the Community Multiscale Air 

Quality (CMAQ) model, version 5.2, which is one of the most commonly used CTMs 

for simulating the air pollutant concentrations (Appel et al., 2018). Meteorological fields 

were developed from simulations with the Weather Research and Forecasting (WRF) model, 

version 3.8 (Skamarock et al., 2008). The CMAQ and WRF model configurations are the 

same as in our previous studies (Ding et al., 2019a, b). The Carbon Bond 6 (Sarwar et 

al., 2008) and AERO6 (Appel et al., 2013) mechanisms were used to represent gas-phase 

and particulate matter chemistry, respectively. Anthropogenic emissions are based on the 

bottom-up ABaCAS-EI inventory developed by Tsinghua University with a high spatial and 

temporal resolution (Zheng et al., 2019; Xing et al., 2020d). Biogenic emissions were based 

on the Model for Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 

2012). The performance of WRF and CMAQ for simulating meteorological variables and air 

pollutant concentrations has been thoroughly evaluated against observations in our previous 

studies (Ding et al., 2019a, b).

The study domain covers most of East Asia using 182 (row) × 232 (column) horizontal grid 

cells with 27 km × 27 km resolution. In addition to national averages, our analysis also 

focuses on three key regions in China that suffer the most serious O3 pollution, including 

North China Plain, the greater Yangtze River Delta, and Southeast China (Figure S1).

2.2 DeepCTM structure

Although deep learning models can act as a universal approximator to represent any 

nonlinear system (Csáji, 2001), it is quite challenging for them to approximate the 
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complicated atmospheric system. The challenges are due in part to unsatisfactory 

performance in neural-based solvers for partial differential equations (Hsieh et al., 2019). 

To address these challenges, key inductive biases must be introduced (Goyal et al., 2020) 

when designing the features and architecture of the deep learning model.

Since the DeepCTM aims to mimic the CMAQ simulation, the features are selected from 

the original inputs for CMAQ model. First, we limit the initial concentration fields to 

only two species including NO2 and O3. Since VOC has too many species, including 

them will significantly enlarge the computational demand and the error accumulation 

(i.e., the output from previous step will be used as the initial concentration for next 

step prediction). CO is not included for its relative long lifetime thus has little impacts 

at a short period of time. In addition, we carefully construct 10 feature maps that are 

sufficient to represent the response relationship between emissions and O3 concentrations. 

The feature data consist of two emission variables including total VOC emissions and NOx 

emissions; six meteorological variables including planetary boundary layer (PBL) height, 

wind speed (WS), short-wave radiation (SWR), convective velocity scale (WSTAR), 2-meter 

temperature (T2) and humidity (Q2); transport fluxes including U- and V- direction winds 

(UV-wind) which represent the movement between neighboring grid cells following the 

horizontal wind direction; and a time-independent variable terrain height (normalized with 

mean 0 and variance 1) to represent the geographical information. The feature data will be 

fed into the DeepCTM to mimic the CMAQ simulation.

Second, we carefully design the structure of DeepCTM to capture the spatial and temporal 

relationships among local emissions, meteorology and the concentrations to be predicted. 

Specifically, similar to our previous study (Huang et al., 2021), we use stacked convolutional 

layers to maintain spatial information through the network and better extract the exclusive 

characteristics from the inputs, and one long short-term memory (LSTM) to aggregate 

information from time series data to mimic the accumulation of pollutants from historical 

processes. Additionally, we use a U-Net branch which is a widely adopted pixel-to-pixel 

model to effectively utilize neighbor information. To stabilize the optimization procedure, 

we employ two key components to smooth the energy landscape: (i) batch normalization of 

the activations (Santurkar et al., 2018) and (ii) skip connections to eliminate the problematic 

singularities in deep networks (Orhan et al., 2018). The detailed architecture is presented 

in Figure 1. The 10 feature maps in past 6 hour data are concatenated and fed into the 

LSTM with U-Net branch of a two-layer structure detailed in our previous study (Huang et 

al., 2021), and further combined with geography data and initial concentration at t-6 (i.e., 

