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Abstract

Susceptibility and resilience to stress depend on the timing of the exposure with respect to 

development, when across the lifespan effects are measured, and the behavioral or biological 

phenotype under consideration. This translational review examines preclinical stress models 

providing clues to causal mechanisms and their relationship to more the complex phenomenon 

of “stress-related” psychiatric and cognitive disorders in humans. We examine how genetic sex 

and epigenetic regulation of hormones contribute to the proximal and distal effects of stress at 

different epochs of life. Stress during the pre-natal period and early post-natal life put males at risk 

of developing diseases involving socialization, attention and cognition, such as autism spectrum 

disorders, and attention deficit disorder, respectively. While females show resilience to some of 

the proximal effects of pre-natal/early post-natal stress there is evidence that risk associated with 

developmental insults is unmasked in females following periods of hormonal activation and flux 

including puberty, pregnancy and perimenopause. Likewise, stress exposures during puberty have 

stronger proximal effects on females including an increased risk of developing mood- and stress- 

related illnesses such as depression, anxiety and, post-traumatic stress disorder. Hormonal changes 

during menopause and andropause impact the processes of memory and emotion in both sexes, 

though females are preferentially at risk for dementia and childhood adversity impacts estradiol 

effects on neural function. We propose that studies to determine mechanisms for stress risk and 
resilience across the lifespan must consider the nature and timing of stress exposures as well as the 

sex of the organism under investigation.
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How do we define resilience to stress? In preclinical models, resilience is ascribed to 

animals that experience a stressor, yet demonstrate biological or behavioral phenotypes 

similar to unstressed controls. In clinical research, the ability to experience significant 

stress(es) without subsequent psychopathology is considered a sign of resilience. However, 

studies of immune, hypothalamic pituitary adrenal (HPA) axis, and brain function suggest 

that such exposures have a physiologic impact even in asymptomatic individuals (1-3). Such 

alterations create risk for adverse health conditions later in life. That many individuals suffer 

psychopathology in the setting of acute stress, but fully recover, highlights the complexity of 

risk and resilience research in humans.

Biological and behavioral adaptations in response to stress along with nurturing 

environments mitigate the adverse effects of significant stress in rodent, primate and human 

subjects research (4-8). Preclinical studies indicate that milder, repeated stress or being 

housed in a nurturing environment leads to epigenetic and neurohormonal profiles associated 

with less behavioral dysregulation later in life, even when exposed to additional stressors. 

Support from family and the wider social environment at the time of trauma exposure and 

throughout life is critical to promote resilience in humans (8).

Studies that use stress to induce behavioral endophenotypes, focus mostly on proximal 

effects. However, most psychiatric disorders have prodromes that can appear years before 

the individual reaches symptom threshold for psychiatric illness (9, 10). The events that 

contribute to the occurrence of the disorder may also occur years prior to the emergence of 

frank symptoms (11). Finally, the majority of basic research examining the mechanisms of 

resilience has done so only in male animals (12) when the majority of humans experiencing 

stress-related disorders are female (13, 14).

We examine the concept of resilience as both a proximal and distal response to stress. 

We are defining proximal as responses measured within the same developmental epoch 

as the stress exposure and distal as responses that occur in a subsequent developmental 

time point. We discuss work with similar measurable endpoints from basic and clinical 

research examining sex differences in vulnerability and resilience of response to stress 

across the lifespan (Figure 1). We propose that resilience is an active and dynamic process 

that is shaped, in part by genetic sex, gonadal steroids and epigenetic regulation of stress 

physiology and changes across epochs.

