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Abstract

Purpose of Review: Organophosphate esters (OPEs) are applied to a variety of consumer 

products, primarily as flame retardants and plasticizers. OPEs can leach out of products over 

time and are consequently prevalent in the environment and frequently detected in human 

biomonitoring studies. Exposure during pregnancy is of particular concern as OPEs have recently 

been detected in placenta, suggesting they may be transferred to the developing infant. Also, 

studies have now shown that children experience higher exposure to several OPEs compared 

to adults, indicating they may be disproportionately impacted by these compounds. This review 

summarizes the current literature on reproductive and child health outcomes of OPE exposures and 

highlights areas for future research.

Recent Findings: Experimental animal studies demonstrate potential for OPEs to adversely 

impact health and a limited number of epidemiologic studies conducted in adult cohorts suggest 

that OPEs may interfere with the endocrine system. Neurodevelopment is currently the most well­

characterized children’s health endpoint, and several studies indicate that prenatal OPE exposures 

impact both cognitive and behavioral development. Associations have also been reported with 

reproductive outcomes (e.g., fertilization and pregnancy loss) and with the timing of parturition 

and preterm birth. Cross-sectional studies also demonstrate associations between OPEs and 

respiratory health outcomes and measures of adiposity.

Summary: A rapidly expanding body of research demonstrates that OPEs are associated with 

adverse reproductive health and birth outcomes, asthma and allergic disease, early growth and 

adiposity, and neurodevelopment. Still, additional research is urgently needed to elucidate the full 

impact of OPEs on children’s health.
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Organophosphate Esters (OPEs) Introduction

In order to comply with U.S. (state and federal) and international flammability regulations, 

manufacturers of consumer goods, including building materials, furniture, and electronic 

devices, routinely apply chemical flame retardants to their products (1–3). Until the 

mid-2000s, a class of brominated flame retardants (BFRs) known as polybrominated 

diphenyl ethers (PBDEs) were among the most commonly used commercial chemical 

flame retardants (1–3). Amid concerns of their environmental fate and potential toxicity, 

however, PBDEs were phased out of production and manufacturers have increasingly used 

organophosphate esters (OPEs) as alternatives to many BFRs (1–3). As a result, production 

of OPEs has increased in recent years (3–8). OPEs are applied as “additive” flame retardants 

(as opposed to “reactive”), meaning they are not chemically bound to their products, and are 

vulnerable to volatilization and leaching into the environment (4, 6, 7). Although OPEs are 

perhaps best known for their use as flame retardants in polyurethane foam (6, 7), they are 

also used as plasticizers, solvents, and in other industrial applications (4, 6, 7, 9), and are 

applied to electronic devices (10, 11), baby products (12), food packaging (13), recreational 

equipment (14, 15), and nail polishes (16).

OPE Exposure and Metabolism

Due to their application to a wide variety of consumer products and their capacity to 

volatilize and leach from these materials, OPEs are present at detectable concentrations in 

many human environments (4–7, 17–21), including residential housing (2, 17, 19, 21–26), 

office spaces (17, 19–21, 27, 28), and child care environments (17, 20, 21, 29, 30). In 

particular, OPEs are frequently detected in indoor air and in the dust of indoor environments 

(7, 19, 20, 22–24, 26, 30–35); consequently, inhalation and inadvertent ingestion of indoor 

dust are significant sources of exposure [e.g. (35)], although dermal absorption (14, 15, 

36–38), respiration of contaminated air (21, 28, 39), ingestion of contaminated food (32, 40), 

consumption of contaminated water (41), and other pathways can also contribute to exposure 

(7, 34).

Inside the body, OPEs are often metabolized to their respective mono- or diesters (34, 42–

47) (Figure 1), which are primarily excreted in urine (43, 44, 48), though other metabolic 

and excretion pathways also exist, such as hydroxylation and conjugation (34, 46, 49). 

