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Abstract

Light is a crucial environmental cue not only for photosynthetic energy production but also 

for plant growth and development. Plants employ sophisticated methods to detect and interpret 

information from incoming light. Five classes of photoreceptors have been discovered in the 

model plant Arabidopsis thaliana. These photoreceptors act either distinctly and/or redundantly in 

fine-tuning many aspects of plant life cycle. Unlike mobile animals, sessile plants have developed 

an enormous plasticity to adapt and survive in changing environment. By monitoring different 

information arising from ambient light, plants precisely regulate downstream signaling pathways 

to adapt accordingly. Given that changes in the light environment is typically synchronized with 

other environmental cues such as temperature, abiotic stresses, and seasonal changes, it is not 

surprising that light signaling pathways are interconnected with multiple pathways to regulate 

plant physiology and development. Indeed, recent advances in plant photobiology revealed a 

large network of co-regulation among different photoreceptor signaling pathways as well as 

other internal signaling pathways (e.g., hormone signaling). In addition, some photoreceptors are 

directly involved in perception of non-light stimuli (e.g., temperature). Therefore, understanding 

highly inter-connected signaling networks is essential to explore the photoreceptor functions in 

plants. Here, we summarize how plants co-ordinate multiple photoreceptors and their internal 

signaling pathways to regulate a myriad of downstream responses at molecular and physiological 

levels.

One sentence summary

A battery of sensory photoreceptors with spectral specificity provides plants with multiple 

environmental cues including light and temperature to increase fitness, yield and biomass in 

agriculture.
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1. Introduction

Due to sessile nature of plants, environmental factors inevitably have strong influence 

on plants’ physiology and development. To efficiently adapt and survive in the changing 

environment, plants have developed sophisticated ways of detecting external cues and 

translating it into internal signaling pathways. Among many environmental cues, light is 

one of the most crucial signals, which affects almost every step of plants lifecycle. Light not 

only serves as a sole energy source for CO2 fixation by photosynthesis, but also serves as 

a complex signaling input to modulate plant physiology and development. It is, therefore, 

essential for plants to correctly interpret light information through the action of multiple 

photoreceptors.

A series of unique photoreceptors with different wavelength absorption spectra and 

biochemical properties have been employed to precisely delineate plants’ light environment. 

To acquire the detailed information from different wavelength of the incoming light, 

plants have at least five classes of photoreceptors. Phytochromes (PHYA-E in model plant 

Arabidopsis thaliana) perceive red/far-red lights (600–750 nm); cryptochromes (CRY1, 

CRY2 and CRY3), phototropins (PHOT1 and PHOT2), F-box containing Flavin binding 

proteins (e.g., ZEITLUPE, FKF1/LKP2) for blue/UV-A light (320–500 nm); and UVR8 
for UV-B light (280–320 nm) (Fig. 1) [1] Recent advances in plant photoreceptor research 

have identified novel roles of the receptors other than photoperception [2,3]. Thus, emerging 

evidences support the idea that the photoreceptors are involved in direct perception and/or 

modulation of responses to a wide range of environmental cues suggesting a role as a 

“multi-sensor”. Here, the molecular mechanism of light perception of the photoreceptors 

and their roles in wide range of plant responses will be discussed with an emphasis on the 

red/far-red light receptor phytochrome signaling pathways.

1.1. Molecular mechanisms of photoreceptors action in plants

1.1.1. Phytochrome signaling—Photoreceptors in plants utilize chromophore to detect 

photons in incoming light. The red/far-red light receptor phytochromes are covalently 

attached to a phytochromobillin tetrapyrole ring which can isomerize in response to red/

far-red light to induce changes in the protein structure [1]. Phytochromes can interconvert 

between two isoforms: Pr and Pfr representing biologically inactive and active forms in 

response to far-red and red light, respectively. Although mono-chromatic red/far-red light 

does not exist in nature, many natural light conditions represent different red/far-red ratio 

[4]. Densely grown crop plants in agricultural field, for example, results in light conditions 

with reduced red/far-red ratio due to red light absorption by nearby vegetation. The red light 

can activate all five phytochromes. However, phytochrome A is the sole photoreceptor for 

far-red light due to its unique spectral property.

The active Pfr form of phytochromes translocates from cytoplasm to nucleus [5], where they 

can directly interact with a family of basic-helix-loop-helix transcription factors called PIFs 

(PHYTOCHROME INTERACTING FACTORS) to initiate light-regulated gene expression. 

