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Abstract

We present a framework for discrete network-based modeling of TB epidemiology in US counties 

using publicly available synthetic datasets. We explore the dynamics of this modeling framework 

by simulating the hypothetical spread of disease over 2 years resulting from a single active 

infection in Washtenaw County, MI. We find that for sufficiently large transmission rates that 

active transmission outweighs reactivation, disease prevalence is sensitive to the contact weight 

assigned to transmissions between casual contacts (that is, contacts that do not share a household, 

workplace, school, or group quarter). Workplace and casual contacts contribute most to active 

disease transmission, while household, school, and group quarter contacts contribute relatively 

little. Stochastic features of the model result in significant uncertainty in the predicted number of 

infections over time, leading to challenges in model calibration and interpretation of model-based 

predictions. Finally, predicted infections were more localized by household location than would be 

expected if they were randomly distributed. This modeling framework can be refined in later work 

to study specific county and multi-county TB epidemics in the USA.
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1 Introduction

Mathematical and computational epidemiological modeling has been widely applied to a 

variety of diseases. In particular, tuberculosis (TB) has been the focus of much work; see, 

for example, Blower et al. (1995), Castillo-Chavez and Feng (1998), Lietman and Blower 

(2000), Ziv et al. (2004), Abu-Raddad et al. (2009), Guzzetta et al. (2011), Tian et al. (2013), 

Kasaie et al. (2014), Knight et al. (2014), Prats et al. (2016), and Renardy and Kirschner 

(2019). There are many approaches to modeling at an epidemiological scale, including use 

of ordinary and partial differential equations, stochastic processes, agent-based models, and 

network structure. In heterogeneous populations, contact networks have been shown to have 

significant impacts on the spread of infectious diseases (Bansal et al. 2007), and there are 

many ways to model such networks (Keeling and Eames 2005). Here, we investigate a novel 

approach to modeling TB epidemics by creating a framework combining publicly available 

synthetic data, individual-based network modeling, and the natural history of pulmonary TB.
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In this work, we develop a new framework for studying TB epidemics. We create an 

individual-based network model for TB and explore its capabilities using publicly available 

synthetic datasets based on census data. In this study, we use a synthetic dataset for 

Washtenaw County, MI, which was chosen solely because it is where University of 

Michigan and the authors are located, but this framework could be applied to any US county. 

A major benefit of this framework is the utilization of publicly available synthetic population 

datasets described by Wheaton et al. (2009) to create a realistic contact network within a 

population, as well as socio-demographic attributes for all individuals, based on census data. 

These synthetic population data have been used in several epidemiological modeling studies 

for influenza and MRSA within US counties and cities (Lee et al. 2010a, b, 2011; Cooley 

et al. 2010; Macal et al. 2012, 2014), but have not yet been utilized for modeling TB. A 

similar type of synthetic population was constructed based on a European study by Merler 

and Ajelli (2010) and was used to model TB dynamics in the state of Arkansas (Guzzetta 

et al. 2011). That study showed that a model including socio-demographic features such as 

households, workplaces, and schools was better able to reproduce epidemiological data than 

simpler model representations and therefore better able to make more accurate intervention 

predictions. However, this dataset is not publicly available, limiting reproducibility. Our 

model differs from this previous work in that we are presenting a framework that links a 

network-based model together with publicly available synthetic datasets and can be easily 

adapted to model any US county and thus is more reproducible and extendable within the 

USA.

As this paper is focused on building and understanding synthetic datasets in network 

models, rather than specifically predicting TB outcomes, we do not calibrate the model 

to epidemiological data within Washtenaw County and thus we make no specific predictions 

about the spread of TB. Rather, we use randomization and parameter exploration to study 

general model behavior.

2 Biological Background

TB is an infectious disease caused by the bacterium Mycobacterium tuberculosis (Mtb). It 

typically is inhaled and infects the lungs, spreading from person to person through the air, 

though Mtb can also infect other parts of the body. Most individuals exposed to TB develop 

a latent infection, meaning that they experience no clinical symptoms and cannot transmit 

Mtb. A small proportion (roughly 5–10%), on the other hand, develop an active infection 

soon after exposure (within 2 years) (CDC, Division of Tuberculosis Elimination 2011). 

Individuals with a latent infection may remain latent for many years, but may develop an 

active infection later in life either through reactivation of the original infection or reinfection 

due to a second exposure. Overall, people infected with Mtb have a 5–10% lifetime risk of 

developing an active infection (WHO 2019). This probability is significantly increased for 

individuals who have additional risk factors such as HIV-1, diabetes, smoking, and alcohol 

abuse.

