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Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide that is produced by the lymphoid cells and plays a major role in immuno-
logical functions for controlling the homeostasis of the immune system. VIP has been identified as a potent anti-inflammatory 
factor, in boosting both innate and adaptive immunity. Since December 2019, SARS‐Cov‐2 was found responsible for the 
disease COVID‐19 which has spread worldwide. No specific therapies or 100% effective vaccines are yet available for the 
treatment of COVID‐19. Drug repositioning may offer a strategy and several drugs have been repurposed, including lopinavir/
ritonavir, remdesivir, favipiravir, and tocilizumab. This paper describes the main pharmacological properties of synthetic VIP 
drug (Aviptadil) which is now under clinical trials. A patented formulation of vasoactive intestinal polypeptide (VIP), named 
RLF-100 (Aviptadil), was developed and finally got approved for human trials by FDA in 2001 and in European medicines 
agency in 2005. It was awarded Orphan Drug Designation in 2001 by the US FDA for the treatment of acute respiratory 
distress syndrome and for the treatment of pulmonary arterial hypertension in 2005. Investigational new drug (IND) licenses 
for human trials of Aviptadil was guaranteed by both the US FDA and EMEA. Preliminary clinical trials seem to support 
Aviptadil’s benefit. However, such drugs like Aviptadil in COVID‐19 patients have peculiar safety profiles. Thus, adequate 
clinical trials are necessary for these compounds.
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CD8	� Cluster of differentiation 8
TREG	� T regulatory pathway
IL6 factor	� Interleukin-6 factor
ICU	� Intensive care unit
ARDS	� Acute respiratory distress syndrome
I.V.	� Intravenous
ECG	� Electrocardiogram
ALI	� Acute lung injury
PaO2	� Partial pressure of oxygen
FiO2	� Fraction of inspired oxygen
FDA	� Food and Drug Administration
ED	� Erectile dysfunction
GIT	� Gastrointestinal tract
PAH	� Pulmonary arterial hypertension
IND	� Investigational new drug
AT II CELLS	� Alveolar type 2 cells
ECMO	� Extra corporeal membrane oxygenation

Introduction

As per the National Institute of Health (NIH)/Food and Drugs 
Administration (FDA) classification, respiratory failure is one 
of the major hallmarks of COVID-19 (Li and Ma 2020). About 
50% of cases are highly intensified due to lack of care and ven-
tilation (Robert et al. 2020). Several lead molecules are trying 
to exhibit promising results in clinical trials, one among them 
being Aviptadil, which is currently in phase II/III of clinical 
trials, where its pharmacological actions against COVID are 
under investigation. Based upon some reliable information, 
it is now being used as inhaled dosage form since June 2020 
(Scavone et al. 2020). Aviptadil is a synthetic form of human 
vasoactive intestinal polypeptide (VIP) (Mathioudakis 2021). 
This review reveals the established mechanism of action of 
Aviptadil, evidently supported by the significant amount of 
data, related to reliable clinical trials performed. The vasoac-
tive polypeptide comes into consideration as it binds to VPAC1 
receptors present in the pulmonary alveolar type II (AT-II) 
cells in the lungs. This binding history initiates the study 
related to the COVID-19 disease. AT-II cells make up only 
5% of the epithelial cells in the lungs but are critical for oxygen 
transfer and surfactant production and are also responsible for 
the formation of alveolar type-1 cell (Singh and Chaturvedi 
2020; Moody et al. 2000; Mason 2020). ACE2 is a surface 
receptor that is present on type II cells, selectively attacked 
by the SARS-CoV-2 virus (Jia et al. 2005). A high amount of 
vaso-intestinal polypeptide is present in the lungs, and binding 
to the AT-II cells prevent NMDA-induced caspase-3 activity 
(Poduri et al. 2020). Activation leads to inhibition of IL6 and 
TNFα production (Tanaka et al. 2014). AT-II also helps in 
preventing pulmonary edema and regulates the production of 
surfactant (Han and Mallampalli 2015). Aviptadil acts as a 
barrier at the alveolar interface and protects the lungs from 

failure and other organs from being affected (clinicaltrials.
gov 2021). In the phase II trial, there was an evident outcome 
against the COVID19 where five trials were conducted under 
the influence of the European Regulatory Authority (europa.
eu 2021). Infusion of Aviptadil showed good results with some 
adverse effects including alterations in blood pressure, heart 
rate, and ECG (Lythgoe and Middleton 2020). Aviptadil has 
been found to exert beneficial effects in restoring functions in 
pulmonary hypertension, ARDS, and acute lung injury (John-
son and Matthay 2010). According to previous researches and 
recent clinical trials, it has been demonstrated that COVID-
induced pneumonitis can be treated with Aviptadil infusion 
with maximal intense care (Petkov et al. 2003). Co-morbidities 
including smoking status and cardiovascular complications 
lead to poor efficacy of Aviptadil (Chatila et al. 2008). In May 
2020, the emergency use of remdesivir got authorized by the 
FDA, which was completely based upon superficial results, 
however not that significant; but on the other hand, Aviptadil 
is an effective and safe alternative (fda.gov 2021).