6 hour before, yt-6) into the MLP (multiple layers of perceptrons with threshold activation) 

to predict the concentrations at t (i.e., yt). Here we set 6 hour instead of 1 hour as the 

model time step for the consideration that O3 could be substantially changed during the 6 

hour periods, resulting in large discrepancy between the initial condition (one feature) and 

prediction (label) which is enough for the NN model to learn the influence of emissions 

and meteorological factors. More important, the number of accumulation steps for a whole 

day can be substantially reduced to well control the accumulation errors. The trained model 

can be deployed for either single step (no accumulation) or through multiple steps with 

the initialized conditions predicted from previous step. The single-step application can be 

helpful for identifying the driven factors for O3 formation within 6-hour period with high 

Xing et al. Page 5

Atmos Res. Author manuscript; available in PMC 2023 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



accuracy, while the multiple-step application can fully replicate the CMAQ simulation with 

moderate accuracy, since it can predict the O3 concentration just using the inputs for CMAQ 

simulation with high efficiency (i.e., a few seconds with well-trained DeepCTM compared 

to hours of simulation with CMAQ).

2.3 Training and testing

We conducted WRF-CMAQ simulations for eight cases based on different combinations of 

emissions and meteorological conditions, as summarized in Table 1. In addition to the base-

year simulation of 2017 (Case 1), we conducted simulations with doubled 2017 emissions 

(Case 2), as well as with various future emissions and meteorological conditions downscaled 

from the simulation of global climate models (Case 3–8) to explore the domain transfer 

capabilities of DeepCTM (Liu et al., 2021).

We selected two future pathways of a shared socioeconomic pathway 126 (ssp126) and 

a reference fossil fuel scenario (ssp585) to represent low- and high-level global warming 

conditions in 2050, as detailed in Liu et al (2021). The anthropogenic emissions in 2050 at 

both low and high levels are used to represent the variation of emissions. The comparison 

of the distribution of feature data in base and future years (Case 1, 3–4) is given in Figure 

S2–S3. In general, most features exhibit similar spatial and temporal distributions, while the 

emissions in the 2050-low case are much smaller (by 60–80%) than in the 2050-high and 

2017 cases, and the 2-meter temperatures in 2050s are higher (by 1–2K) than in 2017 (Liu et 

al., 2021).

The hourly data of the first 7 days in each month of Case 1–3 (i.e., total 6048 records) are 

used for training, to better represent the variation of emissions from high to low levels and 

change of meteorology from current to future warming conditions. The remaining days of 

Case 1–3 as well as all days in Case 4–8 are used for testing. We did not select additional 

datasets for training due to the limited GPU memory (the task was accomplished on a 

NVIDIA DGX station with maximum capacity of 128 GB).

We randomly cropped the feature maps by the size of 60 for data augmentation to improve 

the performance of the CNN in dealing with the low-level task. That is because the 

atmospheric process mainly happens within certain distance in an hour, implying that the 

neighbor grid cells are more important rather than the one far away from the target (low-

level task). In addition, using random cropping can enhance the variation of the training 

samples, also significantly reduced the memory requirement during the training by avoiding 

using high-resolution maps.

The Mean Squared Error loss was used for training, with 5000 epochs which is sufficient to 

achieve good performance in both training and testing. The learning rate starts from 0.001 

and linearly decay to zero at the end of training. The loss variation of the training process is 

given in Figure S4. One thing should be noted that since the training loss is computed over 

the cropped maps but the test loss is computed over the entire map, therefore the trend of 

loss curves is more meaningful than the quantitative comparison between training and test 

loss.
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We have trained our model with both normalized and unnormalized data, and the 

performance gap is marginal. Considering the importance of feature on prediction is 

examined by through a certain amount of perturbation, we didn’t normalize the feature 

data except for terrain height.

We calculated model performance statistics using the normalized mean bias (NMB), the 

root mean square error (RMSE), and R-squared (R2). Model performance is also thoroughly 

examined through its ability to characterize the nonlinear response of O3 to emission and 

meteorological factors.