TB is the leading cause of death worldwide from a single infectious agent, and roughly a 

quarter of the world’s population carries a latent TB infection (WHO 2019). In the USA, 

the incidence of active TB was 2.8 per 100,000 in 2018 (CDC 2019). While TB incidence 
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has steadily declined in the USA (US) since the 1990s (CDC 2019), effective strategies 

for TB elimination continue to be elusive. The CDC has indicated that the current rate of 

decline in TB incidence in the USA is insufficient for reaching elimination targets by the 

year 2100 (Stewart et al. 2018). Novel intervention strategies are likely needed to meet 

these goals. While the goal of this paper is not to make specific predictions for TB in 

Washtenaw County, we are creating a framework that going forward could be applied to 

specific populations and their corresponding datasets to make more accurate predictions than 

are currently possible.

3 Methods

3.1 Network Model for TB Epidemiology in a Synthetic Population

Since TB is a low-incidence disease within the USA and there are many factors that 

affect susceptibility, stochastic effects and population heterogeneity are of great importance 

to understanding disease dynamics. These factors should be explicitly considered in 

building a mathematical or computational model. Thus, discrete model frameworks such 

as network-based (NBM) and agent-based models (ABMs) are an ideal choice when 

sufficient information is available describing demographic features and contact patterns of 

a population of interest. Socio-demographic data are available for US states and counties 

via the US Census Bureau. In addition, synthetic population datasets have been created 

from these data for use in agent-based models (Wheaton 2014; Wheaton et al. 2009). 

These synthetic population datasets consist of information on individuals together with 

demographic, geographical, and socioeconomic features that are assigned to households, 

workplaces, schools, and group quarters in a way that is consistent US Census data. 

Synthetic datasets allow establishment of a realistic contact network in which diseases can 

spread. These contact networks may be paired with an epidemiological model to allow 

for tracking of key features such as location of transmission events and demographic 

information of the infected population.

Using synthetic populations, models of TB epidemiology can be studied at a variety of 

spatial scales ranging from groups of states to single counties depending on a population 

of interest and computational resources available. We focus here on a single county level, 

which allows for intervention strategies to be designed and optimized for specific local 

populations. This can reveal differences between intervention efficacies in different locales 

and subpopulations and identify location-specific high-risk groups. This approach will be 

translatable to future models that are specifically targeting a population.

Of the existing publicly available epidemic modeling frameworks, this model is similar in 

concept to FRED (Grefenstette et al. 2013) and EpiSimS (Mniszewski et al. 2008), which 

use synthetic population datasets to model flu-like epidemics. The novelty of the model 

presented here is the application of synthetic population datasets to model TB epidemiology, 

which has multiple paths to active infection and does not necessarily follow the traditional 

SEIR framework (see Sect. 3.1.2 for a description of disease progression).

3.1.1 Population and Contact Networks—To explore the use of synthetic population 

data in studying TB, we chose to develop a network-based model (NBM) capturing 
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epidemiological dynamics of TB within a human population. We base the model after a 

set of models that we have developed previously using systems of ordinary differential 

equations (ODE), an ABM formulation, and an age-structured partial differential equation 

(PDE) formulation (Guzzetta et al. 2011; Renardy and Kirschner 2019). Our network model 

population is based on synthetic population data for Washtenaw County, MI taken from 

Wheaton (2014). Synthetic datasets are available through RTI International at both the 

state and county levels for all US states and counties. These datasets can be accessed at 

https://fred.publichealth.pitt.edu/syn_pops. The population is comprised of individuals with 

socio-demographic attributes such as age, sex, race, and household income. Individuals are 

assigned to geospatially explicit households, workplaces, schools, and/or group quarters, 

such as college dorms, prisons, and nursing homes, in a way that is consistent with available 

census data. The methodology for creating these synthetic datasets is described in Wheaton 

et al. (2009).

The synthetic population for Washtenaw County, MI includes 343,322 individuals, 137,181 

households, 29,291 workplaces, 109 schools, and 47 group quarters. 16,502 of the 

individuals in Washtenaw County reside in group quarters. Of the 47 group quarters, 20 

are college dorms (containing a total of 13,873 individuals), 14 are prisons (containing a 

total of 1944 individuals), and 13 are nursing homes (containing a total of 685 individuals). 

The median school size is 571 students, and the median workplace size is 5 workers. The 

largest workplace employs 25,358 individuals. The age distribution of the population is: 

12% children under 10, 13% 10–20 years old, 19% 20–30 years old, 13% 30–40 years 

old, 14% 40–50 years old, 14% 50–60 years old, and 15% over age 60. Since other socio­

demographic factors such as sex, race, and income do not affect disease transmission in our 

current model, we will not include that information here.

The synthetic population datasets contain, for each individual, their socio-demographic 

features as well as unique identifiers for their household, workplace, school, and/or 

group quarter. In addition, the datasets contain locations and descriptive attributes of each 

household, workplace, school, and group quarter, which can be linked with the people 

data via the unique identifiers. Thus, it can be easily identified which individuals share a 

household, workplace, school, or group quarter.