Prenatal stress shapes an individual’s response to the environment

The prenatal experience shapes an individual’s brain, body and behavior for their 

lifetime and potentially even affects the response of subsequent generations through trans

generational mechanisms. Human offspring exposed to extreme gestational stress such as 

starvation during the Dutch Hunger Winter had increased risk of psychiatric disorders 

including affective disorders (15), addiction (16), and schizophrenia (17). Effects of famine 
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were also associated with increased risk of schizophrenia in a separate Chinese population 

(18). In humans, it is difficult to separate the out the effects of maternal psychological 

distress due to famine from calorie and nutrient restriction which can have multiple 

physiologic effects on the offspring, including activation of the HPA axis. Most data have 

been collected from famine situations, but even maternal immune activation, which induces 

sickness behavior, results in temporary decreased food intake (19, 20). The flexibility 

of fetal female energy consumption in response to stress or inflammation may confer 

proximal protection. Female, but not male, growth is restricted by in utero exposure to 

maternal uncontrolled asthma (21), a chronic medical condition associated with maternal 

hypertension, poor oxygenation, heightened immune activation and risk for pre-eclampsia 

[32]. It has been proposed that the ability of the female fetus to respond to an adverse 

maternal environment is protective against fetal stillbirth, which is higher in males exposed 

to maternal asthma and other medical adversities such as pre-eclampsia (22-24). Male risk 

bias is thought to be secondary to male adaptations in placental blood flow allowing the 

male fetus continue to grow in utero, but be born with greater peripheral vasodilation, 

a condition associated with worse neonatal outcome [32]. However, the timing of the 

stress exposure during gestation also contributes to sex differences on its impact. Acute 

early gestational stress in humans caused by experiencing an earthquake (2-3 months after 

conception) increased the rate of preterm birth to a greater degree in female offspring (25).

Maternal immune activation in humans’ mirrors the physiologic effects found during 

extreme stress and have been linked to increased risk of schizophrenia and autism 

spectrum disorders (26-29). Similarly, rodent models of maternal immune activation or 

stress demonstrate lasting effects predominantly on male offspring’s behavior (30-33) 

although effects are also reported in females (Table 1) (34-37). There is evidence of 

greater distal effects of prenatal stress in females on subsequent stress related behavior 

and physiology responses later in life (38). Later gestational stress or cytokine exposure 

(PND 11- parturition) leads to greater behavioral changes in females than males (Table 1) 

(39-41). Translating findings from rodents to humans is complicated for obvious reasons, 

but is also made more complex by the asynchrony between developmental epochs between 

species. Particularly, the effects of gestational stress are difficult to translate from human to 

rodent as rodent parturition occurs at roughly the equivalent of the end of the human second 

trimester (42).

Potential Mechanisms for Intergenerational Transmission of Stress: 

Consideration of In Utero Adaptation by Sex

Initially, female development was characterized as a passive default. However, pre-clinical 

research suggests that female brain development is an active process regulated by DNA 

methylation (43), an epigenetic process through which genetic transcription is silenced (44). 

Female fetuses have higher placental levels of DNA methyltransferase 1 (DNMT 1) involved 

in maintenance methylation and respond to maternal variable stress respond with a further 

increases supporting the likelihood of continued recreation of methylation patterns (35). 

Additionally, prenatal stress only impacts de novo methylation patterns in the brains of the 

male offspring resulting in changes of methylation status of the corticotropin releasing factor 
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(CRF) promoter and glucocorticoid receptor (GR) promoter in the hypothalamus (35) that 

contribute to lifelong changes in stress hormone signaling.

The epigenetic impact of prenatal stress on the offspring is not limited to stressors that 

affect the mother. Nor do stressors have to occur during gestation. Rodent studies in which 

either females or males were stressed during the peripubertal window, prior to conception, 

implicate germ cell epigenetic transmission of the stress phenotype from one generation 

to the next (45). Stress effects on gene expression through DNA methylation, histone 

modifications and noncoding RNAs impact cell-specific gene expression that can lead to 

alterations in normal cellular functions in the parent as well as offspring. Preclinical studies 

in males found that stress and/or exposure to drugs of abuse produce lasting epigenetic 

changes in sperm (46, 47) that impact the offspring behavior (Table 1) (46-49).