Phytochromes can accomplish the task primarily by inducing multiple biochemical changes 

on the PIFs transcription factors [6]. These early responses include sequesteration [7], 
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phosphorylation [8–10], polyubiquitylation, and subsequent degradation of the PIFs through 

the 26S proteasome-mediated degradation pathway [11–15].

Phytochromes also directly interact and inactivate a master negative regulator of 

light signaling pathway called COP1 (CONTITUTIVE PHOTOMORPHOGENIC 1)-SPA 

(SUPRESSOR OF PHYA-105) E3 ligase complex through multiple mechanisms. First, 

activated phytochromes can rearrange the COP1-SPA complex [16,17], so the complex 

becomes non-functional. COP1-SPA is an E3 ligase complex that prevents light induced 

gene expression in the dark by destabilizing multiple positively acting transcription factors 

of light signaling pathways such as HY5, LAF1, HFR1 and others [18]. By destabilizing 

the positive factors, COP1-SPA confers a strong negative regulation on the light signaling 

cascade in plants. COP1 activity is largely dependent on its binding partner SPA [19–21]. 

Photo-activated phytochromes interact with the complex to detach COP1-SPA interaction, 

hence inactivate COP1-SPA E3 ligase that results in stabilization of the positive factors 

to promote photomorphogenesis. Second, phytochromes can also inactivate COP1-SPA 

E3 ligase by excluding COP1 from nucleus through an unknown mechanism [22–24]. 

Based on these findings, it has been concluded that the active phytochromes can induce 

chemical/physical changes onto many of their target proteins, especially on the two major 

negative regulators of plant light signaling (PIFs, COP1-SPA complexes). Some of the 

proposed intrinsic biochemical properties of phytochrome molecule itself (e.g., kinase 

activity, sequestration activity) may account for some of the fore-mentioned changes on 

the target proteins [25,26]. However, many studies also proposed phytochrome associated 

enzymes (e.g., kinases, phosphatases, E3 ligases) that function to exert biochemical changes 

on the phytochrome target proteins [27–32]. Collectively, phytochrome action relies on the 

inhibition of the negative regulators and activation of the positive factors to initiate the light 

signaling pathways.

Under continuous activating light irradiation, phytochromes are destabilized through the 

26S proteasome-mediated degradation pathway. This is a way of receptor desensitization 

as shown in many other receptor signaling cascades. Phytochrome A exhibits much faster 

degradation kinetics whereas phyB-E shows relatively slow degradation kinetics [33,34]. 

Thereby, these two classes of phytochromes are able to confer a distinct action mechanism 

on many phytochrome regulated responses in Arabidopsis.

In addition to the receptor degradation, multiple layers of regulation exist on phytochrome 

activity by post-translational modifications. For example, phosphorylation is one of the 

major modifications on both phyA and phyB [35]. Phosphorylation at different serine, 

threonine and even tyrosine residues on the phytochromes has been identified. The 

phosphorylation generally modulates phytochrome activity by affecting various aspects of 

the molecule. PhyB tyrosine104 phosphorylation, for example, abolishes interaction between 

phyB and PIF3 as well as affects the stability of phyB nuclear body [36]. Phosphorylation 

on oat (Avena sativa) phyA serine598 [37] also inhibits phyA-PIF3 interaction while 

Arabidopsis phyB serine86 phosphorylation facilitates dark reversion (will be discussed 

in section 3.1) of phyB to reduce the phyB activity [38]. Another post-translational 

modification called SUMOylation was identified on phyB lysine996 [39]. The amount of 

SUMOylation was increased by red light and SUMOylated phyB showed reduced activity.
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One interesting molecular feature of phytochrome is that it makes nuclear bodies under 

light [40]. Upon activation, phyB-GFP as well as phyA-GFP makes strong nuclear speckles 

[41,42]. The amount of active phyB is tightly correlated with the size and number of 

the speckles [43]. It has been suggested that the phyB speckles are the site of protein 

degradation since the mutants that exhibit smaller or less phyB speckles, showed delayed 

degradation of phyB itself or PIF transcription factors [7,44]. However, despite numerous 

efforts to identify the exact molecular entity of the phyB nuclear speckle, it is not clear 

what components comprise the speckles and exactly how the formation of phyB speckle is 

achieved.

1.1.2. Cryptochrome signaling—Blue/UV-A light receptor cryptochromes (CRYs) 

harbor a Flavin Adenine Dinucleotide (FAD) as a chromophore. For cryptochrome 

activation, a series of molecular events such as phosphorylation, dimerization and 

photobody formation are also necessary, following photon perception by FAD [45]. 