Vasoactive intestinal peptide

Vasoactive intestinal peptide (VIP) is a peptide hormone that 
is proteinaceous and consists of 28 amino acids (Iwasaki 
et al. 2019). VIP being a neuropeptide is synthesized and dis-
charged by both immune cells and nerve endings, which is 
associated with both central and peripheral activities (Grant 
et al. 2006). VIP is released by NANC (nonadrenergic non-
cholinergic autonomic nervous transmitter) nervous system 
which is an inhibitory neurotransmitter. VIP binds with two of 
its receptors, VPAC-1 and VPAC-2, belonging to the class of 
G-protein-coupled receptors (GPCRs). VIP along with pitui-
tary adenylate cyclase-activating polypeptide (PACAP) acti-
vates VPAC-1 and VPAC-2. VIP shows various physiological 
actions in the gastrointestinal tract and also gets involved with 
some pathological cascade there; intestinal contractility and 
cellular motility are exhibited by VIP action. Activation of 
VPAC-1 shows significant results in the colon when tested on 
mice and humans. In the case of rat ileum, it shows predomi-
nant effects in mucosal and submucosal layers. VPAC-1 acti-
vation also shows epithelial functions, mucus secretion, ion 
transportation, as well as cell proliferation. Being one of the 
utmost substantial neuropeptides of the human body, VIP has 
a marked expression pattern within the visceral respiratory 
parts as well as the nasal mucosa (Dérand et al. 2004) (Fig. 1).

VIP production in body

It is produced from multiple sites of CNS, salivary gland, 
PNS nerve endings, etc. and stored in the hypothalamic 
suprachiasmatic nucleus. VIP exerts control over the SCN, 
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which regulates circadian rhythm and gets stored in the 
hypothalamus which is internally synchronized (Achilly 
2016). Optic chiasm is located just at the crossing over the 
region between two optic nerves, where VIP production 
and its localized action is seen (Ban et al. 1997). Similarly, 
the gastrointestinal tract (GIT) and pancreas produce VIP. 
During its release in the GIT, it acts on the chief cells and 
releases pepsinogen. When it acts on GIT, the basic function 
of VIP is to increase the motility of the smooth muscles. 
When the other muscles in GIT move faster than the sphinc-
ter muscle, it is said to be relaxed, and when they move 
slower than the sphincter muscles, it is said to be contracted 
(Prasse et al. 2010).

Functions and uses of VIP

In GIT, it relaxes the lower esophageal sphincter, gall 
bladder, and stomach, as well as increases secretion of 
water in the pancreatic juice, bile juice, and pepsino-
gen. It also reduces gastric acid secretion in the stomach 
(innerbody.com 2020). The main function of Aviptadil is 
observed in the alveolar sac in the lungs. Additionally, 
it causes coronary vasodilatation in CVS, thus reduc-
ing vaso-spasticity and lowering BP. On the other hand, 
it exerts ionotropic (increases heart contractions) and 
chronotropic (increases heart rate) effects, as a result of 
stimulation of β1 adrenergic receptors. VIP thus is likely 
to play a major role in the vagal cardiac accelerator system 
(letstalkacademy.com 2020). Immunologically, Aviptadil 
in turn blocks the release of TNFα and IL-6. It causes a 
reduction in edema, which is caused by HCL. Aviptadil 
helps to generate TH2 and CD8 + cells, which are signifi-
cant components of destructive immune response team, 

but it decreases the activation of CD4 + cells. It promotes 
the TH2 pathway as well as TREGS (Zhang and An 2007). 
Aviptadil is predominantly considered for application in 
COVID treatment since it impacts damaged cells in the 
respiratory system and strengthens the respiratory barrier. 
Aviptadil is an injectable form of a vasoactive intestinal 
polypeptide (VIP) in combination with adrenergic phen-
tolamine (Lisi et al. 2020). It is mainly used in combina-
tion (phentolamine and with other drugs) for the treatment 
of erectile dysfunction. The major adverse effects like 
low BP and increased cardiac output is the only drawback 
reported (Steers 2020). As we know, Aviptadil is a syn-
thetic peptide, so it is designed to minimize the adverse 
effects. VIP is expressed in the sex organs, both in males 
and females where it has been associated with sexual func-
tion (Azadzoi and Siroky 2010). It is also used to increase 
vaginal lubrication. It also regulates prolactin secretion 
from higher centers of the pituitary gland where prolactin 
secretion is responsible for milk production in mammary 
glands (Al-Chalabi et al. 2020).

VIP activity in the respiratory system

The key role of VIP is being conducted in the alveoli, as 
it exhibits homeostatic functions in the respiratory system 
(kidshealth.org 2020). The recent findings have reported 
its bronchodilatory and vasodilatory effects. It can induce 
housekeeping mucus secretion via submucosal origin. On 
the other hand, it has an immunomodulatory action as men-
tioned earlier, which includes humoral immune response 
suppression and remodeling of the bronchial environment, 
along with vascular and inflammatory attenuation. The gas 
exchange takes place in the alveolar wall, the blood carbon 
dioxide flows through the alveoli, and oxygen enters the 
blood vessels. This alveolus epithelium, connective tissue, 
and blood vessel endothelium together compose a mem-
brane called the respiratory barrier. Aviptadil helps to hold 
the barrier and the corona virus aims to break it (Knudsen 
and Ochs 2018). In the alveoli, two types of cells are pre-
sent, i.e., type-1 pneumocytes and type-2 pneumocytes, 
where the latter is acted upon by Aviptadil. Vasoactive 
intestinal peptide exhibits affinity towards two receptors, 
where the first one is (VPAC-1R) generally called type-1 
pneumocytes and the second one is (VPAC-2R) generally 
known as type-2 pneumocytes. VPAC-1 is mainly found 
in the liver, lungs, kidneys, mammary glands, spleen, lym-
phocytes, small intestine, and inner lining of the stomach. 
VPAC-2 is present in the smooth muscles of different 
organs and inside the vascular walls, adrenal medulla, and 
retina (Brandt and Mandiga 2020).