In humans, maternal exposure to famine prior to concieving was associated with worse 

mental health and quality of life for adult offspring, though sex of the offspring was 

not considered (50). Studies of children and grandchildren of Holocaust survivors have 

demonstrated clear adverse effects on the mental health of the F1 generation, but the adverse 

impact of the Holocaust on grandchildren’s mental health appears less pronounced (51-53). 

While the adverse effects of childhood and preconception trauma exposures on parental 

mental health and parenting practices mediate, in part, the effects of parental trauma on 

offspring mental health, recent data implicate epigenetic mechanisms. Most notably a study 

on the offspring of Holocaust survivors identified altered methylation status of the gene 

encoding FK506 binding protein, a regulator of glucocorticoid receptor sensitivity, in blood 

(54). These same offspring self reported depression and anxiety symptoms. Furthermore, 

female pre-pubertal exposure to the Holocaust effected transmission of risk phenotype to 

the offspring. Reduction in activity of the enzyme 11ß-hydroxysteroid dehydrogenase type 

2 (11ß-HSD) which inactivates cortisol has been noted in Holocaust survivors, though 

an opposite effect was noted for their offspring. Emphasizing the importance of timing 

of adversity, the impact of having a mother who suffered in the Holocaust was more 

pronounced with respect to offspring 11ß-HSD activity if the mother was pre-pubertal at the 

time and her subsequent offspring was male (55).

Stress across the lifespan: Proximal and Distal Ramifications

Early life stress:

Studies of children isolated in orphanages due to previous polices of the Romanian 

government have provided insight into the lasting damage of neglect and early life stress 

even when basic needs such as food and shelter are met. Caregiver deprivation is associated 

with an accentuation of the female bias towards anxiety and depressive disorders and the 

male bias towards impulsivity and conduct disorders (56, 57). Neuroimaging studies show 

abnormalities in amygdala development and subsequent response to stimuli, influencing 

connections to brain regions critical to the evaluation and appropriate response to rewarding 

and aversive stimuli, in adults (58). Whether imaging outcomes vary by sex is not known as 

most studies do not examine data separately for males and females who have suffered severe 

caregiver deprivation.
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In humans, another form of early life stress- high maternal allostatic load, measured by 

maternal psychological distress and parenting stress was associated with increased risk 

for socio-emotional problems in a prospective, longitudinal study of 1 year-old offspring 

(59). Offspring hair cortisol levels showed a complex relationship with maternal factors, 

with offspring levels positively correlated with parent stress, but negatively correlated with 

maternal depression scores (59). In humans, significant adversity before the age of 18 is 

associated with a host of adverse psychiatric and medical health outcomes regardless of sex 

(60, 61).

In rodents, early life stress that disrupts maternal care (62-65) has proximal effects (Table 

1) including increased HPA activity in a traditionally refractory period. Distally in females 

there is reduced functional connectivity within cortical areas to brain regions implicated in 

maternal care, pain modulation and emotion along with sex differences in behavior (Table 

1)(63, 66-69). Males but not females have cognitive deficits that become more pronounced 

in males as they age (70). Decreased ability to perform cognitive tasks in these males 

were associated with changes in excitability in subregions in the hippocampus that were 

unmasked only at an advanced age (70). CRF was also increased and the later cognitive 

effects were blocked by administration of a CRF antagonist immediately after the period of 

early life stress exposure (71).

In humans, studies of older adults reflect these preclinical findings. Significant childhood 

adversity is associated with worse cognitive aging and more rapid declines in processing 

speed, particularly when there are current depressive symptoms (72). However, the sex 

differences reported in the preclinical literature may not be relevant to human aging. 

Childhood adversity accentuates the effects of later-life care-giving stress on inflammation 

and telomere length, a marker of cellular aging (73) and older females are more likely to be 

caregivers than males. Women are also at roughly twice the risk of Alzheimer Disease than 

males (74). Severity of childhood trauma was associated with greater risk for a dementia 

diagnosis and Alzheimer Disease though sex differences were not investigated (75).