Upon blue light irradiation, cryptochrome molecules undergo rapid phosphorylation. The 

phosphorylation of CRYs are considered as an essential modification for their function. The 

phosphorylated CRY2 undergoes a rapid degradation as part of receptor desensitization [45–

51]. Cryptochromes are also physiologically active as homodimer. A recent study provided 

evidences that blue-light-induced homodimer formation is another critical step for CRY 

activation [52].

Similar to phytochromes, cryptochromes interact with a set of target transcription 

factors. Cry2, for example, interacts with CIB (CRY2-INTERACTING-BASIC-HELIX­

LOOP-HELIX) to initiate downstream gene expression [53,54]. Recently, another set 

of cryptochrome interacting proteins named BICs were found as a potent inhibitor of 

cryptochrome signaling. BIC (blue-light inhibitor of cryptochromes 1) interact with cry2 

under blue-light. Interestingly, BIC blocks nearly all CRY-mediated responses including 

early molecular events impinging on CRYs such as dimerization, phosphorylation and 

photobody formation. Therefore, BIC overexpressing transgenic plants exhibit phenotypes 

resembling cry1cry2 null mutant [52]. BIC expression itself is also under regulation of CRY 

signaling, suggesting a feedback inhibition of the blue light signaling cascade [55]. The 

presence of an active receptor desensitizing protein implies an importance of fine tuning of 

the photoresponse in plants.

1.1.3. Phototropin signaling—Phototropins are blue light receptors responsible for 

the well-known phototropic responses of plants. Phototropin molecule contains two Flavin 

MonoNucleotide (FMN) as a chromophore on its LOV (Light Oxygen Voltage) domains 

[56]. Through their c-terminal serine/threonine kinase domain, phototropins can directly 

phosphorylate many substrates including phot1/phot2 themselves. Phot1 can interact with 

NPH3 (NON-PHOTOTROPIC HYPOCOTYL 3) and PKS4 to modulate downstream 

signaling [57,58]. Phototropins also play an essential role in blue light mediated stomatal 

opening and chloroplast movement in response to light [59,60].

1.1.4. ZTL/FKF1/LKP2 family of blue light receptor signaling—ZEITLUPE 

(ZTL)/ FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1)/ LOV kelch protein2 

(LKP2) is another class of the blue light receptor. The Flavin-binding F-box protein, ZTL 

Paik and Huq Page 4

Semin Cell Dev Biol. Author manuscript; available in PMC 2021 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and FKF1 transduce light signals primarily by altering the activity of the SCF E3 ligase 

complex [61]. As a consequence, targets of SCF E3 ligase alter their stability as well. 

ZTL mainly functions in the regulation of circadian clock as ZTL itself is positioned in 

interconnected clocks in plants [62]. However, FKF1 regulates the abundance of a potent 

photoperiodic flowering inducer, CO (CONSTANS) in Arabidopsis indirectly by controlling 

the level of CDF1, a Dof-domain transcription factor. This regulation results in photoperiod­

dependent flowering under long-day conditions [63].

1.1.5. UVR8 signaling—More recently identified UV-B receptor, UVR8, senses UV­

B light in a way that is quite distinct from other photoreceptors. Rather than utilizing 

chromophore, a set of aromatic rings from a few tryptophan residues on the UVR8 protein, 

absorbs UV-B light. Upon UV-B absorption, interface between UVR8 dimer breaks, and 

the resulting monomer migrates into the nucleus and interact with COP1 [64–67]. This 

interaction results in the stabilization of HY5 to initiate UV-B mediated gene expression. 

Recently, two UVR8-interacting transcription factors (BES1/BIM1 and WRKY 36) have 

been discovered to function in the UV-B signaling pathways [68,69].

Even though the five classes of photoreceptors in Arabiodopsis have distinct biochemical 

mechanism to translate environmental light signals, they share some common mechanistic 

features. First of all, perceived photon energy is translated into changes in the molecular 

structure of the photoreceptors leading to the activation of the receptors. Second, activated 

photoreceptors convey the light information to the signaling proteins primarily by direct 

interaction and inducing biochemical/physical changes on the proteins. Third, the receptor 

desensitizing/inactivation mechanism is present to fine-tune the signaling cascades. By 

employing multiple photoreceptors with distinct but overlapping functions, plants can 

monitor their surrounding environment to assure proper physiological responses.