Fig. 1   Different pathological and physiological action of VIP on the 
gastrointestinal tract, intestine, immune cells, respiratory tract, and 
brain-suprachiasmatic nucleus. VIP helps in intestinal contraction and 
increases the motility of smooth muscles in GIT
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Type‑2 pneumocytes

Type-2 pneumocytes possess two receptors in them. The 
first one is the ACE 2 receptor, and the second one is the 
VPAC-1 or VIP-1 receptor. The viral affinity towards the 
ACE2 receptor is very high, and it destroys the respira-
tory barrier upon binding with it. On the other hand, VIP 
binds to the VPAC-1 receptor and protects the cell from 
destructive action of corona virus (Zhao et  al. 2010). 
Type-1 pneumocytes are flat cells observed in almost 95% 
of the total alveoli, and type-2 pneumocytes are the bigger 
cells, constituting about 5% of the total alveoli. The role of 
type-2 pneumocytes is to produce type-1 pneumocytes sur-
factant layer and oxygen transfer, as well as to maintain the 
respiratory barrier. The function of the surfactant layer is 
to reduce the surface tension within the alveoli and prevent 
them from collapsing (sciencedirect.com 2020). Hence, it 
is necessary to protect type-2 pneumocytes because if they 
are damaged, then not only the part of the lung is damaged 
but the capacity to fix that part will be reduced due to 
lack of type-1 cells. Aviptadil acts as a respiratory barrier 
and presents protective function. Lower doses of the drug 
induce bronchodilatation, while higher doses protect the 
respiratory barrier (Kia'i and Bajaj 2020) (Fig. 2).

VIP impact on respiratory diseases

Aviptadil shows its physiological and pathological action 
on respiratory diseases like asthma, COPD, cystic fibro-
sis, pulmonary arterial hypertension (PAH), and sarcoido-
sis (Lindén et al. 2003). It has been observed that VIP 
has a crucial effect on the pathway that leads to PAH. 

Diminished serum and pulmonary tissue levels have been 
observed in mice in the case of pulmonary arterial hyper-
tension. On the other hand, elimination of the VIP gene 
causes a moderate or greater incidence of PAH (Morrell 
et al. 2013). In the clinical trials, Aviptadil initiated a mean 
pulmonary pressure decrement with an attendant expan-
sion in the cardiovascular yield and blended venous blood 
oxygenation. Furthermore, later investigations depicted its 
immunomodulatory effects. At last, bronchial hyperactiv-
ity, optional to pre-capillary pneumonic hypertension, is 
likewise forestalled by VIP (Leuchte et al. 2008). There is 
not much evidence of study materials regarding the activ-
ity of VIP on sarcoidosis, but positive trial data regarding 
sarcoidosis is reported. It shows anti-inflammatory effects 
and reduces TNF activity. On the other hand, asthma, 
which is a persistent inflammatory disorder interceded by 
Th2 cells, TREGS, mast cells, eosinophils, neutrophils, 
along with the involvement of cells from the mesenchy-
mal origin, like epithelial and endothelial cells, fibroblasts, 
and smooth muscle cells, get affected on a majority basis. 
Asthma is characterized by bronchoconstriction and 
immune reaction, so there is a mitigating effect of VIP 
on asthma. A pharmacological agonist of VIP might also 
additionally approach some other targeted therapy and will 
be suitable for patients, as corticosteroids and anticholin-
ergics exhibit severe adverse effects (Spencer and Weller 
2010; Qureshi et al. 2014). COPD is intervened with the 
Th1 pathway, which is not affected by the action of VIP. 
On the other hand, the Th2 pathway is downregulated by 
the action of VIP, which has been reported to inhibit the 
apoptosis of alveolar L2 cells caused by tobacco smoke-
induced cytotoxicity, consequently preventing the devel-
opment of the sickness (Wei and Sheng 2018). Mucous 
discharge within the lungs is brought about by acetylcho-
line and VIP, which act synergistically up to some extent. 
As far as physiology is concerned, this synergism is lost 
in cystic fibrosis; thus, VIP secretion is diminished in this 
case. Similarly, the response of submucosal organs to VIP 
is faded in patients with cystic fibrosis. Aviptadil causes an 
elevation in the CFTR level, with a threefold increment in 
Cl-efflux in bronchial epithelial cells (Saint-Criq and Gray 
2017; Dasenbrook 2020).

Introduction to SARS‑CoV‑2

Coronavirus disease was identified in the year 2019 and 
hence was named the COVID-19 disease. The causative 
agent is the novel coronavirus, which is also known as 
severe acute respiratory syndrome coronavirus (SARS-
CoV-2). The World Health Organization declared COVID-
19 as a global pandemic. The virus was first identified in 
Wuhan (Hubei) in China, in December 2019. It was found 

Fig. 2   Depiction of two types of pneumocytes present in the alveoli 
and type I and type II pneumocytes. VPAC-1 and ACE-II receptor 
present on type II pneumocytes. Type I pneumocytes, epithelial cells, 
and endothelium of blood vessels form the respiratory barrier
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in the respiratory tracts of the infected patients which were 
the indications of the new β strain of coronavirus. Here, 
the detailed structure of SARS-CoV-2 is demonstrated 
along with its interaction with the receptor.

SARS‑CoV‑2 structure

SARS-CoV-2 is a non-segmented positive-sense single-
stranded RNA (ssRNA) virus that is enveloped by a large 
number of glycosylated spike proteins, covering the surface 
of the virus (Singh et al. 2020). The SARS-CoV-2 virus is 
29.9 kb in length, comprising of four main structural pro-
teins, which are small envelope (E) glycoprotein, membrane 
(M) glycoprotein, nucleocapsid (N) glycoprotein, and spike 
(S) glycoprotein (Astuti and Ysrafil 2020). The N protein is 
the functional unit of the SARS-CoV-2 virus. It is located 
in the area of the endoplasmic reticulum-Golgi apparatus, 
structurally attached to the virus’ nucleic acid material. 
As the protein is connected to the viral RNA, the protein 
is involved in processes, which include the viral genome 
and cycle of viral replication (McBride et al. 2014). The M 
protein has a very important role in determining the struc-
ture of the virus (Ghosh et al. 2021). It helps in stabilizing 
nucleocapsids and N protein-RNA complex within the inner 
virion, by which it facilitates the completion of the viral 
assembly (Neuman et al. 2011). The E protein plays a sig-
nificant role in the production and maturation of the virus 
(Ruch and Machamer 2012). The S protein is a transmem-
brane protein of class 1 type of trimeric TM glycoprotein, 
which is responsible for the entry of the virus. The S protein 
is the key factor for viral infection (Bosch et al. 2003). The 
trimeric part of S protein is the basic unit for binding S 
protein to the receptor. The S1 part of the S protein con-
sists of the receptor-binding domain or RBD, which mainly 
helps in the binding process. The S2 part contains the HR 

domain which includes Heptad repeat or HR1 and HR2 and 
is responsible for the fusion of the virus with the cell mem-
brane (Du et al. 2009) (Fig. 3).