Pre-Peripubescent stress:

The timing of early life stress with respect to offspring development may also contribute 

to lasting effects. Preclinical work in male mice demonstrated that late postnatal stress 

(PND 10-20) produced distal effects on adult responses to social stress (76). The authors 

discovered that a transcription factor orthrodenticle homeobox 2 (OTX 2) contributed by 

mediating hedonic programming in the ventral tegmental area. A subsequent study in 

children (8-15) that have experienced childhood maltreatment found that the methylation 

status of peripheral OTX2 predicted depression and was associated with increased functional 

connectivity between key brain structures associated with mood disorders (77).

Early life stress alters the relationship between HPA axis activation and pregnancy or 

postpartum stress (Table 1) (78, 79). Similarly, psychologically healthy women who self

reported exposure to 2 or more types of adversities during childhood-adolescence (age 0-18) 

using the Adverse Childhood Experiences (ACE) Questionnaire also showed a blunted HPA 

response to separation from their 6 month-old infants that was mirrored by the offspring 

who underwent a restraint and noise stressor (78). Sample size was too small to examine 
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offspring sex differences and it is unclear whether the blunted maternal and infant cortisol 

response to stress is a sign of risk or resilience. That individuals who experience significant 

childhood adversity are more likely to experience significant psychosocial stress later in life 

(80), a degree of HPA-axis blunting may be preferable.

Women who report experiencing two or more types of childhood adversities are also more 

likely to experience a first onset of major depressive disorder during the perimenopause 

transition compared to those who reported no childhood adversities. Experience of 1 type 

of adversity during the pre-pubertal window was associated with resilience to depression 

even if the individual went on to experience additional childhood adversities during the 

post-pubertal period (81). Some women are resilient to depression despite exposures to 

significant early life stress until they experience perimenopause suggesting an important 

interaction between gonadal steroids, early life stress and brain changes during aging. Non

human primate studies of social subordinant stress (82) and recent neuroimaging studies 

in postmenopausal females (83) suggest that early life stress is associated with enduring 

alterations estradiol driven changes on serotonergic functioning and may underlie a risk for 

depression or cognitive decline during periods of hypogonadism in females (84). Whether 

this same relationship holds true for older males is not known, but it is important to consider 

that adult males do not typically undergo a dramatic change in gonadal steroids with aging. 

Those males who experience natural or iatrogenically-induced hypogonadism are also at 

greater risk for cognitive declines and depression, though the impact of childhood adversity 

on their risk for depression during hypogonadism is not known (85, 86).

Stress during puberty and early adulthood:

The adolescent period is a risk factor in the occurrence of many psychiatric disorders 

in both sexes (87). By age 14 half of the people who will experience mental illness 

have had their first occurrence and this figure rises to 75% by age 24 (88). In girls, 

early onset of menstruation (prior to 11.5) increases circulating levels of estrogens during 

adolescence and increases the risk of depression (89). While the developmental changes of 

adolescence are usually associated with activational effects of gonadal hormones bringing 

on secondary sexual characteristics, there is growing evidence from the basic and clinical 

literature recognizing that, genetic sex (90, 91), organizational effects of gonadal hormones 

(92-94) and epigenetic mechanisms (95-97) contribute to the development of brain, body 

and behavior during this critical period.

Elegant studies have delineated the contribution of the genetic sex compliment on gene 

expression in the frontal cortex of the four core genotype model following chronic stress 

in early adulthood (90) . This mouse model allows for the dissociation of gonadal sex 

from genetic sex through manipulation of location of the SRY gene. Having an XY 

chromosome regardless of gonadal sex reduced gene expression for pathway members of 

GABA, serotonin and dopamine signaling in the frontal cortex (90). XY mice in the absence 

of testosterone expressed increased anxiety associated behavior compared to XX mice. 