2. Regulation of plant development by photoreceptors

2.1. Germination

Sensing surrounding environmental conditions and determining whether to germinate or 

not is a crucial decision for plant’s survival. This is especially true when light availability 

is limited due to soil coverage over the seeds. Water imbibed seed requires red light to 

trigger phytochrome action to initiate the germination process in Arabidopsis. Red light 

activates phytochromes to promote synthesis of germination promoting hormone gibberellic 

acid (GA) as well as to reduce germination inhibiting hormone abscisic acid (ABA) in seeds 

[70]. In this particular response, a spatio-temporal regulation of phyA and phyB plays an 

important role in exhibiting differential activities by two phytochromes. In dry seeds, phyA 

expression is very limited while phyB expression level is abundant [71]. Thus, initially 

phyB is a major photoreceptor to perceive germination promoting red light. Upon cold 

stratification or about 48 h of water imbibition, phyA level increases and reaches enough 

amount to trigger seed germination [71]. Interestingly, only phyA can be activated under 

very low fluence of light, because of its unique spectral property, triggering very low fluence 

reponse (VLFR)-mediated seed germination [72]. It appears, in nature, seeds can respond 
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to very weak incoming light after certain imbibition period by temporal regulation of phyA 

expression.

An interesting report identified a tissue specific phytochrome regulation of seed 

germination. By physically separating seed coat and embryo, scientists were able to dissect 

spatial specificity of the phytochrome action in seed germination. In canopy shade where 

far-red light is enriched, inactivated phyB function in seed endosperm overrides phyA­

dependent germination in the embryo through the action of plant hormone ABA [73]. The 

spatially separated activities of phyA and phyB, together with temporal regulation of the 

photoreceptor expressions, allow fine modulation of seed germination in response to rapidly 

changing environment.

2.2. De-etiolation; transcription and post transcriptional control by photoreceptors

When germinated seeds develop into seedlings, plants display two different developmental 

programs in the dark and light. In nature, soil-covered seedlings need to emerge to 

the surface of the soil to perceive sunlight. Until then, seedlings have to protect their 

shoot apical meristem (SAM) by maintaining apical hook and closed cotyledons. The 

hypocotyls rapidly grow toward soil surface. When seedlings appear under the sunlight, 

they start a dramatic morphological and genetic change called photomorphogenesis; the 

hypocotyl cells stop rapid elongation, the cotyledons open and a massive light-induced 

gene expression initiates [74]. Photoreceptors in plants govern this dark-to-light transition 

called, de-etiolation. For example, the phyAphyB mutant that lacks two major phytochromes 

in Arabidopsis, is almost completely insensitive to the red light-mediated inhibition of 

hypocotyl elongation and cotyledon opening [75]. At molecular level, phyA plays a major 

role in early (~1 h after irradiation) gene expression change, whereas phyB is responsible for 

the prolonged light-induced gene expression changes [76].

The photoreceptors-mediated de-etiolation process can be conceptualized as the 

“inactivation of the negative factors and activation of the positive factors” of light signaling 

pathways. In the dark two major negative regulators, PIFs and COP1/SPA E3 ligase, together 

block the light-mediated gene expression. COP1/SPA E3 ligase complex is active in the dark 

and degrades the positively acting transcription factors in the light signaling pathway [18]. 

PIFs and COP1/SPA work synergistically to repress light signaling in the dark [77]. Upon 

light activation, phytochromes as well as cryptochromes interact with PIFs (phytochromes 

and cryptochromes) and CIBs (cryptochromes only), to regulate their function. In addition, 

phytcohromes and cryptochromes also interact with COP1/SPA complex to inactivate the 

complex, resulting in stabilization of HY5 transcription factor that can target nearly 9000 

genes (Fig. 2) [78,79].

The activated phytochromes trigger massive transcriptional change primarily through 

destabilization/stabilization of the above mentioned transcription factors. However, apart 

from indirect regulation through regulation of the transcription factors, a direct role of 

phytochromes on transcription is not well understood. Some studies reported phytochrome 

association on the promoters of light and temperature regulated genes, but the biological 

significance of this promoter occupancy is not clear [3]. It should also be noted that 

only 0.7 correlation coefficient was observed in gene expression between dark-grown pifQ 
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(pif1pif3-pif4pif5) mutant and red light grown wild type seedlings [80,81]. This suggests 

the existence of either additional transcription factors or non-transcriptional regulation in 

phytochrome-mediated signaling pathways.