SARS‑CoV‑2 interaction with receptor

The SARS-CoV-2 invasion into the pulmonary pathway 
mainly leads to the destruction of the respiratory barrier, 
which is composed of epithelial tissue, connective tis-
sue, and the endothelium of the blood capillaries (Gu and 
Korteweg 2007). The diffusion of O2 and CO2 occurs across 
the respiratory barrier; thus, any problem with the respira-
tory barrier will affect the respiratory process. Epithelial 
tissue has alveolar epithelial cells or pneumocytes which 
are of two types: type I and type II. SARS-CoV-2 binds 
to the type II pneumocytes, present in the walls of alveoli 
(Cardani et al. 2017). Type II pneumocytes have very crucial 
importance in the production of surfactant, type I pneumo-
cytes, and most importantly oxygen transfer (Fehrenbach 
2001). It mainly helps in maintaining the respiratory bar-
rier (LeMessurier et al. 2020). Type II pneumocytes have 
angiotensin-converting enzyme 2 (ACE2) receptor which is 
responsible for viral attachment. SARS-CoV-2 needs to get 
activated before binding to the ACE2 (Zhang et al. 2020). 
Activation means exposure of the S1/S2 site of the viral S 
protein towards the receptor (Coutard et al. 2020). The type 
II transmembrane protease serine protein or TMPRSS2 is 
responsible for the activation of the SARS-CoV-2, alongside 
the viral S protein (Simmons et al. 2013), which facilitates 
viral entry. The S protein binds to TMPRSS2 for prim-
ing, which leads to S protein cleavage at the S1/S2 site. 
Cleavage of the S1/S2 site exposes the receptor-binding 
protein located on the S1 part of the S protein. Along with 
TMPRSS2, Furin is also responsible for the activation of S 
protein (Thunders and Delahunt 2020). The S1 part of the 

Fig. 3   Structure of SARS-
CoV-2 showing the N protein, 
E protein, S (spike) protein, and 
M protein. The N protein is the 
functional unit of the SARS-
CoV-2virus. The E protein plays 
an important role in the produc-
tion and maturation of the virus. 
The S protein is a transmem-
brane type protein. It is a class 
1 type of trimeric TM glycopro-
tein which is responsible for the 
entry of the virus. The S protein 
is the key factor for viral infec-
tion. The M protein has a very 
important role in determining 
the structure of the virus
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protein binds to the ACE2 receptor facilitating viral entry. 
The S2 part is related to the fusion of the viral membrane 
with the cell, further initiating viral infection. The SARS-
CoV-2 also binds to the ganglioside type 1 (GM 1) receptor. 
The binding of SARS-CoV-2 to the ACE 2 receptor also 
causes damage to the significant cells of the immune sys-
tem, like macrophages and dendritic cells (Tang et al. 2020). 
Entry of SARS-CoV-2 triggers the innate immune response 
which leads to the gathering of alveolar macrophages, dif-
ferentiated from bone marrow-derived monocytes (Merad 
and Martin 2020), acting as the first line of defense. ADAM 
17, which is a metallopeptidase enzyme, acts as a shedding 
enzyme for the ACE2 receptor (Heurich et al. 2014). The 
shedding of the ACE2 receptor involves cleavage and release 
of the domain which attaches to the S protein of the virus. 
Viral infection promotes elevated immune response which 
can be pro-inflammatory (Wu et al. 2020) (Fig. 4).

Immunological response on SARS‑CoV‑2 infection

SARS-CoV-2 attaches to the cell by binding to the ACE2 
receptor. The S protein of the virus exhibits binding affin-
ity towards the ACE2 binding domain. This results in the 
fusion of the virus with the healthy cells, resulting in the 
entry of viral RNA (Zhou et al. 2015). The infected cell 
machinery is used to produce more RNA by replication. 
In this process, cell lysis takes place. As the new viral 
cells are produced inside the infected cell, they break 
through the cell membrane to come out (Lodish et  al. 
2000). The NK or natural killer cells, which constitute 
the innate arm of the immune system, portray that the 
amount of protein on the membrane of the infected cell 
is not optimum, which further demonstrates that the cell 
is infected and the inside machinery is not working cor-
rectly (Vivier et al. 2011). A normal cell produces the 