Urinary OPE diester metabolites (and other biological markers of OPE exposure) are 

consistently detected with high frequencies in biomonitoring surveys and observational 

studies (21, 22, 24, 25, 32, 33, 50–61), demonstrating widespread exposure to these 

compounds. Biological half-lives of OPEs are much shorter than PBDEs and are likely 

on the order of hours to days (43, 44, 48, 62). Studies of intra-individual variability in 

OPE metabolite concentrations, however, have reported intraclass correlation coefficients 

(ICCs) for OPEs typically ranging between 0.3 and 0.8, depending on the metabolite, study 
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population, and time period of interest (55, 63–66). These ICC values indicate moderate 

reproducibility over time, suggesting exposure is also reasonably consistent over time.

Consistent with findings among the general population, exposure to OPEs among pregnant 

women occurs with a similar high frequency (22, 52, 53, 55, 56, 63). Though data remain 

limited, available evidence suggests that maternal-fetal transfer of OPEs may occur. For 

example, Zhao et al. (67) measured several OPEs and their metabolites in human chorionic 

villi and deciduae, indicating potential maternal-fetal transfer in early gestation, prior to the 

development of a mature placenta. Other evidence suggests that placental accumulation and 

transplacental transfer of OPEs may occur. For example, Ding et al. measured triphenyl 

phosphate (TPHP) and tris(1,3-dichloroisopropyl)phosphate (TDCIPP) in 86% and 44% 

(respectively) of placental tissue samples obtained from 50 pregnant women living in China 

(52). Interestingly, an experimental study by Baldwin et al. (68) observed sex-specific 

accumulation of TPHP in rat placentas (a potential mechanism for sex-specific effects), but 

did not observe transfer to pups; a similar study also did not observe gestational transfer of 

OPEs to rat pups (69).

Higher levels of OPE exposures have been reported for young children and adolescents 

compared to other age groups (12, 32, 35, 50, 51, 60, 70–73). For example, a pair 

of investigations of mother-child pairs from California and New Jersey identified higher 

concentrations of two urinary OPE metabolites (diphenyl phosphate (DPHP), a metabolite of 

triphenyl phosphate (TPHP); bis(1,3-dichloro-2-propyl) phosphate, a metabolite of tris(1,3­

dicholoro-2-propyl) phosphate (TDCIPP)) in children than mothers, including DPHP and 

BDCIPP concentrations that were 5.9 and 15.0 times greater in children than mothers in 

the California cohort (50, 51). More recently, Phillips and Hammel at al. (35)reported 

that urinary metabolites of TDCIPP and isopropylated triarylphosphate esters (ITPs) were 

universally detected in urine samples from children 3-6 years of age (n=181, collected 

2014-2016), and metabolite levels were generally higher than those observed in other 

temporally and geographically similar cohorts of adults. The four other OPE metabolites 

assessed in this study were detected in urine samples from greater than 80 percent 

of children [i.e., mono-tert-butyl phenyl phenyl phosphate (tb-PPP), diphenyl phosphate 

(DPHP), bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP), and bis(1­

chloro-2-isopropyl) phosphate (BCIPP)]. Strong correlations between urinary metabolites 

and hand wipe samples observed by Phillips and Hammel et al. suggest that elevated 

hand-to-mouth contact may explain higher levels of exposure experienced by children (35). 

Additional factors potentially leading to higher levels of OPE exposure for children include 

the treatment of children’s products with flame retardants or physiological differences 

between children and adults (12, 74).

Reproductive and Child Health Outcomes

Epidemiologic investigations into the potential health impacts of OPEs have been limited; 

however, investigations into the potential for OPEs to adversely impact children’s health 

have increased in recent years (summarized in Table 1). Notably, OPEs have been linked to 

endocrine disruption in experimental animal and epidemiologic studies (25, 75–86), raising 

concerns about reproductive toxicity and the health impacts of early-life exposures. Here, 
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we highlight recent studies which examine the relationship between OPE exposures and 

reproductive and children’s health outcomes and highlight areas for future research.