In accordance with this, multiple reports suggested phytochrome regulation at the post­

transcriptional level during de-etiolation. Red light and phytochrome-dependent manner, 

about 7% of annotated Arabidopsis genome has shown alternative splicing [82]. Specifically, 

a phytochrome associated splicing factor, SFPS was identified to function under red 

light-mediated splicing events [83]. In addition, phytochromes were shown to regulate 

mRNA translation efficiency of a chlorophyll biosynthetic gene, PORA [84]. Consistently, 

a proteomics study found phytochromes to be associated with an active translatome 

in etiolated Arabidopsis seedlings, suggesting a possible role of the photoreceptor in 

translational control [85]. Another interesting study revealed alternative promoter selections 

by phytochromes which ultimately resulted in production of distinct protein isoforms with 

differential subcellular localization [86]. Biological relevance of the alternative promoter 

selection in phytochrome signaling needs further study.

During early light perception, phytochromes promote the expansion of cotyledon cells 

while inhibit hypocotyl cell expansion, an intriguing contrasting impact of phytochromes 

in two different tissues. Thus, phytochromes can function in two opposite directions in cell 

growth in cotyledons and hypocotyl [87]. This may imply the existence of distinct signaling 

pathways in different tissues in the light signaling pathways, leading to a completely 

different physiological output in diverse tissues [88]. In support of this speculation, a 

recent report described a distinct tissue-specific function of phytochrome B in gravitropic 

response in Arabidopsis [89]. (Additional discussion in Section 3.3). Therefore, exploring 

tissue-specific function of photoreceptors would be of great interest.

2.3. Shade avoidance response

One of the challenges for plants in agricultural field and in nature is limitation of light 

sources due to neighboring vegetation. The dense canopy reduces photosynthetic activity 

and weakens plants’ fitness due to a low red/far-red ratio as well as low blue/green 

light. To survive in shade conditions, photoreceptors in plants have developed an active 

shade escaping strategy called shade avoidance response (SAR) that include rapid stem 

(hypocotyl) elongation, leaf hyponasty, and induction of flowering (Fig. 2).

Phytochrome B has a prominant role in shade avoidance response. Since the shade condition 

reduces active phyB in plants, phyB-mediated light signaling pathways are also inhibited 

under shade conditions. Consistently, phyB mutant displays constitutive shade avoidance 

response; elongated hypocotyl, hyponastic cotyledons and leaves, and early flowering [90]. 

In phyB mediated shade avoidance response, PIFs play an important role. Among all 

PIFs, especially PIF4, PIF5 and PIF7 were found to be essential for biosynthesis of plant 

growth hormone auxin, in response to shade conditions enabling a rapid cell elongation 

[91,92]. An inhibitory pathway also exists for phyB-PIF mediated shade avoidance response. 

Phytochrome A functions antagonistically to phyB under increasing far-red light [93]. In 

addition, PIF function is limited by an atypical bHLH protein, HFR1 to prevent excessive 

shade avoidance response [94]. Other photoreceptors such as cryptochrome and UVR8 also 
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function in shade avoidance response due to a reduced level of blue and UV-B light in shade 

conditions. Interestingly, PIF4 and PIF5 are also involved in cryptochrome mediated shade 

avoidance response [95].

2.4. Flowering time

Determination of correct timing for floral induction is essential for plant reproduction 

in seasonal changes. For perennial and biennial plants which experience at least one 

winter season during lifecycle, it is critical to predict winter for spring blossom. Even for 

annual plants, proper transition from vegetative to reproductive phase is critical for their 

successful reproduction. Since the day-length is typically correlated with seasonal changes, 

photoreceptors play important roles in measuring day length to induce/repress flowering 

[96]

Three classes of photoreceptors are major positive regulators of photoperiodic flowering 

induction in Arabidopsis; FKF1, phytochrome A and cryptochromes. (Fig. 2.) [96]. How 

can plants measure the ‘day-length’? Through extensive molecular and genetic approaches, 

scientists have established a mechanism called the ‘external coincidence model’. Basic 

concept of the model is that the internal signal fluctuation and the external photoperiodic 

signal must coincide to induce flowering.

FT (Flowering locus T) is a florigen which can directly induce flowering in plants [97]. 

CO (CONSTANS) is a potent transcriptional activator of FT and is a key component in the 

external coincidence model [98]. CO expression level fluctuates during day and night cycles 

(Fig. 2). When CO expression reaches the highest in late afternoon, photoreceptors must be 

activated to stabilize CO protein to achieve photoperiodic flowering induction. Therefore, 

the changing CO expression acts as an internal factor and the photoreceptor activation in 

the late afternoon acts as an external factor to coincide. In long-day photoperiod (16h:8 h, 

light:dark), photoreceptors can be activated by light in the late afternoon. In the short-day 

(8h:16 h, light:dark), however, external light input is missing in late afternoon because of 

early sunset resulting in the lack of accumulation of CO protein.