major histocompatibility complex class 1 (MHC1) protein, 
which is identified by the NK cells, preventing healthy 
cells from the attack of NK cells (Paul and Lal 2017). On 
the other hand, the SARS-CoV-2 infected cells do not pro-
duce this complex protein, as their nucleus is not healthier; 
hence, the NK cells get activated, and further attacking 
those infected cells. The NK cells trigger NMDA-induced 
caspases which prepare the cell for the apoptotic pathway. 
Also, the NK cells release an enzyme called PERFORIN 
which makes a hole in the target cells and then sends 
granzyme which triggers the cell to undergo apoptosis 
(Topham and Hewitt 2009). Whenever a cell is infected by 
the virus, its cellular defense mechanism comes into action 
by releasing interferons, especially interferon β, which is a 
signal for the neighboring cells to become much stronger 
to resist the viral infection. The SARS-CoV-2 inhibits cel-
lular defense mechanism. Viral protein prevents interferon 
production from the infected cells as the cellular machin-
ery is hijacked (Frieman and Baric 2008). This makes the 
neighboring cells unaware of the situation happening close 
by and remains vulnerable to the viral attack. Infection in 
macrophages and dendritic cells by SARS-CoV-2 induces 
conformational changes in the membrane where antigen of 
viral origin is attached, thus acting as antigen presenting 
cells (APCs), which present themselves to naive T cell. 
In the presence of IL-4 or IL-13, T-helper 2 (Th2) cells 
are brought into vicinity, continuing Th2 pathway which 
is anti-inflammatory in action. On the other hand, IL-12 
brings in Th1 cells exhibiting the Th1 pathway which, 
on the contrary, is pro-inflammatory in action (Belling-
hausen et al. 2003). SARS-CoV-2 mostly enhances the 
pro-inflammatory action and secretion of more inflamma-
tory molecules. This also leads to the increased produc-
tion of cytokines and chemokines, viz., CXCL1, CXCL2, 
CCL3, CCL4, CCL5/RANTES, CXCL10, CXCL1, and 

Fig. 4   Binding of SARS-CoV-2 
with type II pneumocytes and 
macrophages, at ACE2 enzyme 
site using spike protein which 
is activated by TMPRSS2 or 
furin present on the cells. The 
ACE2 enzyme is released by 
ADAM17 a metallopeptidase 
which will be available for bind-
ing process
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CXCL2 brings neutrophils, whereas CCL3, CCL4, and 
CCL5/RANTES brings in macrophages, monocytes and 
T cells. These chemokines act as signals for the mac-
rophages, monocytes, and other immune cells to come 
over and support the process of inflammation. CXCL10 is 
the one that is responsible for cytokine storm. Despite the 
macrophages functioning as important antiviral agents, the 
presence of the ACE2 enzyme makes it a prey for SARS-
CoV-2, therefore making the pulmonary parenchyma vul-
nerable to the viral attack (Coperchini et al. 2020) (Fig. 5).

RAS pathway

The RAS pathway is carried out by crucial cells termed the 
juxtaglomerular (JG) cells, which are renin secreting spe-
cialized smooth muscle cells (Gomez and Sequeira-Lopez 
2018). Renin production is a result of low blood pressure; 
sympathetic nerves firing the JG cells during stress and 
signal from macula densa cells present in distal convoluted 

tubules (DCT) (Persson 2003; Peti-Peterdi and Harris 2010). 
During low blood pressure, the macula densa cells stimulate 
JG cells via prostaglandins, which act as local messengers 
(Sparks et al. 2014). Angiotensinogen, an inactive protein 
(485 amino acids long) produced by the liver cells is con-
verted into an active protein angiotensin 1 (10 amino acids 
long) by renin (Nehme et al. 2019). The ACE 1 enzyme, 
which is present in the endothelial cells, converts angio-
tensin 1 to angiotensin 2 (8 amino acids long), which is a 
bit more active than angiotensin 1. Angiotensin 2 causes 
the smooth muscle of the blood vessels to contract, thereby 
increasing resistance. It acts on the pituitary gland to release 
antidiuretic hormone (ADH), which increases resistance in 
the blood vessels, as a result of which the kidneys can retain 
more water (Benigni et al. 2010; Boone and Deen 2008). 
Angiotensin 2 also acts on the adrenal gland to release aldos-
terone which helps in retaining water and salts in the kidney. 
The interesting fact about the RAS system is that it starts and 
ends in the kidney (Lefebvre et al. 2019) (Fig. 6).

Fig. 5   A Viral RNA entry into 
the cell causes cell death due to 
rupture of the cell membrane 
and detection of NK cells due 
to absence of MHC-1 protein. 
NK cells release perforin 
which makes a hole in the cell 
and then releases granzymes 
causing apoptosis. B Viral 
infection inhibits the nucleus 
of the infected cell to release 
interferon β. C SARS-CoV-2 
binding to macrophages and 
initiating the sequence of 
chemokine release and cytokine 
storm
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ACE1/ACE2 balancing RAS

As mentioned earlier, angiotensin 2 induces vasoconstric-
tion, and, on the other hand, it is pro-inflammatory in nature 
(Brewster and Perazella 2004). Angiotensin 2 binds to 
AT1receptor and produces reactive oxygen species (ROS) 
inside the cell. The production of ROS is toxic, not only to 
the cell but also to its surrounding cells (Pendergrass et al. 
2009). Once ROS is released from the cell, it starts damag-
ing the surrounding cells, thus inducing trigger response to 
initiate macrophage action and bring them in the vicinity, 
further activating the immune system (Nita and Grzybowski 
2016). Angiotensin 2 causes inflammation, apoptosis, and 
tissue remodeling, affecting mainly the pulmonary and car-
diac tissues, thus requiring an optimum balance (Gheblawi 
et al. 2020). The action of the ACE2 enzyme is depicted 
below in the figure (Fig. 7).

ACE2 is a carboxypeptidase and is responsible for angio-
tensin 2 destruction (Clarke and Turner 2012). The catalytic 
ectodomain of ACE2 is released from the cells with the help 
of metalloprotease ADAM17, as discussed earlier (Jia et al. 
2005). Angiotensin 1, in contrast to angiotensin 2, is a vaso-
dilator and anti-inflammatory in action. Thus, the effects of 
the RAS pathway are balanced by both ACE1 and ACE2 
enzymes (Donoghue et al. 2000).