3 Results

3.1 Performance evaluation for predicting the temporal and spatial O3 patterns

After 5000 epochs, the trained DeepCTM can well reproduce the CTM-simulated hourly O3 

variation across the whole year. The RMSEs and NMBs for the training dataset are 3–4 ppb 

and ±1% respectively, and R2 values are very close to 1 (see Figure S5). The RMSEs for the 

testing dataset (4–5 ppb) are slightly worse than for the training dataset but the NMBs are 

still within ±1%. Such good performance in both the training and testing dataset suggest that 

the DeepCTM has good generalization capabilities.

We further applied the trained DeepCTM to Case 4 with completely different emissions 

and meteorological conditions from the training dataset (Case 1–3). As presented in Figure 

2, the results suggest that the DeepCTM can well reproduce the spatial distribution of 

CTM-simulated O3, as demonstrated by the comparison of two representative days from 

the testing dataset (i.e., the 21st day in January and July, which represent winter and 

summer, respectively in Case 4). The DeepCTM predictions for O3 at the next 6 hour (no 

accumulation, Figure 2b) agrees very well with the CTM predictions, with RMSEs and 

NMBs within 4 ppb and ±1%, respectively, and R2 values close to 1.

Due to the chaotic nature of the atmospheric system (Brasseur and Jacob, 2017), a small 

error in the initial condition can be amplified in the subsequent prediction steps, which 

creates challenges for any time-series prediction for the atmosphere system. To further 

examine the model performance in predicting O3 through a long-time period rather than 

at the sixth hour as set in the training process, we use the prior-predicted O3 and NO2 as 

the initial conditions to feed into the prediction for the following steps. As the DeepCTM 

integration proceeds over multiple time steps, the small errors for individual steps can 

accumulate slightly (Figure 2a). However, the implementation of LSTM can well control the 

error accumulation within certain range. The RMSEs increase to 5.4 ppb at the 12th hour 

(through 1 time accumulation, Figure 2c), and 5–6 ppb at the 24th hour (through 3 time 

accumulation, Figure 2d). However, the RMSEs are kept around 5–6 ppb in the following 

predictions for days 2–7 (through 7 to 27 time accumulation) (Figure 2e–g). The NMBs 

also continually increase with the time integration but remain within 10% (the largest NMB 

values occur at low baseline O3 levels) during the 7 day period (Figure 2a), suggesting 

that implementation of the recurrent network structure like LSTM can well reduce the 

rate of error accumulation; though error accumulation remains as the biggest challenge for 

long-time prediction with any time-accumulation based method like DeepCTM.
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We also examine the trained DeepCTM in predicting the simulation of other cases (Case 5–

8) with the variation of emissions and meteorological conditions (Figure S6–7). In general, 

the DeepCTM can also well capture the magnitudes and range of hourly O3 concentrations 

across all cases, with acceptable NMBs (mostly within ±20%) (see in Figure S6), even 

though the prediction is initialized only at the first 6 hours of each month (i.e., multiple 

steps with accumulation). Relatively worse performance with larger NMB is shown in Case 

2, 4, 7 and 8 simulated with higher NOx emissions which lead to extremely low O3 values 

in winter (strong VOC-limited) as the small denominator for NMB calculation. Surely the 

performance of DeepCTM can be further improved by using a wider range of emission data 

for training to better represent these conditions. The DeepCTM can also well capture the 

spatial distribution of O3 concentration even through a whole month accumulation, with 

small RMSE (2–3 ppb) and high R2 (>0.9) (Figure S7). That implies the DeepCTM can 

mimic the CMAQ simulations just with its inputs (initial condition at the first 6 hours and 

meteorological data) continually for the whole months.