In flowering induction, far-red and blue lights promote flowering through the action of phyA 

and cryptochromes, respectively. In blue light, activated cryptochrome2 can directly interact 

with the E3 ligase COP1/SPA complex to inactivate the complex. Through the action of 

cry2, COP1/SPA can no longer degrade its target CO protein resulting in an abundant 

CO level [99]. In addition, phyA stabilize CO in response to far-red light to promote 

flowering [100]. Contrary to phyA, phyB represses floral induction as phyB destabilizes CO 

[100]. Only recently, a novel photoperiodic flowering regulator in phyB signaling has been 

suggested. PHL (PHYTOCHROME-DEPENDENT LATE FLOWERING) was identified to 

form a complex with phyB and CO, but how PHL promotes flowering in phyB-PHL-CO 

complex is not clear. Phytochrome B in flowering regulation also exhibits tissue specificity. 

It was shown that the mesophyll-cell-expressed phyB can delay the flowering time by 

inhibiting FT expression in vascular bundles [101]. Further study is necessary to explore the 

molecular nature of phytochrome B regulation on CO level.
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Another blue light receptor, an F-box protein, FKF1 has an essential role in photoperiod 

induction of flowering [63]. FKF1 forms a complex with GI (GIGANTEA), a flowering 

promoting protein with a co-chaperon function [102,103]. The expression of both FKF1 
and GI is under circadian clock. When FKF1 and GI expression reach the highest in 

late afternoon under long day, blue light-activated FKF1 can interact with GI to trigger 

ubiquitin-mediated degradation of CDF, a CO repressor, resulting in de-repression of CO 
[63]. The mechanism of FKF1 action is also an example of an external coincidence 

model where internal circadian clock-regulated FKF1-GI gene expression and external light 

activation of FKF1 by long-day can establish CO and FT expression resulting in floral 

induction.

3. Photoreceptor regulation of plant physiology in response to other 

environmental cues

3.1. Multi-functional plant photoreceptors: thermosensing

Recent advances have identified unexpected roles of the photoreceptors in plant physiology. 

Interestingly, other than typical red/far-red light perception, phytochrome B has been 

suggested as a thermosensor that can directly perceive ambient temperature [2,3]. How 

does this work? Thermosensors in insects and mammalian system are mostly ion channels. 

In mammalian system, for example, a Transient Receptor Potential (TRP) ion channel 

family functions as a sensor of cold and warmth to initiate ion current for downstream 

signaling [104]. Although, the detailed molecular mechanism of thermo-perception by the 

TRP channels are yet to be fully understood; however, thermodynamic structural changes of 

the protein under different temperature may account for the temperature sensing similar to 

secondary structural changes of RNA acting as thermosensors in bacteria [105].

Unlike animal system, no ion channel has been identified as a thermosensor in plants 

yet. However, it has been widely known that the photo-activated phytochrome B (Pfr) 

is thermodynamically unstable (at high energy state) and slowly converts back to the 

stable inactive form (Pr) in the dark through a process called “dark reversion” or “thermal 

reversion” [106]. Researchers found that at high ambient temperature, the active Pfr form 

of phyB reverts faster to the inactive Pr form compared to low temperature. As a result, 

at high temperature, the level of active phyB is reduced. Thus, the ambient temperature 

perceived by phyB is translated into Pfr/Pr ratio of phyB and ultimately into the downstream 

gene expression changes. Indeed, a recent study found a subset of temperature-regulated 

genes are also target of phyB chromatin binding [2,3]. Therefore, it was concluded that 

phytochromes can directly perceive at least two different environmental cues, light and 

temperature in Arabidopsis. Because the amount of sunlight irradiation generally correlates 

with the ambient temperature, it is not surprising that the photoreceptor also has developed a 

function as a thermosensor.

It will be intriguing to examine whether other photoreceptors (e.g., cryptochromes) can 

function in the thermosensory pathway. Since activated cryptochromes undergo thermal 

relaxation as well [52], there might be a differential inactivation rate of cryptochromes under 

different ambient temperatures. Although, not a direct perception of the temperature by 
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cryptochromes, a recent study suggested that crytochrome 1 (cry1) mediates thermo-induced 

hypocotyl elongation through a direct interaction with the bHLH transcription factor, PIF4 

[107].