SARS‑CoV‑2 and RAS

SARS-CoV-2 infection results in a major imbalance in the 
RAS pathway. It acts via two pathways viz. inhibition of 
ACE2 activity and reduction of ACE2 expression. Infec-
tion due to SARS-CoV-2 creates an imbalance between 
ACE1 and ACE2 products whereby increasing angiotensin 2 
activity, resulting in vasoconstriction and pro-inflammatory 

Fig. 6   RAS pathway showing how different stimuli like lowering 
in BP signals from sympathetic nerve and low salt concentration 
induces renin production which helps in converting angiotensinogen 

to angiotensin-I which is further converted to angiotensin-II by ACE-
II enzyme present in the endothelial cells of blood vessels
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effects (Behl et al. 2020). As a result, blood pressure may 
be increased (Danilczyk and Penninger 2006). The immune 
response is enhanced by macrophage accumulation due 
to AT 1 signaling, which can elevate the viral infection. 
Patients who are more susceptible to angiotensin 2-associ-
ated damage and decreased activity of ACE2 enzyme during 
SARS virus infection can initiate a chain of injurious effects 
due to imbalance in ACE1 and ACE2 products (Benigni 
et al. 2009).

Mechanism of action of Aviptadil

Research on the physiological activity of VIP in respiratory 
therapy have demonstrated some important improvements in 
COVID-19 disease. Among several drugs of VIP, Aviptadil 
has the potential to act as a SARS-CoV caspase blocker 
(Busnadiego et al. 2020).

Lung tissue receptors localization

At first, the receptor localization of the SARS-CoV attacking 
site and Aviptadil attaching site is important to understand. 
Pulmonary alveolar epithelial cells contain Alveolar type 

2 proteins, which are responsible for alveolar function and 
gas exchange. These proteins are also present in enterocytes, 
i.e., the cells responsible for contact with the external envi-
ronment (Brosnahan et al. 2020). They secrete surfactant, a 
molecule that reduces the surface tension and contributes to 
the elastic properties of the lungs (Lewis and Jobe 1993). 
These cells have a high concentration of ACE 2 receptors 
on their membrane which is the entry point for the attach-
ment of the virus, propagating infection in other human cells 
(Galanopoulos et al. 2020). On the other hand, type 2 cells 
also have TMPRSS2 protein, which is blocked by bromhex-
ine and chemostat mesylate. Viral replication and rupture 
releases inflammatory cytokinin and destroys surfactant pro-
duction (Shen et al. 2017). The activity of Aviptadil is medi-
ated by type 1 VIP receptors (VPAC1) and type 2 receptors 
(VPAC2), which are both activated by polypeptide-activat-
ing pituitary adenyl cyclase (PACAP) (Martínez et al. 2019). 
VPAC1 is more abundant in lung tissues, whereas, on the 
other hand, VPAC2 is the most abundant in smooth muscles, 
mast cells, and the basal part of lung mucosa (Mathioudakis 
et al. 2013). Also, protein caspase, induced by NMDA cells, 
is present which performs programmed cell death when the 
virus gets attached (Parrish et al. 2013). Interestingly, the 

Fig. 7   A Balancing of RAAS system by ACE1/ACE2 enzyme by bal-
ancing the ratio of angiotensin-I and angiotensin-II concentration. B 
Imbalance of RAAS system caused by SARS-CoV-2 by binding to 

ACE2 enzyme, hence inhibiting the conversion of angiotensin-II to 
angiotensin-I thereby promoting pro-inflammatory action
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genes encoding inflammatory caspase are present nearby the 
human chromosome and murine chromosome where at first 
they are produced in inactive form as procaspase, in resting 
cells (McIlwain et al. 2013).

Aviptadil action over caspase protein

The first step in any viral infection is the binding of the virus 
to a host cell through the target receptor. SARS-CoV enters 
into the cells through interaction of viral spike or S glyco-
protein in spike (a protein envelope of coronavirus charac-
teristically round-headed and tall stalked morphology) with 
ACE2 enzyme present on type 2 pneumocytes (Mariappan 
et al. 2020). Here, TMPRSS2 protein guides the S protein 
to get connected with ACE2 where a part of the virus also 
gets connected with GM1 called ganglioside type (Hoffmann 
et al. 2020). The result of this attachment leads to the inva-
sion of the virus into the cell and starts producing more 
viruses, resulting in cell lysis. This sick cell is discovered by 
natural killer cells or CD8 cells, which then instruct the cell 
to kill itself under the order of a protein known as caspase 
(Loiseau et al. 2020). Here, Aviptadil acts as a scavenger for 
cell. When Aviptadil gets attached to the VPAC1 receptor on 
the affected type 2 pneumocytes, the secondary mechanism 
inside the cell results in a blockade of response to caspases. 
As a result, cell death is prevented (Couvineau and Laburthe 
2012). Aviptadil shows a protective mechanism by not only 
preventing cell death, but it also inhibits immune cells to 

produce TNF alpha and IL6 factor so that immune cells do 
not overreact (Kany et al. 2019). In addition to this, Avi-
ptadil improves edematous condition induced by necrotic 
disorders, i.e., an acute respiratory distress syndrome, thus 
reducing piling up of fluids and providing protection to the 
lungs (Matthay et al. 2019) (Fig. 8).