3.2 Identification of the factors that dominate O3 diurnal variation

Lack of interpretability is one shortcoming for most machine learning-based models; 

however, the ability of the DeepCTM in predicting O3 can be explored through sensitivity 

analysis by modulating the input features. Specifically, the importance of each feature for 

the DeepCTM prediction can be quantified by the change of the predicted O3 associated 

with a change in the feature. To better understand how the DeepCTM can capture the change 

of O3 from Case 1 to Case 4 (Figure S8), we quantify the contribution from each input 

feature to the change of O3 prediction from Case 1 to Case 4. A series of hypothetical cases 

were conducted by using data for one feature from Case 4 with the remaining features kept 

the same as in Case 1, and repeating the process for all features. Therefore the difference 

between the predicted O3 in the hypothetical case and Case 1 can be regarded as the 

individual contribution from the feature modulated in the hypothetical case. The results 

show that the decreased O3 in southern China is mainly driven by the change of short-wave 

radiation (ΔSWR) and flux transport (ΔUV-wind), while the increased O3 in northern (in 

January) and western China (in July) is mostly driven by the PBL height (ΔPBL). Note that 

we modulate each feature one-by-one and thus the sum of the individual contributions is not 

equal to the total changes due to nonlinearity in the underlying system.

To further examine the influence of individual factors on the diurnal variation of O3, we 

conducted a sensitivity analysis by modulating each feature one-by-one in predicting the O3 

response with DeepCTM across two typical days (Figure 3). The features of emission (Enox, 

Evoc), initial conditions (Ino2, Io3), flux transport (U_wind, V_wind) and meteorological 

factors (i.e., PBL, WS, SWR, WSTAR, and Q2) are set with a 20% reduction, except for 

T2 which are set with a reduction of 2K. The small perturbations are within the range of 

variation in the training data to ensure its accuracy from the DeepCTM prediction.

The 24-h DeepCTM predictions (initialized for each hour with no accumulation) suggest 

that the initialized O3 concentration is the dominant factor contributing to O3 across a day 

(Figure 3). The influence of the initial condition of O3 decays slowly from morning till 

the noon and then increases again overnight, indicating the photochemical formation of O3 
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during daytime reduces the importance of the initial conditions. Such large influence of 

initial condition to the diurnal variation of O3 is mainly because of the single-step running 

without accumulation. The impacts of initial condition will be slowly reduced along with 

the accumulation, and the DeepCTM can also well capture such decay of the initial impacts 

(Figure S9).

The flux transport factor (U_wind and V_wind) influences O3 concentration changes 

through regional transport. In the three polluted regions, the O3 flux transport acts as a sink 

during daytime. This behavior is due to the transport of locally formed O3 to downwind 

areas that reduces O3 in the source region. Such phenomena are most pronounced in 

summer. The flux transport can be also a source in polluted regions at night and in winter. 

That might be associated with the movement of NOx out of the polluted region which will 

reduce the O3 loss at night due to NO titration and oxidant limitations and thereby enhance 

the O3 concentration. Such detailed chemical behaviors are well captured by the DeepCTM.

The meteorology factors exert considerable influence on O3 mostly during daytime when 

O3 is formed through photochemical reactions. The 20% reduction in surface short-wave 

radiation mitigates O3 formation during daytime. Similarly, the 2-K reduction in 2-meter 

temperature slightly reduces O3 in most regions in winter due to its influence on chemical 

reaction rates. However, the opposite impact of 2-meter temperature on O3 occurs in the 

southern regions in summer likely because lower temperatures are associated with higher 

biogenic VOC emissions which can consume the O3 sharply under NOx-limited conditions. 

The 20% reduction in PBL height and wind speed slightly increase the daytime O3 

concentrations, probably due to the enhancement of precursor concentrations that promote 

O3 formation, while they reduce O3 concentrations at night due to the transition of O3 

chemistry to VOC-limited conditions. The reduction of convective velocity scale (WSTAR) 

also exhibits strong impacts on daytime O3 by reducing O3 in summer and increasing 

O3 in winter. Such behavior might be associated with the vertical transport of O3 and 

precursors. The reduced convective velocity scale leads to reduced O3 due to the weaker 

vertical mixing that transports upper-level O3 downward to surface in summer. However, the 

reduced convective velocity scale increases O3 in winter, probably due to the reduced NOx 

concentrations under VOC-limited regime. A similar finding is indicated by the seasonality 

of meteorological influences on O3 with initialized at first 6 hours in each month (i.e., 

multiple steps with accumulation) (detailed in Text S1 and Figure S10).