While the synthetic population datasets do contain geospatial coordinates for each of 

the locations, in our NBM agent interactions are simulated based on contact networks 

and not physical locations. Agents interact with one another via households, workplaces, 

school, group quarters, and casual/random contacts. Different types of contacts are assigned 

different contact weights, with larger contact weights representing more frequent and/or 

more prolonged contact; e.g., a household contact may be weighted heavier than a school 

contact, which may be weighted heavier than a casual contact. Agents in large schools/

workplaces (more than 50 people) are assumed to have regular contact with at least 10 and 

no more than 50 other members of their school/workplace. The upper bound of 50 contacts 

was chosen arbitrarily to avoid excessive and unrealistic transmission within workplaces. 

If data on the appropriate number of contacts were available, this upper bound could be 

modified. The number of school/workplace contacts for an individual is chosen randomly, 
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and the contacts themselves are also chosen randomly among all other individuals in that 

school/workplace.

To simulate casual contacts, all agents not in prisons are randomly assigned to have contact 

with 10–50 other agents in the population. This represents all contacts that do not share 

a household, workplace, school, or group quarter. Since we are modeling a population 

within a single county, we assume that physical distance between households does not affect 

the probability of casual contact. If a larger geographical area were to be modeled, this 

assumption would likely need to be modified since casual contacts are likely to occur in 

the same locality. The numbers of contacts in our model were chosen arbitrarily due to a 

lack of data and could be varied. Our simulations suggest that for a medium transmission 

rate (defined in Sect. 4.1), decreasing the number of casual contacts to 1–10 results in 

a roughly 20% decrease in incidence, while increasing the number of casual contacts to 

50–100 results in a roughly 40% increase in incidence (data not shown). Previous studies 

in different communities have estimated fewer contacts on average (Read et al. 2008; Del 

Valle et al. 2007). Thus, our projections for incidence and the relative importance of casual 

contacts could be over-estimates.

The contact network generated from the synthetic population dataset for Washtenaw County 

produces a qualitatively similar age-based mixing pattern to that estimated for the USA in 

a previous study by Prem et al. (2017). Most contacts occur between individuals of similar 

ages and the highest rates of contact are associated with teens and young adults. Since 

Washtenaw County contains a large university, there is a higher rate of contact among people 

in their early 20s than is predicted for the national average. For a graphical comparison of 

the age-based mixing patterns generated by our model and by Prem et al. (2017), please see 

our website at http://malthus.micro.med.umich.edu/synthetic/.

In the following virtual experiments, we simulate the spread of disease over a period of 2 

years. For simplicity, and because we simulate over a relatively short length of time, we 

assume that the network is static; that is, the population and contact patterns do not change 

throughout the course of simulation. Thus, we do not include population dynamics such as 

births, deaths, or transitions between households, workplaces, schools, and group quarters. 

For simulations over several years or more, a realistic contact network would include these 

features and be dynamic to account for such changes over time.

3.1.2 Model Pathways and Parameters—The NBM consists of many nodes 

(depending on the population size of the county), representing individual people in a 

population, each with its own demographic properties. The model structure and parameters 

are analogous to those of the continuous ODE and age-structured PDE model that we 

previously developed (Renardy and Kirschner 2019; Guzzetta et al. 2011). Here, however, 

we do not track different types of active infection (e.g., reactivated vs primary infection) 

separately since these often cannot be distinguished in clinical practice and may not have a 

great impact during the short time frame we study here. At each time step in the simulation, 

agents are at one of these mutually exclusive disease states: susceptible (S), exposed (E), 

latent infection (L), active infection (I), and secondary exposures (Es). Agents can transition 
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to another disease state via natural disease progression, treatment, or interaction with other 

agents.

If a susceptible agent comes into contact with an infected agent, the susceptible agent may 

become exposed. We assume that the probability of exposure is proportional to both the 

infected agent’s infectivity, which may correspond to severity of clinical symptoms, and 

the contact weight between the two agents. Contact weights between agents are determined 

by the population network structure discussed in Sect. 3.1.1. The exposed agent may (1) 

resolve the infection and move back to susceptible, (2) develop a latent infection, or (3) 

develop a primary infection. Agents with a latent infection may develop an active infection 

through (1) endogenous reactivation or (2) exogenous reinfection from secondary exposure. 

Agents with an active infection may “recover” from active infection through treatment and 

return to a latent state. We assume that these individuals return to a latent state rather than 

fully recovered or susceptible since it is not clear whether treatment kills all bacteria within 

a host, and treated individuals have been observed to spontaneously relapse (Gomez and 

McKinney 2004; van Rie et al. 1999; Weis et al. 1994; Aktogu et al. 1996). At each time 

step, agents transition between states according to probabilities determined by the model 

parameters and contact weights. The model structure and pathways are summarized in Fig. 

