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Abstract

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been widely used as a flame retardant 

and is commonly detected in environmental samples. Biomonitoring studies relying on urinary 

metabolite levels (i.e. bis(1,3-dichloro-2-propyl) phosphate (BDCIPP)) demonstrate widespread 

exposure, but TDCIPP intake is unknown. Intake data area critical component of meaningful risk 

assessments and are needed to elucidate the potential health impacts of TDCIPP exposure. Using 

biomonitoring data, we estimated TDCIPP intake for infants.

Infants aged 2-18 months were recruited from central, North Carolina (n=43, recruited 

2014-2015), and spot urine samples were analyzed for BDCIPP. TDCIPP intake rates were 

estimated using daily urine excretion and the fraction of TDCIPP excreted as BDCIPP in urine.

Daily TDCIPP intake estimates ranged from 0.01-15.03 μg/kg-day for children included in our 

assessment, with some variation depending on model assumptions. The U.S. Consumer Products 

Safety Commission (CPSC) previously established an acceptable daily intake of 5μg/kg-day 

for non-cancer health risks. Depending on modeling assumptions, we found that 2-9% percent 

of infants had TDCIPP intake estimates above this threshold. Our results indicate that current 

TDCIPP exposure levels could pose health risks for highly exposed infants.

Introduction

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been widely used as a flame retardant 

additive in consumer goods, including polyurethane foam used in residential furniture and 

baby products.1-3 Research suggests that TDCIPP exposure is exceedingly common and 

varies considerably within the general population; however, exposure assessments have 

largely focused on measuring TDCIPP in various matrices (e.g. foam furniture, indoor air, 

or dust) 4-9 and on biomonitoring of urinary metabolites [i.e. bis(1,3-dichloro-2-propyl) 

phosphate (BDCIPP)],10-15 rather than directly measuring human TDCIPP exposure.
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Although human health data are limited, TDCIPP is considered a probable human 

carcinogen based on animal studies.16-18 Other, non-cancer health impacts have been 

observed in animal and in vitro studies, including disruption of endocrine function, 

adverse reproductive health, and neurotoxicity.17-23 In 2006, the U.S. Consumer Products 

Safety Commission (CPSC) released a preliminary assessment of the potential health risks 

associated with the use of selected flame retardants, including TDCIPP, in upholstered foam 

furniture.18 Although, human TDCIPP exposure was not directly assessed, based on use 

of TDCIPP in furniture, mathematical exposure models, and a review of toxicity data, the 

report suggested possible adverse health impacts associated with TDCIPP use in furniture 

foam.18 Therefore, exposure estimates are needed to conduct risk assessments for TDCIPP.

Here, we use previously measured urinary BDCIPP levels and reverse dosimetry models to 

estimate daily TDCIPP intake for young infants, a group which previous research suggests 

may have higher levels of exposure.11, 15, 24, 25 Although the biological half-life of TDCIPP 

is likely in the order of hours, previous estimates of interclass-correlation coefficients for 

BDCIPP suggest that a spot urine sample may provide a fairly reliable measure of average 

urinary levels of BDCIPP in adults.5, 6, 26, 27 This is likely due to the fact that the primary 

routes of exposure to parent TDCIPP are chronic inhalation and inadvertent dust-ingestion, 

where air and dust have been impacted by use of products containing TDCIPP.14, 28 

Therefore, using urinary metabolite levels to estimate TDCIPP exposure is reasonable, 

particularly given the difficulty in collecting 24-hour urine samples from young children. In 

this study, we compare these values to relevant estimates from the CPSC report,18 including 

the potential for non-cancer adverse health impacts and for increased cancer risk associated 

with exposure.

Methods

Study Population:

A convenience sample of infants (2-18 months of age) was recruited from the Durham, 

North Carolina area between September 2014 and March 2015.15 Children provided a spot 

urine sample and their parents completed a survey which included the child’s age and 

weight. Weight was missing for one child and was imputed as the 50th percentile based on 

the child’s age and sex.29 Parents provided informed consent and all procedures were carried 

out in accordance with a human subjects research protocol approved by the Duke University 

Institutional Review Board.