Testosterone administration was anxiolytic indicating that the higher levels found in males 

promote resilience by compensating for an underlying vulnerability. Additional studies 

found a similar pattern in the relationship of somatostatin expression to anxiety associated 
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behavior in chronically stressed males in the basal lateral amygdala (91). Future work should 

examine distal effects of stress within this model along with earlier life stress exposure.

Pre-clinical research indicated that there are proximal neuroendocrine changes in stress 

reactivity and sex differences in behavior (Table 1) as an individual moves from the pre

pubertal state to early adulthood (98-103). The effects of stress during puberty are long 

lasting and have implications for the human development of PTSD and other stress based 

mood disorders (104). During adolescence girls are 3 times more likely to develop PTSD 

than boys (105). Sex or gender differences in cognitive styles contribute to resilience for 

PTSD and other mood disorders. Females who experienced either early life or adolescent 

abuse are more likely to use internalizing coping strategies predictive for increased risk for 

PTSD (106). Traumatized girls entering puberty (age 8-13) are more likely to engage in self

blame and avoidance whereas traumatized boys tend to report intrusive or re-experiencing 

symptoms (107). When non-traumatized children were exposed to fear conditioning in an 

experimental setting, girls but not boys showed generalized fear and lack of ability to 

discriminate a safety signal.

Gonadal steroid fluctuations across the menstrual cycle are also thought to contribute 

directly to risk and symptoms of PTSD (108). Among women with PTSD, phobic anxiety is 

increased during the follicular phase when estradiol levels are low. A finding not observed in 

traumatized women without PTSD and non-trauma controls (109). In healthy adult women, 

low estradiol levels are also associated with stronger intrusive memories in an experimental 

paradigm (110). Together these data support that timing of traumatic exposures with respect 

to menstrual cycle phase, and thus natural gonadal steroid levels may contribute to risk or 

resilience for subsequent PTSD. Moreover, behavioral treatments for PTSD may be more 

successful if menstrual cycle phases and use of steroid contraceptives are considered.

Gonadal hormones also contribute directly to the effects of stress on behavior in animal. 

Female but not male mice respond to 6 days of variable stress whereas both sexes respond 

to 21 days of stress (Table 1) (111, 112). These sex differences involve increased signaling 

between the lateral habenula and the ventral tegmental area that only occurs in females 

(113). Ovariectomy blocks the behavioral responses to 6 days of stress (114), it has 

not known whether gonadectomy also blocks the effects of longer periods of variable 

stress in females, nor whether male resilience is dependent on gonadal hormones. The 

existing literature suggests that resilience for other stress models may be regulated via 

gonadal hormones (115). In males, submissive behavior following conditioned defeat was 

dependent upon testosterone. Castrated males express more submissive behavior following 

fewer attacks. Testosterone or dihydrotestosterone replacement reduced submissive behavior 

in castrated males (116). Studies of social stress of young adult mice also indicate a 

neuromodulatory role for hormones, as estrogen receptor alpha (ER-α) expression was 

functionally linked to resilience. Male mice that were susceptible to social defeat stress 

had decreased ER-α expression in the nucleus accumbens (NAc) and increasing expression 

of ER-α promoted resilience (117). Nuclear ER-α expression was also decreased in NAc 

of male and female mice that underwent variable stress and over-expression promoted 

resilience in both sexes (117). Different transcriptional targets were regulated in males and 

females following over-expression of ER-α indicating that different downstream molecular 
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mechanisms regulate resilience in males and females. Molecular sex differences in response 

to stress have been replicated in other species including Syrian hamsters (118) and post

mortem tissue taken from humans with a diagnosis of major depressive disorder (112).