1.

Parameter values are taken primarily from Renardy and Kirschner (2019), where model 

parameters were calibrated to data for the US population. Model parameter values are 

summarized in Table 1. Rate parameters are given per year. To translate a per-year rate r to 

a probability p per time step, we use the formula p = 1 − exp −r dt
365 , where the time step 

dt is measured in days. Two model parameters are age dependent: probability of primary 

infection and protection from reinfection. The functional forms for these parameters are 

identical to those used in Guzzetta et al. (2011) and Renardy and Kirschner (2019), and are 

given below as functions of age, where p(a) represents the probability of primary infection at 

age a and σ(a) represents the protection from reinfection at age a.

p a =

pc a ≤ 10 years

a
pa − pc

10 + 2pc − pa 10 years < a < 20 years

pa a ≥ 20 years

σ a =

σc a ≤ 10 years

a
σa − σc

10 + 2σc − σa 10 years ≤ a ≤ 20 years

σa a ≥ 20 years

Here pc and σc represent the parameter values for children (under 10) and pa and σa 

represent the parameter values for adults (over 20).

3.1.3 Model Initialization—The NBM is initialized by randomly infecting a single 

individual. Further, we assume that 5% of the population, chosen at random, carry a latent 

Renardy and Kirschner Page 6

Bull Math Biol. Author manuscript; available in PMC 2021 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



infection; this estimate is based on interferon gamma release assay (IGRA) blood test data 

from the National Health and Nutrition Examination Survey (NHANES), which studied a 

representative sample of the civilian, non-institutionalized US population (Miramontes et al. 

2015; Mancuso et al. 2016). All other individuals are assumed to be susceptible.

3.1.4 Implementation—The model is implemented in Matlab R2018b. Simulation runs 

were performed on a laptop computer with a 3.1 GHz Intel Core i7 processor and 16 

GB 2133 MHz LPDDR3 RAM. In this computing environment, a single simulation over 

a 2-year period takes approximately 5 min of CPU time to complete. The Matlab code is 

provided on our website at http://malthus.micro.med.umich.edu/synthetic/.

3.2 Uncertainty and Sensitivity Analysis

To explore model behavior throughout the parameter space, we use Latin hypercube 

sampling (LHS) (McKay et al. 1979). This allows us to vary multiple parameters 

simultaneously within defined ranges using a uniform distribution. Since the network-based 

model has stochastic effects as well as randomized initialization, we simulate ten replicates 

for each parameter set as we have done previously (Marino et al. 2008).

We perform global sensitivity analysis using partial rank correlation coefficients (PRCC) 

to quantify the sensitivity of model outcomes to input parameters. The LHS/PRCC 

methodology for different types of model formulations is described in detail in Marino 

et al. (2008). This provides an estimate of the epistemic uncertainty in the model that results 

from unknown parameter values. PRCCs that are large in absolute value indicate sensitivity 

of the model output to input parameters, meaning that variation in parameter values result in 

significant variation in model output. PRCCs close to zero indicate non-sensitivity.

To quantify the aleatory uncertainty of the model, i.e., uncertainty that arises from 

stochasticity and random effects, we consider the coefficient of variation (CoV) of model 

outputs among multiple replicates for each parameter set. The coefficient of variation is a 

dimensionless quantity defined as the ratio of the standard deviation to the mean, which 

represents the relative variability of model outputs (Everitt 1998).

4 Results

4.1 Effects of Transmission Rate and Contact Weights in a Static Network

One of the benefits of using a network-based model is that transmission events can be traced 

and the type(s) of contact that lead to a transmission event can be determined. To explore the 

effects of different types of contacts on model dynamics, we performed LHS and sensitivity 

analyses for the different types of contact weights. Contact weights were normalized so that 

the contact weight for household contacts is equal to 1. Since there are no data available 

for the values of different contact weights in Washtenaw County, we allowed these contact 

weights to vary within broad ranges. Other contact weights were allowed to vary from 0.5–1 

for workplace and school contacts and 0.01–0.2 for casual contacts. We assume that group 

quarters contacts are equivalent to household contacts. All types of contact, including casual 

contacts, are static, meaning that they persist over the full time-course of the simulation.
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Repeat and prolonged exposures between infected and uninfected individuals are thought to 

be key routes for transmission for TB (Sepkowitz 1996; Dobler et al. 2016); thus, household 

transmissions are thought to contribute significantly to epidemiological dynamics. However, 

the household transmission rate for TB in the US is unknown. Thus, we consider three 

different cases to explore the effects of transmission rates that are low (0.75/year), medium 

(7.5/year), and high transmission (75/year). We note that these represent low, medium, and 

high transmission rates in the USA and that transmission rates in higher incidence countries 

are likely to be significantly higher. We fixed the remaining model parameters at the values 

that we fit to the US population for an age-structure PDE model in Renardy and Kirschner 

(2019). For each choice of transmission rate, we performed LHS to obtain 100 uniformly 

distributed contact weight parameter sets in the ranges described above, given in Table 2. 