The precursor emissions can either be a source or sink for O3 across a day. Surface NOx 

emissions contribute to daytime O3 formation but tend to reduce O3 at night when NOx 

consumes O3 through direct reaction. VOC emission reductions are always beneficial for 

reducing O3 in North China Plain and Yangtze-River-Delta, while they slightly enhance 

O3 in Southeast and all China in summer, probably due to the active VOC species 

associated with biogenic sources consuming O3 under low NOx conditions. Note that here 

we conducted the sensitivity analysis with emissions of each species individually adjusted. 

Simultaneous control of the precursors leads to a more complex O3 response, which is 

discussed next.
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3.3 Prediction of the nonlinear O3 response to precursor emission changes

Using the DeepCTM, the isopleth of O3 concentration for variations in precursor emissions 

can easily be predicted as done with response surface models (RSMs) (Xing et al., 2011b; 

2017a). The O3 responses to the change of NOx and VOC emissions by a range of ratios 

from 0 to 2 (for zero-out to double emissions) were predicted by DeepCTM for two typical 

hours (6 am and 12 pm) in two typical days (Figure S11) with single-step (no accumulation). 

In general, the responses of O3 to total NOx and VOC emissions are quite similar as we 

found in previous RSM studies (Xing et al., 2011b; 2017a; 2020c). The O3 chemistry 

is mostly in a NOx-limited regime in summer and at noon and in southern regions like 

Southeast, but in a VOC-limited regime in winter and in northern regions like North China 

Plain. The results about O3 chemistry regime are consistent with previous studies. For 

example, Wang et al (2019) and Lyu et al (2019) found VOC-limited regime in eastern 

China and North China Plain. While, Li et al (2013) reported NOx-limited regime in Pearl 

River Delta region at noon time.

Such strong spatial and seasonal variation of O3 chemistry is also suggested from the O3 

responses to the doubling of NOx and VOC emissions (from Case 1 to Case 2) (see Figure 

4). In general, the DeepCTM has successfully captured the decreased O3 in winter and 

increased O3 in summer in most of China. The model also well captured the increased O3 

in the south (with limited NOx emissions and strongly NOx-limited conditions) in winter as 

well as the decreased O3 in polluted regions like Northern China Plain (with abundant NOx 

emissions and at strongly VOC-limited conditions). Such changes are mostly driven by the 

doubling of NOx emissions. One thing should be noted that the double VOC might slightly 

decrease O3 mostly in the rural areas where with high biogenic VOCs which can consume 

the O3 sharply under NOx-limited conditions. However, uncertainties are still existed due 

to the DeepCTM limitation in dealing with the VOC speciation which need be further 

implemented into the model design.

In addition to reduced requirements for CTM simulations for model development, another 

advantage of the DeepCTM over the RSM is the ability of the DeepCTM to explore the 

influence of meteorology variations on O3 chemistry. We conducted such investigation using 

the Peak Ratio (Xing et al., 2019a), which is an indicator of the chemical regime for the O3 

response to precursor changes. The Peak Ratio is the NOx emission change ratio (range of 

0 to 2 for zero-out to double emissions) corresponding to the maximum O3 concentration 

under conditions of baseline VOC emissions. O3 chemistry is in the VOC-limited regime 

when Peak Ratio < 1 and in the NOx-limited regime when Peak Ratio > 1. The influence of 

meteorology variations on O3 chemistry is examined by comparing the Peak Ratio response 

to the variation of each meteorological factor.