DNMT3a is a de novo methyltransferase that regulates sex differences in the adult 

transcriptome (111). Masculinizing female transcriptional signatures by reducing levels 

of DNMT3a blocked the effects of variable stress in females. Gene ontogeny identified 

the CRF pathway shifting most towards a male transcriptional pattern. Viral mediated 

overexpression of DNMT3a made males and females responsive to sub-threshold variable 

stress and micro defeat (111, 119). Post-mortem NAc tissue from men and women with 

major depressive disorder had increased DNMT3a expression and a history of antidepressant 

treatment at time of death partially attenuated the increase (111). In male mice that were 

behaviorally susceptible to social defeat stress infusion of a DNA methylation inhibitor, 

reversed social avoidance behavior similar to the effects of 28 days of systemic treatment 

with fluoxetine (119).

Some of the individual differences in CRF signaling in response to adult stress are due to 

epigenetic regulation of the CRF promoter. Stress susceptible male mice have higher levels 

of CRF expression in the hypothalamus than resilient animals due to decreased methylation 

of the CRF promoter (120). Antidepressant treatment blocks CRF promoter methylation 

and social anhedonia, whereas infusion into the hypothalamus of short interfering RNA 

(siRNA) sequences targeted to CRF promoted resilience. There is growing evidence of 

sex differences in CRF activation in response to stress in adulthood (121). Stress induced 

activation of CRF negatively impacts attention and cognitive function in adult males but not 

females. Males are more sensitive to cholinergic CRF activation whereas females respond 

with a noradrenergic mediated hyper arousal and vigilant state (122). These effects likely 

arise from region specific sex differences in the CRF1 receptor internalization (123, 124).

Stress during senescence.—Menopause and andropause are another period of 

changing hormones during which there are increased risks for emergence of psychiatric and 

cognitive issues. About 20% of women experience a debilitating menopause characterized 

by depression, cognitive changes, sleep difficulties and moderate to severe vasomotor 

symptoms (125). Perimenopausal women are at increased risk of affective and cognitive 

complaints though the risk for new onset and recurrence of major depression declines in 

the years following the final menstrual period (126). Premature menopause, defined as final 

menstrual period before the age of 40, is associated with even greater risk for affective and 

cognitive disturbances. That males typically experience later onset and a more protracted 

decline in testosterone production may contribute to their resilience to adverse cognitive 

and mood changes with aging. When andropause occurs prematurely, men too experience 

adverse effects on health and quality of life (127).

Menopause leads to changes in the HPA axis (128) that may enhance the adverse effects of 

stress. Postmenopausal women not using estradiol therapy (ET) tend to have greater cortisol 

response to acute stress than age matched males and younger adults (129) and increasing 

levels of urinary cortisol over time have been associated with worse baseline memory recall 

and increased memory decline over a two year period (130). Impact of ET on HPA axis 
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response to stress in postmenopausal women is inconsistent and may be influenced by 

timing of administration onset with respect to the final menstrual period, dose of ET and 

duration of use. Short-term estradiol administration in women who have been hypogonadal 

for many years appears to negatively sensitize cognitive and behavioral response to stress 

while the opposite occurs in premenopausal women (131, 132). Longer term use of ET in 

postmenopausal women appears to blunt cortisol response to stress and reduce the negative 

effects of stress on working memory (133). Among individuals ages 54 to 72, only females 

showed a negative impact of a stressor on verbal memory. Women in the age group are likely 

to be postmenopausal and again cortisol levels were associated with worse performance in 

females only (134).

While preclinical studies on the effects of stress on cognition in aging mice are very limited, 

they imply that acute and chronic stress have different impacts on cognitive function aged 

animals compared to young (Table 1)(135, 136) and these effects are in part mediated by 

sex specific NMDA receptor dependent changes in CA1 spine density (137). Acute stress 

also decreased cell proliferation in the hippocampus of female but not male aged mice 

in the absence of effects on spatial learning and could be ameliorated by group housing 

(138). Additional studies demonstrate drastically reduced levels of neurogenesis in the 

hippocampus of females as they age and behavioral effects (Table 1)(65). These aged female 

mice had different regulation of insulin and melanocortin-4 receptors in the hypothalamus 

compared to young stressed females. Based on the clinical literature there is a genuine 

unmet need to examine the mechanisms through which hormones interact with stress in both 

sexes to promote cognitive and emotional resilience an individual ages.