Urine Collection and Analysis:

Urine samples were collected in pediatric urine collection bags (n=38) or via catheter (n=5; 

details of collection procedures are provided in Hoffman et al. 2015).15 Upon collection, 

samples were transferred to polypropylene specimen containers and were stored at −20°C 

until analysis. Detailed descriptions of the extraction and analysis of BDCIPP have been 

published previously.11, 30 Briefly, organophosphate flame retardant (PFR) metabolites were 

extracted using mixed mode anion exchange solid phase extraction with isotope dilution (d10 

BDCIPP) and quantified using liquid chromatography coupled to electrospray ionization 

tandem mass spectrometry. We evaluated the recovery of d10-BDCIPP in all samples using 
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13C2-DPHP, and measured levels of BDCIPP in laboratory blanks (n=6) analyzed alongside 

the samples for quality assurance purposes. Average recovery of d10-BDCIPP was 119 ± 

4%. Very small amounts of BDCIPP were detected in laboratory blanks (0.04 ng/mL on 

average). Therefore, the method detection limit (MDL) was calculated using three times the 

standard deviation of the blanks normalized to the urine volume extracted (MDL=0.05 ng/

mL). Analyte levels were blank corrected using the average levels in the laboratory blanks.

Estimation of daily TDCIPP intake:

To estimate daily TDCIPP intake we first predicted each participant’s daily excretion of 

BDCIPP in urine using a volume-based approach; multiplying the concentration of BDCIPP 

(μg/L) in the spot urine sample by an estimated 24-hour urine output (L), calculating the 

μg/day of BDCIPP excreted.

To estimate TDCIPP intake from BDCIPP excretion, we then divided by the molar fraction 

(fraction of TDCIPP converted to BDCIPP and excreted in urine per day). This was assumed 

to be the daily mass intake of TDCIPP (μg/day). Daily estimates were divided by each 

child’s weight (kg), producing weight-adjusted intake rates in μg/kg-day (Eq 1).

μg TDCIPP ∕ kg − day = spot BDCIPP μg ∕ L ∗ urine outputL ∕ d
molar fraction ∕ d ∗ cℎild weigℎt (kg) ∗

MW TDCIPP g
mol

MW BDCIPP g
mol

Models required the volume of urine excreted per day; however, this information was not 

collected for individual children. As such we used published estimates for children of this 

age from literature as a proxy (Table 1; 0.001-0.002 L/kg-hour).31, 32 The urinary excretion 

fraction of TDCIPP converted to BDCIPP and excreted in urine has not been evaluated 

in a human population. We therefore reviewed past studies to estimate values for TDCIPP 

conversion to urinary BDCIPP (Table 1; 43-68%).31, 33-36 Although these studies are based 

on both in vitro and in vivo work, we used their values as a range of possible values for the 

conversion of TDCIPP to BDCIPP and selected 45% and 65% as urinary excretion fractions 

for analyses. .

Potential for Adverse Health Impacts

The CPSC calculated an acceptable daily intake (ADI) for TDCIPP based on previous 

rodent data demonstrating histopathological effects in several organs (e.g. liver, kidney, 

spleen, and parathyroid; lowest-observed-adverse-effect level (LOAEL) =5 mg/kg-day).17, 18 

Incorporating an uncertainly factor (1000-fold), the ADI established by the CPSC for non­

cancer health risks associated with TDCIPP exposure was set at 5 μg/kg-day. The CPSC 

document calculated a hazard index (HI; also known as a hazard quotient) associated with 

exposure as the ratio of the average daily dose to the ADI. An HI >1 indicates potential 

for health impacts at a particular levels of exposure. 18 The State of California proposed a 

similar no significant risk level for TDCIPP under Proposition 65 of 5.4 μg/kg-day.37
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Potential for Excess Cancer Risk

The CPSC calculated a cancer potency factor (i.e. the probability of incurring cancer in 

one’s life time due to exposure) for TDCIPP using prior research indicating hepatocellular 

carcinoma and adenoma and tumors of the renal cortex: 0.031 (mg/kg-d)−1.17 Using the 

CPSC value, we estimated the lifetime excess cancer risk from exposure by multiplying 

the potency factor by the life time average daily dose (LADD). Following the CPSC, we 

first examine only infant exposure, assuming that the LADD is based on two years of 

exposure at the estimated rates. As this assumes zero exposure for the rest of the lifetime it 

likely represents an underestimate of exposure. As a sensitivity analysis, we also assumed a 

LADD equal to exposure during the first two years (i.e. constant exposure level equal to the 

level during infancy, likely overestimating exposure). We considered an additional exposure 

scenario which assumed that levels of exposure during the first 2 year of life were equal to 

those observed in our work and exposure thereafter equaled one-half of infant levels.

Results and Discussion

Children participating in this study were an average of 7.9 months of age (range 2-18 

months) and there were slightly more males than females (Table 2). All urine samples 

had detectable levels of BDCIPP (geometric mean=2.29 μg/L; range=0.20-103.65 μg/L). As 

reported previously, urinary BDCIPP levels in this study population were higher than those 

found in studies of adults or older children conducted at similar time points,6, 11 suggesting 

infants may have higher levels of exposure.