For each parameter set that is sampled, ten replicate simulations are performed to account 

for random effects during initialization and simulation; thus, we obtain a total of 1000 

samples. We believe this sample size is sufficient since results did not substantially change 

upon repetition with new random samples (data not shown). Further, a 25% reduction in the 

number of samples resulted in only a 4% relative change in the average number of predicted 

infections for a medium transmission rate and did not qualitatively change our sensitivity 

analysis results. In these simulations, we use a fixed time step of 1 week and simulate over 

the course of 2 years.

On average, over a simulated time of 2 years, NBM simulations predict that the average 

incidence rates are 1.2, 2.3, and 6.5 per 100,000 per year for the low, medium, and 

high transmission cases, respectively. For reference, the actual average incidence of TB 

in Washtenaw County, MI over the past ten years has been 2.1 per 100,000 per year 

(Washtenaw County Health Department 2019), aligning best with the prediction of the 

medium transmission case. In our simulations, we find that in the low transmission rate case, 

the vast majority of active infections after 2 years are due to reactivation of latent infections. 

Reactivation plays a much smaller role in the cases of medium and high transmission rates. 

In the medium transmission rate case, workplace transmission is responsible for the most 

infections, followed by reactivation and then by casual contacts. In the high transmission 

rate case, casual contact transmission is responsible for the most infections, followed by 

workplace transmission, with reactivation playing only a minor role. The distributions of 

active infections by source of infection are shown in Fig. 2 (top row).

The higher number of casual infections in the high transmission case likely occurs because, 

in our model, individuals tend to have more casual contacts than workplace contacts. One 

reason for this is that the upper bound on the number of workplace contacts is equal to the 

upper bound on the number of casual contacts, and thus, generally, the number of workplace 

contacts does not significantly exceed the number of casual contacts. Further, only about 

50% of the population belongs to a workplace and many workplaces are quite small. In 

the high transmission case, 30% of runs had a median of fewer than 10 workplace contacts 

among infected individuals. By contrast, every individual is assigned at least 10 (and at most 

50) casual contacts. Thus, while the upper bounds for workplace and casual contacts are 

the same, a significant number of individuals have fewer workplace contacts than casual 

contacts. This effect is not observed at lower transmission rates because the number of 

infected individuals and the transmission rate among casual contacts are sufficiently low.
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We note that in all three cases, the proportion of active infections resulting from household 

and group quarters transmissions is very low despite being associated with the largest 

contact weights. While this may seem counterintuitive, similar phenomena have been 

observed in several epidemiological studies of TB in a variety of settings. In England, for 

example, a retrospective study of TB cases from 2010 to 2012 found that only 3.9% were 

due to recent household transmission (Lalor et al. 2017). In suburban South Africa, a much 

higher incidence setting than is considered here, analysis of TB cases between 1993 and 

1998 revealed that only 19% of transmission in the community took place within households 

(Verver et al. 2004). A low proportion of household transmission in South Africa was also 

supported by a previous study in a rural setting (Wilkinson et al. 1997). In the context of 

Washtenaw County, the low proportion of household-related active infections is likely due 

to the small size of households. The median household size in our synthetic population is 2, 

and 31% of households have only one member.

There were also very few cases of active infections caused by school transmission. This 

is primarily the result of children being less likely to develop active infection. Studies 

in England and Wales have shown that children have a significantly lower probability of 

active disease upon infection (Vynnycky and Fine 1997), which is reflected in our model 

parameters (see Table 1). This reduces the number of active infections resulting from school 

transmission in two ways. First, due to age demographics, there are relatively few active 

infections that occur in individuals that belong to schools. Approximately 18% of the 

population is less than 15 years old in Washtenaw County (US Census Bureau 2018). In 

comparison, this proportion is much higher in most high TB burden countries, even reaching 

40% in countries like Nigeria and Ethiopia (CIA 2020). Second, transmissions that occur 

within schools are more likely to lead to latent disease than transmissions that occur within 

workplaces. In the high transmission case, across all simulations, only 9.1% of actively 

infected individuals belonged to a school, whereas 65.8% of actively infected individuals 

belonged to a workplace. The lack of school-related infections may also be affected by our 

assumption that students have regular contact with at most 50 other students. In areas where 

schools are densely packed with many students, we would expect to see more school-related 

transmission.