Reproductive Health

Even prior to birth of the child, there is evidence to suggest that OPE exposure may 

impact fertilization and conception. In one study, 211 women were recruited from an 

academic fertility clinic as a part of the Environment and Reproductive Health Study 

(EARTH)(65) and their exposure to OPEs was assessed by measuring urinary biomarkers. 

The investigators reported that increases in the sum of three OPE metabolites measured 

preconception [bis(1,3-dichloroisopropyl) phosphate (BDCIPP), mono-isopropyl phenyl 

phenyl phosphate (ip-PPP), and DPHP] was associated with decreased rates of successful 

fertilization, implantation, clinical pregnancy, and live birth (65). In another study of 155 

women in the EARTH cohort, preconception urinary DPHP were associated with increased 

risk of biochemical pregnancy loss as was the molar sum of DPHP, BDCIPP an ip-PPP (87). 

Consistent with these findings, experimental animal studies also found that OPE exposures 

decreased egg production, egg quality, hatching and survival among zebrafish and delayed 

hatching among chicken embryos (77, 78, 86, 88).

OPEs have also been implicated in male fecundity and reproductive health in experimental 

and epidemiologic studies (25, 78, 89–93). For example, exposure to OPEs, particularly 

when considering mixtures, was associated with aberrant DNA methylation at imprinted 

genes in sperm (n=67 men). Although differences in methylation with OPE exposure were 

small in this study, successful fertilization with a sperm cell that is aberrantly methylated 

may present detrimental consequences for offspring (90). Among men recruited from a 

fertility clinic (n=50), TDCIPP and TPHP in residential house dust were inversely associated 

with sperm concentration and motility (25). More recently, larger-scale research in the 

EARTH study participants using urinary exposure biomarkers did not support findings of 

an association between OPE exposure and semen parameters (92) but did find associations 

between urinary BDCIPP concentrations measured preconception and reduced fertilization 

(93)(n=220 and 201, respectively).

Past research in the EARTH study participants suggests that, in comparisons with female 

partners, male partner exposure appeared less relevant to adverse pregnancy outcomes (65, 

93); however, it is important to note that available evidence relating OPE exposures to 

reproductive health has been limited to fertility treatment cohorts which may limit the 

generalizability of these findings to the general population.

Gestational Length and Infant Size at Birth

Adverse birth outcomes, including premature birth and low birthweight, represent the 

leading causes of neonatal mortality in developed countries, and while most babies survive, 

those born too early or too small are at increased risk of chronic health conditions 

throughout their lifetimes (94). Experimental studies in animals suggest that exposure to 

OPEs may affect early-life growth and development (77, 82, 84, 86, 95–99). For example, 

chicken embryos exposed to TDCIPP were observed to have a 7% decrease in weight at 
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hatching (86), and prenatal exposure to TDCIPP has been shown to increase the number 

of visibly small rat pups (i.e., runt pups) and significantly impacted weight gain through 

weaning (84). Gestational duration and potential impacts of OPEs on preterm birth risk have 

not been investigated in toxicological studies, due in part to the tightly controlled timing of 

parturition in most animal species.

Epidemiologic evidence for impacts on birth outcomes is limited to two studies. In a 

small study (n=14 term infants) of pregnant women from Shanghai, China, no associations 

were observed between birth weight and urinary DPHP measured in second trimester 

urine samples (median DPHP 1.1 ng/mL; BDCIPP assessed but detected infrequently) 

(53). Among a subset of women in the Pregnancy Infection and Nutrition Study (PIN), 

we recently reported sex-specific associations between OPEs assessed in second-trimester 

urine samples and birth outcomes (n=349). Women with the highest ip-PPP and BDCIPP 

concentrations in urine delivered girls earlier and were more likely to deliver preterm infants 

than women with lower exposure levels. Among males, maternal ip-PPP was associated 

with decreased odds of preterm birth and DPHP was suggestively associated with longer 

gestational age (100). Similar associations were observed with birthweight, but associations 

were attenuated when accounting for gestational age. Sex-specific impacts on gestational 

age are particularly interesting in the context of Baldwin et al. (68) which reported sex­

specific accumulation of TPHP in rat placentas. Though not yet evaluated in human cohorts, 

it is possible that sex-specific accumulation of OPEs in the placenta is impacting placental 

function and as a result, the timing of parturition.