Using Equation 1, the estimated daily intake of TDCIPP ranged from 0.01-15.03 μg/kg-day 

for the individual children in our study population (Table 3). Among these children, the 

geometric mean intake was 0.11 μg/kg-day using assumptions that would result in the lowest 

estimated intakes (urine volume of 1 mL/kg-hr and 65% of TDCIPP excreted in urine as 

BDCIPP) and 0.33 μg/kg-day using assumptions that would result in the highest estimated 

intakes (urine volume of 2 mL/kg-hr and 45% of TDCIPP excreted in urine as BDCIPP). 

The average intake (average of the geometric means for each scenario) was 0.21 μg/kg-day.

It is important to point out that our work does not capture the relative importance of 

various exposure pathways. Our previous work in this study population suggests that the 

number of infant products that are present in the home is a particularly strong predictor of 

infants’ urinary BDCIPP levels, as TDCIPP is the most common flame retardant used in 

foam-containing infant products.2 Reasons for this association are unclear but could include 

hand-to-month contact, dermal absorption or inhalation.

Using these estimates, we calculated the HI for potential non-cancer health impacts as 

described by the CPSC.18 Under every set of assumptions examined, a portion of children 

had HI > 1 (indicating potential health risks). Estimated percentages of children with an HI 

> 1 ranged from 2 to 9% (Table 3) under various assumptions of urine excretion rates and 

the fraction of TDCIPP excreted as BDCIPP in urine, indicating potential health risks at 

current levels of exposure.
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Based on the cancer potency factor proposed by the CPSC (mg/kg-d)−1,18 we also calculated 

an estimated excess cancer risk based on the observed levels of TDCIPP exposure in our 

study population. Assuming exposure occurred only in the first two years of life (0.21 

μg/kg-day for 2 years of a 75 year life time), we estimated cancer risk from exposure to 

TDCIPP to be 0.3 cases per million individuals; however, this is likely an under estimate. 

Assuming exposure during infancy continues at the same level throughout the life-course 

(0.21 μg/kg-day for 75 years), the estimated excess cancer risk was 10 per million, likely an 

over estimate. Finally, assuming exposure continues at half the level of infants’ exposures 

(0.21 μg/kg-day for 2 years and 0.11 μg/kg-day for 73 years), results in an excess cancer risk 

of 5 per million. Our estimate is lower than that of the CPSC (300 cases per million), but 

under some assumptions surpasses the one in a million value used by CPSC to consider a 

substance hazardous.17

Certainly, there are some limitations of the methods used to estimate excess cancer risk 

in this study population. Assuming that there is no additional exposure after the first two 

years of life, the life time excess cancer risk does not exceed 1 per million (i.e. the CPSC 

threshold for hazardous substance classification); however, this exposure scenario seems 

highly implausible as exposure to TDCIPP has been measured in all age classes. e.g. 25 

Both alternative exposure scenarios considered suggest that life time excess cancer risk 

exceeds this threshold, particularly when infant exposure levels are assumed to continue 

throughout the life course (10 per million). A number of studies demonstrate that urinary 

BDCIPP levels decrease with age25, 27, 38 and are higher among young children11, 15, 39 

suggesting that we may be over-estimating excess cancer risk. However, biomonitoring data 

also suggest that TDCIPP exposure may be increasing over time,13 in which case our results 

using this assumption may more accurately reflect cancer burden among this cohort. It is 

not clear whether this trend will continue, particularly with the addition of TDCIPP to 

California’s Proposition 65. Indeed, recent measurements of foam suggest that the use of 

TDCIPP in furniture may have declined since 2014.3

Additional data are needed to assess potential human health risks associated with exposure. 

It is important to note that values used in the CPSP document to assess risk are based on 

toxicological, rather than epidemiologic, data. Although these data suggest that there may 

be reason for concern, significantly more data about potential human health impacts are 

needed. Several recent studies, published since the release of the CPSC report, demonstrate 

associations between environmental TDCIPP measurements or urinary BDCIPP and health 

outcomes. Levels of exposure experienced by individuals in the general population, for 

example, have been associated with increased body mass index,12 allergies and asthma,40 

decreased fertility and adverse reproductive outcomes.41, 42

We consider our work an important step in understanding human TDCIPP exposure; a single 

previous paper has used reverse dosimetry to estimate exposure to TDCIPP 38 and none have 

considered infants. In addition to the need for more information to estimate exposure over 

the lifetime for purposes of cancer risk assessment discussed above, our results should be 

interpreted in the context of several additional limitations. We did not have urine flow rates 

for individuals but rather used a range based on previous studies. In addition, estimates of 

molar fraction of TDCIPP converted to BDCIPP were based on animal and in vitro data, 
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and human excretion could vary considerably. Our results are also limited by our reliance 

on a single spot urine sample; data suggest that the biological half-life of TDCIPP is in the 

order of hours, indicating that BDCIPP concentrations vary over time. However, a number of 

previous studies in adults suggest that a spot urine sample is a reasonable proxy for longer­

term exposure.5, 6, 26 For example, we previously reported strong consistency in urinary 