It was originally proposed that depression during the lifespan was a risk factor for 

Alzheimer’s disease (AD) as a earlier meta-analysis showed a significant correlation 

between the duration of time between depression and AD diagnoses and risk for AD (139). 

However, recent longitudinal studies found that people with earlier onset of depression 

are not at greater risk of AD, even if they experienced episodes later in life (139, 140). 

Instead, our current understanding is that late onset depression is a prodrome of dementia. 

Those with a first episode of depression after the age of 50 are at 46% greater risk of 

all cause dementia and significant depressive symptoms at age 65 or older was associated 

with a 71% greater risk of dementia. Retrospective analysis of data over 28 years showed 

that differences in depression symptoms was apparent 11 years prior to the diagnosis of 

dementia with an accelerated increase in depressive symptoms occurring in the decade prior 

to dementia diagnosis (140). Similarly, increasing but not steady or declining depressive 

symptoms over a 10-year period was associated with increased risk for all cause dementia 

and AD (141). Like depression, AD is more common in women than in men (142, 

143). Most studies examining the relationship between depression symptoms and risk for 

dementia control for sex in their analyses, and do not report findings for males and female 

separately. The Baltimore Longitudinal Study of Aging, the one study to do so, reported 

that the relationship between depression symptoms and all dementia including AD was 

significant for males, but not females (144).
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Conclusions

In summary, males are at greater risk of adverse proximal and some distal behavioral 

effects of gestational and early life stress, due to a lack of compensatory mechanisms and 

alterations in epigenetic regulation and organizational effects of hormones. The greatest 

distal impact of stress in males at all lifespan epochs seems to be on cognitive ability, 

particularly spatial learning and may contribute symptoms associated with autism spectrum 

disorder, attention deficit disorder and the relationship between depression and AD later 

in life. While females demonstrate compensatory mechanisms that protect them from the 

effects of early life stress on cognition, the impact is still present when emotion related 

behavior is measured later in life and are unmasked during periods of dynamic hormonal 

changes including puberty, pregnancy and menopause. In general periods of fluctuating 

hormones appear to be a greater risk factor for both the proximal and distal effects of stress 

in females.

The impact of sex on risk and resilience to stress is complex, varying according to 

characteristics of the stressor such as type, timing and duration as well as development with 

its associated changes in brain structure and function as well as central and peripheral levels 

of gonadal steroids. Similarly, the negative effects of stress can be observed immediately in 

both animal and human models or endure for years without apparent health effects many 

years later. In fact, effects of childhood adversity on mood and cognition may require 

specific hormonal and/or developmental states such as those that occur at menopause and 

with aging in order to be revealed. Epigenetic regulation of hormonal state combined with 

genetic sex differences are driving factors effecting stress susceptibility and resilience in 

animal models and are also implicated in complex human disease states. As pre-clinical and 

clinical research works towards personalized treatments we will need to start considering 

that mechanisms contributing to disease state may differ by sex and by age. As researchers 

we need to start examining corresponding endpoints in clinical and preclinical studies. 

Only then will we be able to understand how mechanisms of resilience (Figure 2) protect 

individuals from specific symptoms across diseases.
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Figure 1. The relationship between stress effects on behavior across the lifespan and psychiatric 
disease
For each epoch of the lifespan the associated emerging diseases are listed next to the 

proximal and distal effects of stress exposure at that time point and known changes in 

brain sub-regions. Abbreviations: N-methyl-D aspartate (NMDA), Gamma–Aminobutyric 

acid (GABA), ventral medial prefrontal cortex (vmPFC), dorsal lateral prefrontal cortex 

(DLPFC), anterior cingulated cortex (ACC), Preoptic area (POA), periaquaductal grey 

(PAG), Motor cortex 1 (M1), 5HT-serotonin, Lateral habenula (LH), dentate gyrus (DG).
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Figure 2. Methods and mechanisms of promoting resilience.
The Venn diagrams display methods of promoting resilience in animal models (red), human 

subjects (blue) and methods/mechanisms that translate across species (purple).
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Table 1.