Physical Growth and Adiposity

Evidence linking OPE exposure with impacts on growth and adiposity is largely derived 

from in vitro and experimental animal studies. For example, four OPEs (i.e., TDCIPP, 

TCIPP, TPHP and TCEP) were positively correlated with triglyceride accumulation in a 

cell culture (3T3-L1) commonly use to investigate adipogenesis (i.e., fat cell development) 

(85). Furthermore, isopropylated triphenyl phosphate (ip-TPP) exposure was associated with 

increased total and HDL cholesterol, increased fructosamine (suggestive of hyperglycemia), 

and hypertrophy and neutral lipid accumulation in the adrenal gland in exposed rats 

(101). Further, perinatal exposure to Firemaster® 550, a flame retardant mixture containing 

OPEs [TPHP and isopropylated triaryl phosphates (ITPs)] and brominated compounds (2­

ethylhexyl-2,3,4,5-tetrabromobenzoate and bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate) 

was associated with rapid weight gain in rat pups and obesity in adult rats (95).

Studies of adults and pregnant women have generally shown positive associations between 

measures of adiposity and OPE exposure (56, 65, 102). The epidemiologic literature 

includes a single cross-sectional evaluation of OPEs and children’s adiposity. Boyle et 

al. (102) reported that among children in the National Health and Nutrition Examination 

Survey (2013-2014 cycle), OPEs were associated with indicators of adiposity; however, the 

direction of the association differed by compound. Urinary di-n-butyl phosphate (DBUP) 

concentrations, for example, were inversely associated with the prevalence odds of obesity 

as well as body mass index z-scores. Conversely, urinary bis(2-chloroethyl) phosphate 

(BCEP) concentrations were suggestively associated with increased prevalence odds of 
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being overweight, and similar relationships were observed with BMI z-scores and waist 

circumference (102). As noted by Boyle et al., these findings may be due to reverse 

causality. For example, if obese individuals consume more OPE-contaminated foods or 

spend more time in contact with OPE-containing furniture than lean individuals, higher 

levels of OPEs could be expected in overweight individuals. Although few studies have 

evaluated food as a source of OPE exposure, diets high in fresh foods have been associated 

with lower OPE metabolite concentrations in adults (63, 103), and OPEs have been reported 

in a greater proportion of packaged foods (89%) than non-processed foods (11%) (104).

Asthma and Allergy

Few studies have assessed OPE impacts on children’s immune and allergic outcomes, 

though allergic dermatitis has been reported following exposure (105–107). In a cross­

sectional study evaluating allergic symptoms (i.e., rhinoconjunctivitis, wheeze, and eczema) 

among Japanese school children (n=128), TDCIPP in house dust was associated with 

eczema (108). Rhinoconjunctivitis and having at least one allergy symptom was more 

frequently observed among children who had the highest quartile of TCIPP urinary 

metabolites compared to the lowest quartile. Greater concentrations of metabolites of tris(2­

butoxyethyl) phosphate (TBOEP) and TDCIPP were also observed to be associated with 

eczema and at least one allergy symptom. Previous work in Japan (n=516, including children 

and adults) found significant and positive associations between TCIPP and TDCIPP in house 

floor dust and the prevalence of atopic dermatitis (109). Tributyl phosphate (TBP) in both 

floor and multi-surface dust samples were also associated with asthma and allergic rhinitis. 

A matched case-control study conducted in Sweden evaluated asthma among 220 children 

at either 4 or 8 years of age with OPEs measured in mattress dust. Maternal mattress 

dust collected when children were 2 months of age was higher in TPHP and meta, meta, 

para-tricresyl phosphate (mmp-TMPP) for children that did not develop asthma (110). In 

addition, a null result was observed in the U.S. between OPEs measured in settled and 

HVAC filter dust and the severity of childhood asthma among 54 children (average age 

10 years) (111). Overall, there is some suggestion that OPE exposure could be related to 

children’s allergy symptoms; however, more thorough evaluations are needed to determine 

if a relationship exists between OPEs and asthma. Possible differences in findings in the 

current literature could be due to the use of household dust as an indicator of exposure 

in many studies. While the home environment and household dust are likely sources of 

exposure, it is worth noting that these measures do not capture information about other 

microenvironments (i.e., the car, other areas of the home, the workplace or school, etc.) 

which may be important contributors to exposure.