Figure 5 presents the diurnal Peak Ratio across a day under seven levels of short-wave 

radiation, including the baseline (swr_base), 90% reduced (swr0.1), 70% reduced (swr0.3), 

30% reduced (swr0.7), 30% increased (swr1.3), 70% increased (swr1.7), and 90% increased 

(swr1.9) radiation. For baseline conditions, the Peak Ratio exhibits strong diurnal variation 

with the highest value at noon and lowest value at night. This behavior indicates that 

O3 chemistry is much more likely to be in the NOx-limited regime at noon and in the 
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VOC-limited at night. The summertime Peak Ratio is also always higher than that in winter 

implying the stronger NOx-limited regime in warmer seasons when oxidants are abundant.

The variation of short-wave radiation can significantly modulate the O3 chemistry across 

the day in both seasons. In general, reductions in short-wave radiation will lower the Peak 

Ratio leading the O3 chemistry toward the VOC-limited regime and increases in radiation 

will enlarge the Peak Ratio leading the O3 chemistry toward the NOx-limited regime. This 

behavior is because stronger short-wave radiation favors the photolysis of NO2 to form 

O3, whereas the consumption of OH by NO2 (which terminates radical reactions and thus 

reduces O3 formation) is favored under conditions of weaker short-wave radiation. The 

change in O3 chemistry associated with short-wave radiation is more pronounced in the 

North China Plain in winter, indicating that north regions and colder seasons (with less 

baseline radiation) are more sensitive to short-wave radiation than other regions/seasons. 

Meanwhile, meteorological factors in addition to short-wave radiation also influenced the O3 

chemistry (detailed in Text S2, Figure S12–15).

3.4 Seasonality of meteorological influences on O3 response to NOx emission reductions

To examine the meteorological influence on the O3 response to NOx emission reductions, 

we compared the daily O3 response to NOx emission reductions in different months by 

considering 20%, 50%, and 80% NOx control (Figure 6). We conducted this analysis by 

applying the DeepCTM with initialized at first 6 hours on each day (multiple step with 

accumulation).

Results suggest strong seasonality in the O3 response to emission changes. In general, 

NOx control is beneficial for reducing O3 in summer, but disbeneficial or ineffective for 

reducing O3 in winter. One thing should be noted that the benefits of NOx control highly 

depends on its reduction ratio, as the 20% control has very limited benefits on O3 reduction 

while the benefits of NOx controls increase substantially when contorl ratio reachs 80%. 

Such findings are consistent with our previous study (Xing et al., 2018), demonstrating the 

strong nonlinearity of O3 responses to NOx emission reductions due to the meteorological 

variations. Even in a single month, there are a wide range of O3 responses to NOx emission 

changes, with variations of 5–10 ppb and both negative and positive responses. These 

results demonstrate that meteorological variations can have a large influence on the control 

effectiveness even at a small temporal scale (e.g., day-to-day variations), which should be 

considered in designing effective control strategies.

4 Conclusion

The deep learning-based air quality simulator (i.e., DeepCTM) proposed in this study 

exhibits its ability in reproducing the temporal and spatial patterns of O3 concentrations, 

as well as its inner correlations with precursor emissions and meteorological factors. One 

potential application of the DeepCTM is 7-day forecasting as the well-trained DeepCTM 

can accurately and efficiently predict the O3 variations with emissions and meteorology 

over 7 days of continual forecasting with limited accumulated errors. Since all the inputs of 

DeepCTM are ready with no additional CTM simulations (initial condition can be derived 

from current status fused with observations), the application of DeepCTM can significantly 
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improve the real-time prediction of air quality and inform policymakers to mitigate air 

pollution, by designing effective control strategies from efficient prediction of multiple 

emission control scenarios (Xing et al., 2017b; 2019b).

The DeepCTM also successfully identified the dominate factors that contribute to the O3 

diurnal variation and captured the nonlinearity of O3 response to emissions under different 

meteorological conditions, exhibiting the advantage of high efficiency in identifying the 

dominant factor to photochemical formation over existing CTM-based methods. Besides, 

the emission-meteorology-concentration linkages implied by the DeepCTM are consistent 

with known mechanisms of atmospheric chemistry, indicating that the DeepCTM is also 

scientifically reasonable. These results suggest that the neural-network-based predictor 

can represent the basic physical and chemical processes of the atmosphere from the raw 

CTM-simulated data, which further implies an important fact that for systems that can be 

represented deterministically (e.g., atmospheric air pollution), we can generally mimic the 

full pathway using information from the initial and crucial features alone.