CCL5, CCL4, and CCL3 chemokine belong to the CC 
family, also known as macrophage inflammatory protein-
1-beta (MIP-1beta). CCL5/RANTES chemokine is local-
ized to chromosome 17 in humans and activates G-protein 
coupled receptor. Its main role is to engage leukocytes into 
inflammatory sites and canal. They are released by T-cells 
with the help of a particular cytokine. CCL4 is a chemo-
attractant for a variety of immune cells and has specific-
ity for the CCR5 receptor (Huang and Levitz 2000). Its 
aggregation causes chronic inflammation and liver dam-
age. They bind to G-protein coupled receptors CCR5 and 
CCR8 and are produced by monocytes, neutrophils, B cells, 
T cells, endothelial cells, fibroblasts, and epithelial cells. 
CCL3 is involved in acute inflammation and activation of 
granulocytes (category of white blood cells also known as 
polymorpho-nuclear leukocytes) (Chaplin 2010). CXCL2 
and CXCL1 chemokine belong to the CXC family and are 
also known as macrophage inflammatory protein-2-alpha 
(MIP-2alpha). CXCL2 has a pro-inflammatory action, and 
it mobilizes cells by interacting with the CXCR2 chemokine 
receptor present on the cell surface. CXCL1 exerts a host 
immune response by engaging and activating neutrophils, 

Fig. 8   Aviptadil protects type 2 pneumocytes by binding to VPAC-1 receptor and preventing the action of caspase induced by the coronavirus 
which also binds to the type II pneumocytes with the help of ACE-II receptor. Caspase instructs the cells to kill themselves promoting apoptosis
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whereas it also activates the release of proteases and reac-
tive oxygen species (ROS) for microbe killing at the tis-
sue site. It mediates its function by binding to the CXCR2 
receptor and glycosaminoglycans (GAG) on endothelial 
and epithelial cells. Among these, CCL5, CCL4, and CCL3 
cause an increment in several macrophages, monocytes, 
and T helper cells clouding to the site of infection as these 
are the activators of inflammatory bodies (Felsenstein 
et al. 2020; Temerozo et al. 2013). Similarly, CXCL2 and 
CXCL1 increase neutrophil aggregation. Aviptadil binds to 
macrophages or dendritic cells and inhibits the release of 
these chemokines, thereby reducing the accumulation of 
monocytes, neutrophils, and other immune cells. Aviptadil 
defends type 2 pneumocytes, induces bronchodilation, and 
supports the immune system (Sokol and Luster 2015). Once 
Aviptadil is linked to the NAIVE-T cell of the VIP1 receptor, 
the TH2 pathway is brought back, which is accompanied by 
triggering the B cell reaction, including the TH2 pathway 
along with CD8 cells. As a result of activation of cytotoxic 
cells, Aviptadil suppresses the TH1 pathway and promotes 
TREG (T regulatory pathway or immune balancing path-
way or immunosuppressive pathway) and declines tumor 
necrosis factor (Flynn et al. 1998; Corthay 2009). Aviptadil 
reduces IL6 factor and RANTES secretion. The destructive 
immune response gets minimized, and the response towards 
the cell is also controlled. Hence, the overall immune system 
is balanced and further prevents initiation of cytokine storm 
(Tanaka et al. 2014).

Clinical trials

The clinical trial data of patients taking Aviptadil is show-
ing rapid recovery in the cases of COVID-induced respira-
tory failure. Aviptadil blocks the replication of the SARS-
COV2 virus within the lung cells (biospace.com 2020). It 
was observed that when the drug was administered to the 
patients on ventilation, they exhibited rapid improvement 
within 3 days only. The common cause of death due to 
COVID-19 is respiratory failure. Furthermore, some trial 
steps are still pending for different problems and doses of 
Aviptadil, respectively. The combined regimen with some 
other drugs is also being evaluated (health.economictimes.
indiatimes.com 2020). According to the recent trial data, it 
can be stated that Aviptadil aids in a very rapid recovery. 
In Houston Methodist Hospital, a geriatric COVID posi-
tive case was reported with lung transplantation history, 
before the COVID test. The patient was manifested with 
a fatal immunological response, mediated by the rejection 
phase. In the rejection phase, there are lots of immunological 
parameters, like MHC (major histocompatibility complex), 
which were mismatched. The body attacks the foreign tissue 
and tries to destroy it (clinicaltrialsarena.com 2020). The 

main target is to minimize fatal antigen–antibody interac-
tion. In a subject, with a history of renal failure, suffering 
from COVID-19, the trial reports depicted a strong negative 
impact due to other medications also as those medications 
were being contraindicated as per the medical status of that 
subject (Nicholson 2016). Experimentally, 3 infusions of 
Aviptadil or RLF-100 were administered to treat the res-
piratory failure when the subject was admitted to the ICU. 
Within 24 h, the third infusion was given, and then it was 
observed that there was a significant improvement in oxy-
gen saturation. Radiological status was also improved as 
the inflammation gradually curbed. More than 50% result 
of a partial fraction of oxygen was observed, as it was 146 
before and 285.19 after administration of Aviptadil. Oxygen 
saturation (SP02) was 95 before medication and 98 after 
Aviptadil administration. After 1 week, the subject was dis-
charged from ICU, and after getting such a good response, 
the medication was administered to 15 more patients, where 
the survival rate was reported to be elevated. The drug RLF-
100 was given to more patients who were suffering from 
respiratory failure, where rapid improvement was observed 
in patient (pharmaceutical-technology.com 2020). In the 
second case study, 45 patients were on ventilators suffer-
ing from respiratory failure. Meanwhile, no medication was 
effective for this condition, and no one was eligible for the 
randomized controlled trial. An open trial was conducted by 
the doctors informing the patients about the new drug to be 
injected, from which only twenty-one patients were selected 
for injecting Aviptadil drug and the rest twenty-four patients 
were examined with standard care as given before. Approxi-
mately 80 percent of patients survived and got recovered 
after 60 days of Aviptadil therapy, and 70 percent of patients 
got recovered with standard treatment. Observing such a 
huge rate of recovery, i.e., the survival rate of nine times 
more than the recovery rate of the patients, was a strong 
output. The study is still being conducted, and it is likely 
to be completed around December 2021 (clinicaltrials.gov 
2021). Aviptadil has exhibited long time records of safety 
in segment 2 preliminaries for sarcoid, pulmonary fibrosis, 
bronchospasm, and ARDS. In this segment, 8 patients with 
intense ARDS have been handled with hiking quantity of 
VIP. As a result, seven patients were extubated and seen 
alive on the fifth day in a row, out of which six left the hospi-
tal, and only one patient died from the adverse cardiac event 
(Arondi et al. 2016). Under the European regulatory author-
ity, five phase 2 trials of Aviptadil were conducted, showing 
that IV infusion of Aviptadil is well-tolerated among healthy 
volunteers. The adverse effect includes alterations in heart 
rate or ECG, pulse rate.