Neurodevelopment

The links between organophosphate pesticides and children’s neurodevelopment have 

hastened the development of experimental models investigating behavioral impacts of OPE 

exposures. Experimental evidence has focused on OPE exposures and behavioral changes 

in model organisms (112–116), specifically zebrafish, which are proving to be useful model 

organisms for neurodevelopmental toxicity screening (117, 118). For example, Oliveri et al. 

(115) reported that zebrafish exposed to TDCIPP in early life exhibited elevated locomotor 
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activity and reduced predator escape behavior in adulthood, relative to controls. Similarly, 

Noyes et al. reported neurodevelopmental defects in embryonic zebrafish exposed to several 

OPEs (114).

Three prospective epidemiologic studies and one cross-sectional study evaluated the 

neurodevelopmental impacts of OPE levels in the U.S. over the past two decades (119–121) 

(122). Lipscomb et al. (122) studied the sum of OPE concentrations measured in passive 

silicone wristband samplers worn by Oregon preschool children in relation to the children’s 

scores on the Social Skills Improvement Rating Scale, a teacher-rated social behavior 

assessment (n=72). Higher OPE concentrations in the passive samplers were associated with 

poorer performance on the Responsibility subscales and Externalizing subscales. However, 

the cross-sectional nature of this study limits causal inference.

Among the prospective studies, Castorina et al. (121) investigated three OPE metabolites 

measured in maternal prenatal urine and offspring’s performance on three psychometric 

assessments administered at 7 years of age to children in California (n’s from 248 to 282). 

The authors reported that higher concentrations of DPHP (as well as ΣOPEs, including 

DPHP, BDCIPP, and ip-PPP) in prenatal urine were associated with worse scores on the 

Wechsler Intelligence Scale for Children (WISC-IV), (particularly the Working Memory 

scale), and that higher concentrations of ip-PPP were associated with higher scores on the 

Behavior Assessment System for Children (BASC-2) Hyperactivity scale, suggesting more 

hyperactive behaviors. While this work has a number of strengths, it is important to note 

that mothers in this study were enrolled between 1999 and 2000, prior to the PBDE phase­

out and subsequent increase in OPE usage; therefore, OPE exposure levels in this cohort 

may not reflect exposures post-PBDE phase-out, particularly for more recently introduced 

compounds, which are likely to be higher.

Among participants of the PIN study in North Carolina (2005-2008), concentrations of 

OPE metabolites in prenatal urine were associated with both cognitive and behavioral 

development at 2-3 years of age (n from 149 to 227) (119, 120). Specifically, 

higher ip-PPP concentrations were associated with poorer performance on two cognitive 

assessments: the Mullen Scales of Early Learning (MSEL) and the MacArthur-Bates 

Communicative Development Inventories (MB-CDI) (120). Higher BDCIPP concentrations 

were associated with more withdrawal and attention problems among children and higher 

DPHP concentrations were associated with greater hyperactivity and attention problems 

(assessed using the BASC-2) (119).

In summary, the limited body of available epidemiologic evidence suggests early-life 

exposures to OPEs, like exposure to their PBDE predecessors, may be associated with 

cognitive and behavioral effects, though these studies are not without their limitations. 