We performed sensitivity analysis using partial rank correlation coefficients (PRCC) to 

evaluate the effects of workplace, school, and casual contact weights on TB prevalence over 

time. The sensitivities over time are shown in Fig. 2 (bottom row). In the low transmission 

case, we find that TB prevalence is not significantly sensitive to any of the contact weights. 

In the medium and high transmission cases, we find that prevalence is sensitive to the casual 

contact weight but not to the school or workplace contact weights. This implies that as 

transmission rate increases within a population, sensitivity of TB prevalence to the casual 

contact weight also increases. Intuition suggests that this follows from a combination of (1) 

casual contacts allowing for wider disease spread by enabling transmission between different 

workplaces and households, and (2) higher transmission rates making transmission by casual 

contact more likely. Increased connectivity between households and workplaces leads not 

only a more connected contact network, but also potentially greater heterogeneity among 

the population that could be exposed to disease. Both of these factors have been shown to 
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contribute to increased likelihood of disease invasion and persistence (Dushoff and Levin 

1995; Keeling 2005; Gupta et al. 1989).

The relative frequency of reactivated infections in the low-transmission network model 

is consistent with a recent study that analyzed 26,586 genotyped TB cases in the USA 

from 2011 to 2014 and revealed that, among the 49 US states included, the proportion of 

infections attributable to recent transmission varied from 0 to 51% (Yuen et al. 2016). In the 

low-transmission network model of Washtenaw County, 21% of TB cases after 2 years were 

due to recent transmission, on average. In the medium transmission case, 72% were due to 

recent transmission. During the 2011–2014 time period, average incidence in Washtenaw 

County, MI was 1.8 per 100,000, which is halfway between the simulated low and medium 

transmission cases (Washtenaw County Health Department 2019).

4.2 Random Effects Lead to Challenges in Model Calibration

Computational models are often calibrated to match available experimental data, which can 

be complicated by aleatory uncertainty in model outputs. In our NBM, model initialization 

is random and transmission and reactivation events occur stochastically; thus, there is 

significant variation in model outputs among replicates even using the same set of values 

for model parameters. To quantify this variation in each of the low, medium, and high 

transmission cases, we compute a CoV of the number of infected individuals across 

replicates for each set of parameter values in the LHS (100 samples) and at each time point 

in the simulation (2 years × 52 weeks/year = 104 time points). The distributions of these 

coefficients for the three cases are shown in Fig. 3a. We find that the low, medium, and high 

transmission cases are nearly identical. The average CoV is 0.75 for the low and medium 

transmission cases and 0.8 for the high transmission case. Thus, regardless of transmission 

rate, the standard deviation across replicates on average for a single parameter set is roughly 

3/4 of the mean.

Variation in model outputs could be reduced by more informed initial conditions, such 

as by using socio-demographic information to place initial active and latent infections in 

a way that is consistent with the true population. However, this requires access to data 

that is often nonexistent (particular for latent infections) or not publicly available. Further, 

our computational experiments suggest that using a fixed initial condition results in only 

a minimal reduction in variation. For the medium transmission case, using a fixed initial 

condition for all 10 replicates of each parameter set led to an average CoV of 0.73, which is 

not a meaningful decrease from the CoV using random initializations. Thus, the majority of 

variation in model output results from stochasticity of the model and not from randomized 

initial conditions.

Much of the variation discussed above is due to temporal variation in the number of 

infections, since the CoV was evaluated at every time step. If we instead consider the total 

number of unique infections over the entire 2-year period, we find that the CoVs are reduced 

to 0.35, 0.56, and 0.77 in the low, medium, and high transmission cases, respectively; the 

distributions are shown in Fig. 3b. Thus, we observe that there is less relative variation in the 

total number of unique infections over a period of 2 years at lower transmission rates, and 

this variation is generally lower than the variation in the number of infected individuals at 
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any given time. This implies that output variation can be reduced by considering summary 

statistics over long time periods, as would be expected.

Still, stochastic effects could lead to significantly different model predictions if model 

parameters are calibrated using available prevalence or incidence data based on average 

model behavior. This issue is further compounded by possible unidentifiability of model 

parameters even in the absence of stochastic effects. This means that one may not be 

able to uniquely estimate parameter values from observable data such as prevalence and 

incidence. Issues of parameter unidentifiability have been explored in the context of 

continuous epidemic models and have been shown to lead to incorrect predictions for the 

effects of interventions (Kao and Eisenberg 2018). This presents serious challenges in model 

calibration and the interpretation of model-based predictions.

4.3 Localization of Simulated Infections

One major benefit of using a spatial NBM over non-spatial models such as ODE or 

age-structured models is the ability to obtain spatial information about epidemiological 

dynamics. Spatial information at a sub-county level for TB in the USA is often unavailable 

due to patient privacy concerns. The Report of Verified Case of Tuberculosis (RVCT) Form, 

which is used for national TB surveillance, includes information on city, county, and zip 

code (CDC, Division of Tuberculosis Elimination 2009); however, access to this information 

requires approval from the state or local health department. Thus, in cases where this 

information cannot be obtained, modeling can yield insights into probable spatial patterns of 

infections. In cases where spatial information is available, this could be used to validate a 

model.