For several years in some ICUs, aviptadil has been used on a com-
pounded basis with the belief that it protects life and improves func-
tion in pulmonary hypertension, ARDS, and acute lung injury (ALI) 
(clinicaltrials.gov 2020). A routine pharmacotherapy by Aviptadil 
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was also observed in critical ICU patients. Essential end-points may 
be development in blood oxygenation level and reduced mortality. 
A clinical trial of Aviptadil in phase II/III remains underway. On the 
other hand, a placebo trial was done additionally to observe the sup-
portive effect besides anti-SARS-CoV-2 action, to maintain proper 
physiology in COVID condition (prnewswire.com 2020) (Table 1).

Future perspectives

RLF-100 is a patented system of Aviptadil granted by the 
FDA in combination with phentolamine, which is antici-
pated to offer the opportunity for erectile dysfunction (ED). 
On corpora cavernosum and corpora spongiosum, it shows 
vasodilatory action. Thus, there are previous shreds of evi-
dence which state that Aviptadil is free from troublesome 
side effects and has better delivery methods (clinicaltrials.
gov 2020). It also improves muscle activity and blood flow 
in the gastrointestinal tract (Browning and Travagli 2014). 
Aviptadil promotes GIT motility along with lower esopha-
geal sphincter relaxation, enhances water secretion in pan-
creatic juice, bile, and also increases the production of pep-
sinogen in the chief cells (Kilbinger and Weihrauch 1982), 
(urology.med.wayne.edu 2020). Aviptadil shows inotropic 
and chronotropic effects in CVS and optimizes the blood 
supply, which in turn increases the force of contraction and 
heart beats of the patient, with overall sound cardiac effect. 
Therefore, it can also be concluded that in future apart from 
infectious diseases, it will also have importance in CVS 
(Boyette and Manna 2020). In females, Aviptadil doubles 
vaginal lubrication and regulates prolactin secretion (Kari-
man 2020). On the other hand, Aviptadil or RLF-100 has 
anti-cytokine and anti-inflammatory properties. Prelimi-
nary studies have shown its protective function for alveolar 
type 2 cells and prevention of SARS-COV2 virus replica-
tion in lungs, thus limiting lung damage. Aviptadil was also 
granted by the FDA for acute respiratory distress syndrome 
and chronic lung disease (Sarkar et al. 2020). Low VIP 

concentrations are found in patients with idiopathic PAH, 
but there is a rise in VIP-mediated receptor expression. Sub-
stitution of chronic external VIP via an aerosol is beneficial 
for these patients. However, the evaluation of the role of 
VIP substitution is not yet done in PAH suffering patients, 
which is also essential to formulate it as a COVID therapy 
(Wu et al. 2011). Aviptadil has pulmonary and intrapulmo-
nary selectivity, especially in chronic hypoxemia or lung 
disease. The first reported recovery was of a 54 years old 
man manifested with a lung transplant and then later devel-
oped a COVID-19 infection. Treatment with Aviptadil infu-
sion shows recovery from COVID. On the other side, better 
than any other drug, Aviptadil regulates the immunologi-
cal reaction in the body. Various studies indicate that the 
selectivity of Aviptadil is based on pulmonary vasodilatation 
assets, which are in turn linked to increased oxygenation and 
decreased pulmonary collapse. It is also predicted that Avi-
ptadil will enter the market very soon (Lee and Bora 2020; 
healthwire.co 2020).

Conclusion

The rapid clinical improvement was seen in the first patient, 
treated with RLF-100 (Aviptadil). The hypothesis is that VIP 
defends AT-II cells, prevents cytokine storm, and increases 
oxygenation in a threatening lung. When the lungs are mani-
fested with SARS-CoV-2 infection, VIP plays a critical role. 
Rapid recovery was reported in patients on ventilators and 
ECMO (extracorporeal membrane oxygenation), with vari-
ous medical histories, after 3 days of FDA emergency treat-
ment with RLF-100, with IND approval at multiple clinical 
sites. Aviptadil is the first vasoactive intestinal peptide that is 
being created to inhibit replication of the SARS-CoV-2 virus 
in the host cell including monocytes, as the first COVID-19 
therapy. RLF-100 or Aviptadil is a synthetic human VIP 
that has also been patented. It is also granted with fast tracer 
designation. All the evident data, published based on clinical 

Table 1   Clinical trials on Aviptadil

S. No Disease Treatment Date and month Phases Observation

1 COVID-19 Drug: Aviptadil 67 μg three times 
a day for 10 days

August 2020 Phase I Positive result in five days in mor-
tality rate, PaO2, FiO2

2 Corona virus infection Drug of Aviptadil and drug of 
placebo 0.9% NaCl solution

March 2020 Phase II Ongoing research

3 Acute respiratory distress syn-
drome (ARDS)

Drug Aviptadil (RLF100) or 
placebo three times daily

31/12/2020 Phase II Data is under process

4 COVID-19 with respiratory 
failure

Drug Aviptadil through IV and 
standard care

Drug: RLP100 (AVIPTADIL)

28/02/2021 Phase II Improvement in oxygen saturation

5 Acute lung injury Drug of nebulized organization of 
Aviptadil and placebo

August 2020 Phase II
Phase III

Progress in several patients as well 
as critical in 28 days
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trials, seem to be very fruitful in defining a pharmacological 
guideline for COVID care. In recent clinical trials, the over-
all target result is that there is a tremendous improvement in 
life expectancy, by optimizing oxygenation and surveilling 
cytokine storm in COVID-19–induced respiratory failure.
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