Reproduction of their results in other study populations, with repeated measures of OPE 

exposure are necessary to make stronger inference about the potential cognitive and 

behavioral effects of early-life OPE exposures and to identify periods of developmental 

susceptibility.
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Conclusions and Recommendations

The past decade has seen an explosion of research investigating OPE exposures, 

with numerous studies demonstrating near ubiquitous detection of OPEs in various 

microenvironments and in human populations world-wide. In contrast, epidemiologic studies 

investigating potential health impacts remain limited in number; however, the available 

evidence suggests that OPEs may be affecting children’s health. Neurodevelopment and 

asthma are perhaps the most well characterized adverse health outcomes, but the few 

available studies have notable limitations. Importantly, prior studies have been relatively 

small and have been limited in their capacity to investigate potential sex-specific impacts, 

and many have also been limited by cross-sectional designs, which precludes assessment of 

temporal ordering between exposure and outcome. Though most past studies have evaluated 

TPHP and TDCIPP metabolites, other OPEs investigated vary between studies making 

it difficult to assess consistency. In addition, past studies have relied heavily on urinary 

exposure biomarkers, which may be problematic given the rapid metabolism of OPEs. 

Although some research suggests moderate reliability of biomarkers over time [e.g. (24, 55, 

63, 64, 66)], relying on a single spot urine measurement to capture long term exposure is 

likely to result in substantial exposure misclassification. External exposure monitoring (e.g. 

silicone wristbands or hand wipes) may be useful complementary measures of exposure in 

future studies (35, 71, 123).

Despite recent efforts, there remain important areas of children’s health that have not 

been evaluated with respect to early-life OPE exposure. Of particular importance, perinatal 

exposure has not been assessed with respect to metabolic disorders (e.g. the development 

of obesity, diabetes, etc.). Given that childhood obesity is a risk factor for a multitude of 

adverse health outcomes throughout the life course and animal models suggest endocrine 

disrupting properties may impact growth, research in this area is urgently needed. Although 

experimental and epidemiologic studies of adults demonstrate impacts on endocrine 

function, there are no data evaluating OPE exposures and children’s endocrine function, 

to our knowledge. While we find these novel areas of research to be particularly compelling 

for understanding the potential risks of early OPE exposure, additional studies evaluating 

all children’s health outcomes are urgently needed. Much of the work that has been 

done investigating reproductive and children’s health outcomes associated with OPE 

exposure thus far has been limited to a few cohorts (EARTH and PIN), and replication 

is essential. Also of importance in moving the field forward, researchers should consider 

possible patterns of co-exposure to other toxicants and the potential for interaction between 

contaminants in impacting children’s growth, development and health. Given that OPEs are 

also used as plasticizers, similar to phthalates, it may be particularly interesting to look at 

co-exposures to these two groups. For example, we recently reported correlation between 

biomarkers of exposure to OPEs and phthalates in young children in the U.S. (124). Thus, it 

may be important to consider exposure to phthalates when evaluating health impacts of OPE 

exposures.

Changes in regulations surrounding the use of flame retardants in building materials, 

electronics and furniture could impact the use of flame retardants moving forward, and 

subsequently result in reductions in the use of these chemicals. However, OPEs are 
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environmentally persistent in indoor environments, and exposure will continue for many 

years to come. To date, there has been very little research evaluating methods to reduce 

individual exposure. Several studies have assessed handwashing, which has been related to 

reduced exposure to other flame retardants and indoor contaminants, but estimated OPE 

exposure reductions have been small and not statistically significant in children’s cohorts 

(12, 35). A recent cross-over study demonstrated that house cleaning and hand washing led 

to decreased OPE urinary metabolites in adult mothers, but similar relationships were not 

assessed among their children (125). Given the environmental ubiquity of OPE, research 

evaluating possible interventions to reduce exposure is urgently needed.

Though they have been in commerce for decades, data suggest that the use of OPEs 

increased in the early 2000s as other brominated flame retardants were phased-out due 

to toxicity concerns. At that time, OPEs were largely thought to be safer because they are 

less persistent in the human body than their predecessors. However, as an increasing number 

of studies suggest ubiquitous detection in human samples and possible health impacts, 

the safety of OPEs should be rigorously investigated and their potential as a regrettable 

substitution should be scrutinized.
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Figure 1: 
Select organophosphate esters and their urinary metabolites.
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