To quantify the spatial distribution of simulated infections, we compute the average pairwise 

distances between infected individuals at the end of the 2-year simulation for each parameter 

set in the LHS (sample size = 10 replications × 100 parameter sets = 1000). An individual’s 

location is defined by the location of their household or group quarter. Among the 

simulations for which more than one individual was infected at the end of 2 years, the 

pairwise distances averaged 10.7 ± 6.0 miles for the low transmission case, 10.4 ± 4.6 

miles for the medium transmission case, and 10.3 ± 3.1 miles for the high transmission 

case. For comparison, we considered 10,000 samples where a random number (up to 20) of 

individuals are uniformly and randomly chosen from the population. Among the randomly 

selected individuals, the pairwise distance averages 10.8 ± 3.1 miles.

The difference between the low and medium transmission cases and the random sample is 

not statistically significant. This is expected for the low transmission case since most active 

infections in this case are due to reactivation of latent infection and the latent population 

is randomly distributed. However, for the high transmission case, the pairwise distances 

between infected individuals are smaller than if infections were purely random; while these 

differences are not particularly large, they are statistically significant (p < 0.001, significance 

determined using a t test). This implies that although workplaces and casual contacts play 

a much larger role than households in recent transmissions, infections are still localized 

based on household locations. Spatial distributions for representative samples from the three 

transmission cases as well as randomly sampled individuals are shown in Fig. 4.
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The observed localization by household location in our simulations is likely due to 

individuals who live close together being more likely to work close together. Simulations 

also showed statistically significant localization by workplace locations among those 

infected individuals who belonged to a workplace. However, we focus here on the spatial 

distribution of infections by households as all individuals in the synthetic population 

belong to a household or group quarter, and all households and group quarters are located 

within Washtenaw County. Further, household location is more likely to be reported in 

epidemiological data than workplace location.

5 Discussion

The purpose of this paper is to establish and demonstrate a network-based model for TB 

epidemiology, which utilizes publicly available synthetic datasets to create a realistic contact 

network and assign socio-demographic attributes to the population. We do not calibrate the 

model to epidemiological data within Washtenaw County, and thus, we make no specific 

predictions about the spread of TB. Rather, we use randomization and parameter exploration 

to study general model behavior. Washtenaw County was chosen as a test population due to 

its proximity to University of Michigan, where this research was conducted.

There are many benefits to using a discrete network-based model over other model 

formulations such as ODE and PDE models. Most notably, discrete models such as the 

one considered here allow for host heterogeneity to be explicitly accounted for. Using a 

network structure within a discrete model allows for establishing contact patterns within a 

population without needing to explicitly model movement on a spatial domain, which can 

become expensive when the number of individuals is large. Synthetic population datasets are 

an excellent tool to provide realistic contact networks, socio-demographic heterogeneity in 

the relevant population, and explicit geospatial data.

Using these synthetic population datasets allows us to consider different types of contacts 

and their influence on TB epidemiology as well as the spatial distribution of infections. 

For example, we found that the majority of active transmission in our model occurs in 

workplaces and through casual contacts, while household, group quarter, and school contacts 

play a minor role. This is primarily due to individuals in our synthetic population that tend to 

have more workplace and casual contacts than any other type of contact, and school-related 

contacts do not significantly contribute to transmission due to a decreased occurrence of 

primary infection in children. Further, we have found that at transmission rates large enough 

to create a substantial number of active transmission events, disease prevalence is sensitive 

to the contact weight for casual contacts, where the contact weight represents the duration of 

contact, and is not sensitive to any other contact weights.

As with any model, many of the results presented here inherently depend on the choices 

of ranges for contact weights as well as other parameters, and results may differ for 

different parameter values. Here, our focus is on the model framework and exploration 

of model outcomes rather than specific predictions about TB epidemics. Thus, we have 

allowed contact weights to vary in broad ranges, but we have not calibrated the model 

to match specific epidemiological data as that was not the goal of this work. To produce 
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reliable model-based predictions of epidemic dynamics or intervention efficacy, parameter 

estimation will be crucial; however, this is beyond the scope of this paper, but will be 

addressed in future work. Since disease incidence is not sensitive to most of the contact 

weight parameters, these parameters likely cannot be estimated from incidence data. Thus, 

to calibrate these parameters, more detailed epidemiological data would be needed. For 

example, demographic data for infected individuals could be used to create more informed 

initial conditions as well as to provide additional data for estimating parameters. Contact 

data such as that from Mossong et al. (2008) and Prem et al. (2017) could be used 

to calibrate contact weights; however, these data are at the national scale and may not 

accurately reflect county level rates. Our model results also inherently depend on the contact 

network; that is, the findings presented here are valid only for Washtenaw County, MI and 

communities with similar contact structures. This type of community-specific modeling is 

useful for predicting local transmission dynamics and effects of interventions, but limits the 

ability to extend these predictions to other settings.