This study also reveals that the implementation of time-series neural network structure will 

address the error accumulation problem which is one challenge for long-time prediction. 

The initial errors grow slightly during the time integration but then become stable even up 

to a week of accumulation. More accurate representation of the CTM structure would help 

to further improve the accuracy of DeepCTM. For example, in this study we simplified 

the vertical structure of the atmosphere by only selecting the surface features to represent 

the atmospheric system. Apparently, such simplification might lead to systemic errors in 

DeepCTM predictions, and inclusion of additional features in the neural network could be 

necessary to address these issues. This is a challenging task since the training with inclusion 

of the vertical parameters would require >10 times the computational resources, which 

might need further improvement of model design with implementation of dimensionality 

reduction techniques, such as auto-decoder or 3-D CNN to exact the information from 

the vertical structure of the atmosphere. Also, since training is done using the baseline 

CTM simulation, errors can occur in predicting conditions not included in the training 

set, like the extremely low VOC emissions in summer. Such biases can be reduced by 

incorporating CTM simulations for emission control scenarios into the training dataset. In 

the current DeepCTM design, we did not include the concentration of individual VOC 

species due to the complex chemical mechanisms for VOCs that vary among CTMs. 

Incorporating additional species would increase the computational demand for training the 

DeepCTM and would significantly enlarge the influence of initial conditions and thus the 

error accumulation. The above issues are recommended for future studies. Nevertheless, 

the DeepCTM proposed in this study demonstrates its large advantage and potential for 

addressing the complicated atmospheric system, which can be continually improved with 

further efforts in both environmental scientific research and computational technologies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The model architecture of the DeepCTM for predicting O3 variations with emissions 

and meteorology. CNN: convolution network; LSTM: long short term memory; U-Net 

structure (2-layers): a u-shaped architecture with a down sample function (max pooling) 

and a deconvolution function (up convolution); MLP: multiple layers of perceptrons with 

threshold activation; pReLU: the parametric rectified linear unit is used as the activation 

function
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Figure 2. 
DeepCTM performance in predicting O3 variations with emissions and meteorology (test: 

Case #4)
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Figure 3. 
The O3 sensitivities to the variation of individual factors (emission, initial condition, 

flux transport, and other meteorological factors are marked as red, green, blue, and cyan 

respectively; all factors are quantified through a 20% variation, except for T2 through a 2K 

reduction)
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Figure 4. 
Prediction of O3 response to doubled emission of NOx and VOC (unit: ppbV, initializing at 

the first 6 hours and accumulating through the whole week)
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Figure 5. 
The O3 chemistry (indicated by the Peak Ratio) response to the variation of short-wave 

radiation across a day
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Figure 6. 
The O3 changes due to NOx emission controls under different meteorological conditions 

across a year
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Table 1

Summary of training and testing dataset

Case Dateset name Anthopogenic emission Meteorological conditions and biogenic 
emission

For 
training

For testing

1 e2017-base 2017 2017 baseline √

2 e2017-double 2017 doubled 2017 baseline √

3 e2050L-BCC_ssp126 2050 low 2050 ssp126 simulated with BCC model √

4 e2050H-BCC_ssp585 2050 high 2050 ssp585 simulated with BCC model √

5 e2050L-ensmean_ssp126 2050 low 2050 ssp126 ensembled with 5 models √

6 e2050L-ensmean_ssp585 2050 low 2050 ssp585 ensembled with 5 models √

7 e2050H-ensmean_ssp126 2050 high 2050 ssp126 ensembled with 5 models √

8 e2050H-ensmean_ssp585 2050 high 2050 ssp585 ensembled with 5 models √
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