3.2. Photoreceptor regulation of heat and cold stress

Photoreceptor functions are not limited to light and ambient temperature perception. Several 

studies suggested indirect involvement of photoreceptors in cold and heat stress responses as 

well as other physiological responses to abiotic challenges to plants.

Temperatures subzero or above physiologically endurable levels, result in severe damages 

to the plant tissues and often leads to death. Sessile plants have to cope with these 

extreme stresses by anticipating freezing or heating stresses. One of the early studies on 

molecular mechanisms of phytochrome action in cold responses revealed a light quality 

dependent freezing tolerance. Under low red/far-red ratio, in which phytochromes are less 

active, plants showed more tolerance to the freezing stress [108]. This was achieved by 

an induction of key transcription factors, CBF1,2,3 that play a major role in plants cold 

acclimation; a response where plants tolerate freezing better when they are exposed to a 

low temperature (above freezing temperature) prior to the freezing temperature (below 0 °C) 

[109]. Therefore, it seems that less phytochrome activity helps plants to anticipate freezing 

temperature. This is a very clever strategy adopted by plants since the lowest temperature is 

typically observed before the dawn when phytochrome activities are minimum during a day.

Several studies have further connected dots between phytochromes and freezing tolerance. 

It has been shown that phytochromes also modulate plant stress hormone signaling such 

as ABA and JA [110]. In addition, a direct involvement of PIF4/PIF7 to induce CBF 
genes were identified. These PIFs can directly bind to the CBF promoters to induce gene 

expression leading to freezing tolerance [111].

Unlike moderate high temperature (e.g., 28 °C for Arabidopsis) repressing phyB activity, 

an interesting study suggested a synergistic effect between phyB signaling and a brief heat 

shock. Several downstream transcription factors (e.g., PIF4, PIF5 and HY5) were shown 

to be involved in this synergistic effect [112]. However, it is not clear if the heat shock 

can directly alter phytochrome activity. In a separate study, a subset of heat shock genes 

were induced in response to early excess light, indicating a possible connection between the 

heat shock response and the light signaling pathways [113]. Furthermore, rice phyAphyB 
mutant showed altered expression of multiple heat shock proteins leading to a developmental 

defects in anther and pollen, suggesting a regulation on the abundance of heat shock proteins 

by phytochromes [114]. Overall, phytochromes have evolved with additional roles in sensing 

temperature responses.

3.3. Photoreceptor regulation of gravitropism

Sensing gravity is another critical task for photoreceptors in plants. Plants sense gravity 

through movement of starch-filled subcellular organelle called amyloplasts both in root and 

shoot tissues. Although, phytochromes do not directly perceive gravity cue, they play a 

prominant role in red light-induced inhibition of negative gravitropism of the shoot as well 

as the gravitropic curvature of the root. In dark-germinated seedlings, perceived gravity cue 
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enables upward hypocotyl elongation to the soil surface against gravity in a process called 

negative gravitropism. Once the seedlings reach the surface, light becomes a major cue for 

plant growth, hence breaking negative-gravitropic response of the shoot through the action 

of photoreceptors. At molecular level, phytochromes induce a conversion of endodermal 

amyloplast into plastids by inactivating PIF function. By differentiating the gravity sensing 

organelles, amyloplasts in the endodermal cell layer of the hypocotyl, phytochromes can 

abolish shoot negative gravitropism [115].

Interestingly, a unique tissue-specific activity of phytochrome B was observed in this 

particular response. Researchers found that only epidermally expressed phyB can inhibit 

shoot negative gravitropism, but not the endodermal layer expressed phytochrome B. Since 

the amyloplasts and PIFs in the endodermal layer are required for negative gravitropism of 

the shoot, the phytochrome action is non-cell-autonomous [89]. This is a very intriguing 

phenomenon; however, the mechanistic details on how the epidermal phytochromes affect 

the endodermal PIFs and its downstream signaling is unknown.

Phytochromes are also required for gravitropic response in root. In response to changing 

gravity cue, plant roots change its growth direction. Arabidopsis phyAphyB mutant responds 

much less to changing gravity cue [116]. The phyAphyB mutant also exhibits shorter 

primary root compared to wild type suggesting an important role of the photoreceptor 

function in root development as well as gravitropic response.

Cryptochromes have been proposed as a magnetoreceptor in many species such as migrating 

bird, European robin [117]. In Arabidopsis, cryptochrome 1 has been biophysically 

examined and suggested to have an enhanced activity under weak external magnetic field 

[118]. It is still not clear whether plant cryptochromes are the bona fide magnetoreceptor 

and what is the physiological relevance of plant magnetoreceptor. In gravitropic response, 

cryptochromes seem to play a minor role.