One potential disadvantage to the use of a stochastic discrete model is the uncertainty 

introduced by random effects. Computational experiments suggest that random effects in 

our model lead to a significant amount of variation in the predicted number of infections 

even for constant parameter values, which could lead to challenges in model calibration 

and interpreting model-based predictions. However, this variation may also be seen as an 

advantage since the real-world system is likely affected by substantial randomness and this 

model allows us to explore many different possible outcomes.

Our model can be used to explore epidemiological dynamics at the county level to design 

intervention strategies for specific local populations. For example, effectiveness and cost 

of interventions may differ dramatically between urban and rural counties even if they are 

geographically close; thus, considering these localities separately may lead to more effective 

interventions. Comparison of epidemiological dynamics across localities may also yield 

insights into differences in driving factors for disease spread, transmission dynamics, and 

risk groups. Further, some counties within the USA may be demographically similar to 

developing countries; thus, county-level modeling can provide insight for how interventions 

could work at a larger scale for high-incidence settings. Intervention strategies can be 

expensive and cumbersome to implement in practice, and they may have unintended 

consequences; thus, mathematical and computational modeling are critical tools for aiding 

in the discovery, application, and evaluation of intervention strategies. Previous modeling 

efforts have addressed TB treatment and vaccination effectiveness (Abu-Raddad et al. 2009; 

Castillo-Chavez and Feng 1998; Knight et al. 2014; Lietman and Blower 2000; Renardy and 

Kirschner 2019; Ziv et al. 2004) and other interventions such as contact tracing (Kasaie et al. 

2014; Tian et al. 2013).

Since TB can progress and persist over long periods of time, epidemiological studies may 

require modeling disease spread over several years or even decades. In such studies, the 

population and contact network should be dynamic to account for births, deaths, and 

transitions between households, workplaces, schools, and group quarters. This was not 

done here since we considered a time period of only 2 years for simplicity. In future 

studies, this model can also be improved by obtaining better-informed initial conditions and 
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parameter estimates using socio-demographic data of the real infected population. At the 

county level, since TB is a low incidence disease in the USA, accessing this type of data will 

require special permissions due to issues of patient privacy. Better interactions of modelers 

with local and national health agencies will likely aid in advancing our understanding and 

ultimately interventions that can eliminate TB.
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Fig. 1. 
a Illustration of the population and network structure described in Sect. 3.1.1. Distribution 

of households in Washtenaw County and a hypothetical example of a small contact network 

with different types of contacts are shown. Thicker edges correspond to heavier contact 

weights. One individual is shown in red to indicate active infection. b Diagram showing all 

possible model pathways described in Sect. 3.1.2. S denotes susceptible, E denotes exposed, 

L denotes latent, I denotes infected, and Es denotes secondary exposure
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Fig. 2. 
Top row: distribution of average number of active infections at t = 2 years by source of 

infection. Bar heights represent median values, while error bars represent the 25th and 75th 

percentiles. Bottom row: Sensitivities of active TB prevalence over time to different types 

of contact weights, measured via partial rank correlation coefficients (see Sect. 3.2, −1 

≤ PRCC ≤ 1). The gray shaded area indicates sensitivity values that are not statistically 

significant using a p value of 0.05. Contact weights were randomly sampled via LHS with 

low, medium, and high transmission rates; other model parameters were fixed at the values 

in Renardy and Kirschner (2019)
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Fig. 3. 
Variation in model outputs quantified by coefficients of variation. We simulated 10 replicates 

for each parameter set in the LHS (100 samples). a Coefficients for the number of infected 

individuals at each time point (104 time points). b Coefficients for the total number of 

unique infections over the entire 2-year period
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Fig. 4. 
Simulated maps showing locations of all households in Washtenaw County (black) and 

the household locations of infected individuals (red) at the end of a 2-year simulation for 

representative samples from the low, medium, and high transmission cases and for uniformly 

random individuals as a comparison
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Table 2

Parameter values and ranges for parameters that are newly created for this model or whose values are different 

from those used in previous models

Parameter Value/range Unit

Transmission rate 0.75 (low), 7.5 (medium), 75 (high) Per year

Household contact weight 1 Dimensionless

Workplace contact weight 0.5–1 Dimensionless

School contact weight 0.5–1 Dimensionless

Group quarter contact weight 1 Dimensionless

Casual contact weight 0.01–0.2 Dimensionless
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