Sex differences in the effects of stress on HPA axis regulation and behavior in male and female preclinical 

studies across the lifespan.

Epoch of
Stress
exposure

Males Females

Pre-
conception

Distal- Increased anxiety/depression associated behaviors. 
Increased response to subsequent stress M > F (46, 48, 49).

Distal- Increased anxiety/depression associated behaviors. 
Increased response to subsequent stress M > F (46, 48, 49).

Pre-natal 
stress

Distal- Increased CORT in response to restraint (38).
Decreased sociability and decreased paired plus inhibition 
(30-33).
PND1-7
Distal -Feminized patterns of spatial navigation in Barnes 
maze/increased immobility in FST (35).
Passive coping/ anhedonia (34, 35).
Decreased spatial learning (37)
PND 11- Birth
Distal -Increased sensitivity to reward/ increased 
conditioned place preference for chocolate/cocaine (40).
Alterations in circadian rhythm and REM sleep includes 
increased paradoxical/ fragmented sleep and decreased 
slow wave sleep (145)

Distal- Increased CORT, ACTH and corticosterone binding 
globulin in response to restraint (38).
PND 11- Birth
Distal- Passive coping (FST) M < F
Decreased sensitivity to reward/ decreased conditioned place 
preference for chocolate/cocaine (40).

Birth- peri-
puberty

Proximal- Increased CORT
Decreased growth (62-65).
Distal –Anhedonia. Decreased play/decreased social 
behavior (66-68). Decreased social interaction (146).
Cognitive impairments(63, 69).
Increased susceptibility to adult social defeat (76).

Proximal- Increased CORT
Decreased growth (62-65).
Distal -Decreased weight (16)
Decreased exploratory anxiety like behavior/ decreased 
contextual fear conditioning (147).
Decreased maternal care (148).
Decreased social interaction (146).
Blunted HPA activity in response to acute stress pregnancy 
and pup separation/distress (78, 79).

Puberty Proximal- Increased period for CORT to return to baseline 
following acute stress (99, 100).
Altered weight gain (102, 103).
Distal- Increased submissive response to conditioned 
defeat (Syrian hamsters)(115).

Proximal- Increased period for CORT to return to baseline 
following acute stress during puberty (99, 100).
Blunted CORT response to restraint stress following exposure 
to chronic stressors (both proximal and distal)(101).
Decreased maternalization of virgin females to pups(79) 
Anhedonia passive coping (101).
Distal-Increased submissive response to conditioned defeat 
(Syrian hamsters) (115).

Adult Proximal- 21 day variable stress
Decreased grooming following 6 day variable stress 
(splash test), increased latency to eat (NSF), increased 
immobility (FST) (111, 112). Increased ability to learn 
trace eyeblink conditioning(135)

Proximal- 6 day variable stress-
Decreased grooming (splash test), increased latency to 
eat (NSF), increased immobility (FST) decreased sucrose 
preference (111).
21 day variable stress Decreased grooming (splash test), 
increased latency to eat (NSF), increased immobility ( FST) 
decreased sucrose preference (111, 112).
Conditioned defeat
Decreased ability to learn trace eyeblink conditioning (135)

Senescence Proximal-No effect of stress on trace eyeblink 
conditioning (136).

Proximal- No effect of stress on trace eyeblink conditioning 
(136).
Decreased spatial learning (radial arm maze) (65).

Abbreviations: CORT- corticosterone; ACTH- adrenocorticotropic hormone; FST- forced swim test; NSF-novelty suppressed feeding
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