As discussed early in this chapter, phototropism is antagonistic to gravitropism possibly 

due to the relative importance of phototropic responses over gravitropic responses in the 

presence of light. Phototropins are major photoreceptors responsible for phototropism and 

phytochromes indirectly assist phototropic response by inhibiting gravitropic response in 

light [115,119]. Therefore, the coordination between two photoreceptors can establish the 

fine balance between phototropism and gravitropism.

Not surprisingly, recent studies also suggested photoreceptors function in biotic stress 

response (e.g., pathogen response) in plants. Generally, mutants with reduced light signaling 

(e.g., phyB) showed reduced fitness. As a result, the high susceptibility to pathogens 

observed in these mutants were considered as an indirect effect of the unhealthy plants. 

Instead, recent genetic studies identified direct regulation of the photoreceptors and their 

signaling components in plant-pathogen responses especially through a defense hormone 

jasmonic acid (JA) [120]. Readers are referred to recent reviews covering this topic in detail 

[6,121].
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4. Conclusion

Sessile plants have the most sophisticated photoreceptor system among all living organisms. 

Recent advances in photoreceptor study revealed novel roles of plant photoreceptors. As 

discussed in this review, phytochromes can directly perceive at least two environmental 

cues; red/far-red light and ambient temperature. Cryptochrome, Phototrpin, ZTL and UVR8 

photoreceptors are functioning to orchestrate plant development and responses to dynamic 

environmental cues. Importantly, plants responses to the multiple non-light environmental 

cues are directly or indirectly regulated by these photoreceptors.

It should be noted that the striking similarity found in plant responses to the shade (low 

red: far-red ratio), the high ambient temperature and the stress responses implies a shared 

perception or signaling pathways among these responses. Thus, it is not surprising that the 

red/far-red light receptor phytochrome can function as a ‘multi-sensor’. Many of the critical 

light-signaling components are shared by different photoreceptors, again suggesting that 

photoreceptors are co-operatively working as multi-functional receptors.

Although, many of the downstream signaling factors are commonly shared by 

photoreceptors, plants still can generate delicate and distinct responses to different external 

cues. This has been achieved through a spatio-temporal regulation of photoreceptors 

and their signaling molecules, a distinct biochemical and spectral properties of the 

photoreceptors themselves, and a combination with specific signaling factors. Although not 

proven yet, it might be also possible that plant photoreceptors can utilize unknown mobile 

signals (e.g., peptide hormones) as well as second messenger molecules such as Ca2+ ion 

flux for their signaling cascades as proposed earlier [122].

Plants photoreceptors govern plant-environment interactions. It would be of extreme interest 

to explore if photoreceptors involved in other non-light related responses and the molecular 

mechanism of how that is achieved. The emerging roles of the plant photoreceptors are 

opening doors to new arena in plant photobiology.
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Fig. 1. 
Spectral wavelength-specificity in plant photoreceptors to regulate multiple physiological 

pathways.

Plants utilize wavelength-specific photoreceptors to perceive and interpret incoming light 

signals to regulate their physiology and development. Five phytochromes (phyA-E) present 

in Arabidopsis perceive red (650–670 nm) and far-red (705–740 nm) lights. Three 

cryptochromes (cry1, cry2, and cry3), two phototropins (phot1, phot2), and three LOV 

domain F-box proteins (ZTL, FKF1 and LKP2) identified in Arabidopsis perceive blue light. 

UVR8 perceives UV-B light.
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Fig. 2. 
Convergence of multiple environmental cues on photoreceptors.

Phytochromes directly perceive ambient light as well as temperature information. 

Through co-ordination between photoreceptors, they can modulate myriad of plants’ 

responses including biotic and abiotic stress responses, gravitropism, as well as multiple 

developmental transitions. At molecular level, photoreceptors share some of the critical 

signaling components such as E3 ligase COP1-SPA complex as well as transcription 

factors called PIFs (PHYTOCHROME INTERACTINF FACTORS), HY5, and HFR1. By 

inactivating negative regulators of light signaling, COP1-SPA and PIFs, photoreceptors can 

initiate massive gene expression changes in response to light signal. Photoreceptors also 
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stabilize master transcription factors such as HY5 and HFR1 to target a large number of 

genes in Arabidopsis genome. These photoreceptor-mediated regulations eventually lead to 

optimized growth and fitness of plants resulting in enhanced grain and biomass yield in 

agriculture.
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