TDCIPP over the course of five consecutive days (intraclass correlation coefficient=0.81 

among adults), indicating that a spot urine sample may be a reasonable proxy for exposure 

over time.6 No such data are available for young children. Interestingly, prior research 

suggests that TDCIPP exposure may vary seasonally, with higher levels of exposure in the 

summer.12, 13 The samples in this analysis were largely collected during winter months 

suggesting that it is possible that our analyses underestimate average TDCIPP exposure. 

Finally, our sample consisted of a relatively small number of North Carolina infants. Patterns 

of exposure could be different in other populations and may be changing over time. Data 

from European countries, for example, suggest that exposure may be lower in Europe than in 

the US.14, 43

Our results suggest that infants’ exposure to TDCIPP averages 0.33 μg/kg-day, a value under 

the threshold set by the CPSC for potential non-cancer health risks; however, a portion of 

infants included in our work had predicted exposures that could be associated with potential 

non-cancer health impacts (2-9%). In addition, under some assumptions, exposures were 

associated with increased life-time cancer risks over one in a million, the threshold for 

consideration as a hazardous substance. Cumulatively, our results, although limited to a 

relatively small population, suggest that current levels of exposure to TDCIPP experienced 

by some infants could be impacting their health. Confirmation of these results in a larger, 

more diverse cohort is needed.
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Table 1:

Parameter estimates and sources used in estimating TDCIPP exposure.

Parameter Estimation Method and Species Value Reference

Urine excretion rate

0.00125 L/kg-hour Wittassek, 2011 32

0.001-0.002 L/kg-hour Hazinski, 2012 31

TDCIPP urinary excretion fraction

In vivo; rat 63% Lynn, 1981 36

TDCIPP metabolism

In vitro; human liver S9 fraction 68% Van den Eede, 2013 33

In vitro; human liver microsome (HLM) 46% Van den Eede, 2013 33

In vitro; rat liver homogenate 43% Sasaki, 1984 35
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Table 2:

Selected characteristics of the study population (n=43).

Participant Characteristic Mean ± STD
or N (%)

Age (months) 7.9±4.7

Weight (kg)* 7.7±2.1

Sex

Male 24 (55.8)

Female 19 (44.2)

Race/ Ethnicity

Hispanic 4 (9.3)

Non-Hispanic White 32 (74.4)

Non-Hispanic Black 2 (4.6)

Other Race - Including Multi-Racial 5 (11.6)

Income

<50,000 11 (25.5)

50,000-99,999 12 (27.9)

≥100,000 17 (39.5)

Missing 3 (7.0)

*
Weight was imputed for one child missing this data as the age and sex specific 50th percentile based on WHO growth curves.
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Table 3:

Estimated daily intake and hazard index under various assumptions of daily urine excretion and the fraction of 

TDCIPP excreted as BDCIPP in urine.

Input Assumptions
GM Daily

Intake
(μg/kg-day)

Range Daily
Intake

(μg/kg-day)

GM
HI

N (%)
HI>1

Max
HI

Urine Volume 1 mL/kg-hr Fraction Excreted in Urine 45% 0.17 0.01-7.51 0.03 1 (2) 1.50

Urine Volume 1 mL/kg-hr Fraction Excreted in Urine 65% 0.11 0.01-5.20 0.02 1 (2) 1.04

Urine Volume 2 mL/kg-hr Fraction Excreted in Urine 45% 0.33 0.03-15.03 0.07 4 (9) 3.01

Urine Volume 2 mL/kg-hr Fraction Excreted in Urine 65% 0.23 0.02-10.4 0.05 2 (5) 2.08

Environ Sci Technol Lett. Author manuscript; available in PMC 2021 November 30.


	Abstract
	Introduction
	Methods
	Study Population:
	Urine Collection and Analysis:
	Estimation of daily TDCIPP intake:
	Potential for Adverse Health Impacts
	Potential for Excess Cancer Risk

	Results and Discussion
	References
	Table 1:
	Table 2:
	Table 3:

