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Abstract

Systemic duress, such as that elicited by sepsis, burns, or trauma, predisposes patients to 

secondary pneumonia, demanding better understanding of host pathways influencing this 

deleterious connection. These pre-existing circumstances are capable of triggering the hepatic 

acute-phase response (APR), which we previously demonstrated is essential for limiting 

susceptibility to secondary lung infections. To identify potential mechanisms underlying 

protection afforded by the lung–liver axis, our studies aimed to evaluate liver-dependent lung 

reprogramming when a systemic inflammatory challenge precedes pneumonia. Wild-type mice 

and APR-deficient littermate mice with hepatocyte-specific deletion of STAT3 (hepSTAT3−/−), a 

transcription factor necessary for full APR initiation, were challenged i.p. with LPS to induce 

endotoxemia. After 18 h, pneumonia was induced by intratracheal Escherichia coli instillation. 

Endotoxemia elicited significant transcriptional alterations in the lungs of wild-type and 

hepSTAT3−/− mice, with nearly 2000 differentially expressed genes between genotypes. The gene 

signatures revealed exaggerated immune activity in the lungs of hepSTAT3−/− mice, which were 
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compromised in their capacity to launch additional cytokine responses to secondary infection. 

Proteomics revealed substantial liver-dependent modifications in the airspaces of pneumonic mice, 

implicating a network of dispatched liver-derived mediators influencing lung homeostasis. These 

results indicate that after systemic inflammation, liver acute-phase changes dramatically remodel 

the lungs, resulting in a modified landscape for any stimuli encountered thereafter. Based on the 

established vulnerability of hepSTAT3−/− mice to secondary lung infections, we believe that intact 

liver function is critical for maintaining the immunological responsiveness of the lungs.

Pneumonia and sepsis are leading global health concerns that are integrally linked (1–

3). Sepsis is a highly heterogeneous disease involving many pathways that can lead to 

life-threatening organ dysfunction. It is the top cause of death in critically ill patients, 

totaling an estimated 19.7% of all global deaths (4–8). Around half of all sepsis 

cases stem from respiratory infections, but non-pulmonary-derived sepsis also strongly 

predisposes patients to hospital-acquired bacterial infections because of host immune 

dysregulation, with respiratory infections as the most common secondary nosocomial 

infection (2, 9). Other acute challenges, such as trauma or burn injuries, similarly increase 

pneumonia susceptibility (3, 10–12), as do more chronic conditions associated with systemic 

inflammation, such as aging and obesity (13–16). Altogether, these circumstances indicate 

that disruptions in systemic inflammatory tone render the lungs vulnerable to infection. 

As the leading cause of infectious disease deaths in the United States, pneumonia is 

characterized by an influx of fluid and inflammatory cells into the airspaces of the lungs 

and, like sepsis, has limited treatments, relying mainly on supportive or antibiotic therapies 

(1, 4, 5). Biological signals related to pneumonia susceptibility during sepsis remain poorly 

understood but could be useful in advancing medical decisions and identifying patients at 

risk.

Both sepsis and pneumonia, as well as other homeostatic challenges, cause an acute-phase 

response (APR), which is a systemic innate reaction resulting in liver activation and 

characterized by altered circulating levels of acute-phase proteins (APPs). Our laboratory 

has shown that during pneumonia, the hepatic APR is triggered by induction of the 

transcription factors STAT3 and NF-κB RelA, which are activated in response to IL-6, 

TNF-α, and IL-1 (17). Pneumonia susceptibility increases when the lung–liver axis is 

severed through deletion of STAT3 and RelA in hepatocytes (17–20), and specific hepatic 

STAT3-dependent liver responses are essential for limiting pneumonia susceptibility in 

endotoxemic mice (19). To reveal candidate mechanisms whereby hepatic STAT3 activity 

limits pneumonia susceptibility in this setting, we sought to comprehensively evaluate 

liver-dependent changes in the lungs in response to endotoxemia followed by pneumonia. 

Our findings show that both cellular and humoral changes in the lungs are impacted by 

STAT3-dependent liver activation before and after a localized secondary challenge. This 

study suggests that in the presence of systemic inflammation, liver activity influences both 

the lung immune baseline and the airspace environment elicited by subsequent infections, 

revealing protective liver-directed pathways that likely counter the detrimental consequences 

of trauma, sepsis, and other forms of non-pulmonary duress.
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Materials and Methods

Mice

Experiments were performed in mice with hepatocyte-specific deletion of STAT3 

(hepSTAT3−/− mice), which have been described previously (17). In brief, mice with 

homozygous floxed alleles for STAT3 were crossed with mice expressing albumin-driven 

Cre-recombinase. Results from hepSTAT3−/− mice were compared with those from 

littermate controls lacking Cre-recombinase. Both male and female mice were used, all 

between 6 and 15 wk of age, and results were collected over a minimum of two independent 

experiments unless otherwise stated. Mice were housed in a pathogen-free environment, 

provided with food and water, and kept on a 12-h light cycle. All animal protocols were 

approved by the Boston University Institutional Animal Care and Use Committee.

Experimental infections and stimuli

Mice were given an i.p. injection of saline as a control or 1 mg/kg of body weight of 

ultrapure LPS (LPS-EB from E. coli O111:B4; catalog code tlrleblps; InvivoGen, San Diego, 

CA) to induce endotoxemia. After 18 h, intratracheal (i.t.) instillations of bacteria to induce 

pneumonia were performed as previously described (17). In brief, mice were anesthetized 

with ketamine (50 mg/kg of body weight) and xylazine (5 mg/kg), administered by i.p. 

injection. A 24-gauge catheter was inserted into the exposed trachea, and a 50-μL bolus 

of saline containing 106 CFUs of Escherichia coli (serotype O6:K2:H1, ATCC 19138; 

ATCC, Manassas, VA) was instilled into the left bronchus. Mice were euthanized for tissue 

collection using an isoflurane overdose after either 18 h i.p. saline, 18 h i.p. LPS, or 18 h 

LPS followed by 24 h i.t. E. coli. Where indicated, 6 h i.t. of 107 CFUs of Staphylococcus 
aureus (ATCC 25923) was substituted for E. coli.

Bronchoalveolar lavage

Bronchoalveolar lavage fluid (BALF) was collected at the indicated time points as 

previously described (19). In brief, the lung–heart block was removed and tied to a 20-gauge 

blunted stainless steel catheter via the trachea. Once secured, the lungs were lavaged 10 

times with 1 ml of cold PBS. The left lobe and the cell-free supernatant (centrifuged at 

300 × g for 5 min at 4°C) from the first lavage were stored at −80°C for further analysis. 

Pooled cells from all washes were counted using the LUNA-FL Dual Fluorescence Cell 

Counter (Logos Biosystems). After cytocentrifugation and Camco staining (catalog number 

702; Cambridge Diagnostic), differential counts were determined at each time point.

Plasma collection

After collection using a heparinized needle at the indicated time points, blood was 

centrifuged for 15 min at 1500 × g and 4°C. Plasma was ali-quoted and stored at −80°C 

before analysis.

Histology

H&E staining was performed on paraffin-embedded lung sections fixed in 4% 

paraformaldehyde (catalog number 18505; Ted Pella, Redding, CA). In brief, lung tissue 
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was fixed overnight, washed with 1× PBS (10010–023; Life Technologies) followed 

by 0.9% saline (Baxter Healthcare Corporation), then dehydrated through increasingly 

concentrated ethanol washes, followed by xylene clearing and paraffin infiltration.

Cytokine and chemokine measurements

Plasma and whole-lung homogenate protein concentrations were measured by using a mouse 

magnetic Luminex assay (LXSAMSM; R&D Systems) on a Bio-Plex 200 multiplexing 

analyzer system. The panel included TNF-α, CXCL1, G-CSF, IL-1α, IL-6, urokinase 

plasminogen activator surface receptor, CCL2, CXCL2, GM-CSF, and IL-10. BALF and 

plasma concentrations of fibrinogen were measured via ELISA (catalog number ab213478; 

Abcam).

RNA isolation

Liver and lung tissues were snap frozen in liquid nitrogen and stored at −80°C until RNA 

isolation. To isolate RNA, we homogenized tissue using seven to nine 2.0-mm RNase-free 

zirconium oxide beads (catalog number ZROB20-RNA; Next Advance) in the TRIzol 

reagent (catalog number 15596026; Ambion by Life Technologies) using the manufacturer’s 

instructions. RNA was cleaned using the RNeasy Mini kit (catalog number 74106; Qiagen). 

RNA samples were stored at −80°C until needed.

Quantitative real-time PCR

Quantitative RT-PCR (qRT-PCR) was performed with 10 ng of purified RNA using a 

StepOne Plus real-time PCR system or QuantStudio 3 Real-Time PCR system (Thermo 

Fisher Scientific, Waltham, MA) and a TaqMan RNA-to-CT 1-step kit (Thermo Fisher 

Scientific). RNA was probed with primers and fluorescein amidite–labeled probes for Fg-α, 

Fg-β, Fg-γ, GM-CSF, G-CSF, WNT3A, CXCL1, and LCN2, and VIC-labeled eukaryotic 

18S rRNA as an endogenous control (Life Technologies). After normalization to the 18S 

rRNA content, values are expressed as the fold induction compared with that for the relative 

control groups.

Lung digestion and flow cytometry

Lungs were enzymatically digested into single-cell suspensions and stained as described 

previously (21). In brief, lungs were digested at 37°C and 250 rpm for 1 h in a collagenase 

solution containing type 2 collagenase (1 mg/ml; LS004176; Worthington Biochemical, 

Lakewood, NJ), DNase I (150 mg/ml; 9003-96-9; Sigma-Aldrich, St. Louis, MO), and 

CaCl2 (2.5 mM) in PBS, then filtered through a 70-mm cell strainer (Fisher, Grand 

Island, NY). After using RBC lysis buffer (Sigma-Aldrich, St Louis, MO), cells were 

counted on the LUNA-FL Dual Fluorescence Cell Counter (Logos Biosystems). Cells were 

stained for CD45-FITC (Clone: 30-F11, 501129405; Invitrogen), Ly6G-allophycocyanin 

(501123222; Invitrogen), SiglecF- allophycocyanin/Cy7 (565527; BD Biosciences), CD11b­

PE/Cy7 (101215; BioLegend), CD64-PE (50165081; BD Biosciences), and DAPI (D1306; 

Invitrogen) as a viability stain, with gating adapted from Guillon et al. (21). In brief, samples 

were gated on singlets and live cells. CD45+ cells were split between Ly6G+ (neutrophils) 

and Ly6G− cells, which were further gated into alveolar macrophages (CD64+/SigF+), 
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other macrophages (CD64+/SigF−/CD11b+), and monocytes (CD64−/SigF−/CD11b+). Flow 

cytometry was performed using BD LSR II at the Boston University Flow Cytometry Core 

Facility. Data were analyzed using FlowJo (version 10) software. Unstained cells, single­

stained UltraComp eBeads (01-2222-42; Invitrogen), and fluorescence-minus-one controls 

were used for each experiment.

RNA sequencing and analysis

Whole-lung RNA was extracted as previously described using the Qiagen RNA Mini Kit. 

RNA quality, sequencing, and analysis were performed at the Boston University Microarray 

and Sequencing Resource Core Facility. The libraries were prepared from 200 ng total 

RNA enriched for mRNA using Illumina’s TruSeq Stranded mRNA Library Preparation 

kit (Illumina, USA) and sequenced on an Illumina NextSeq 500 instrument (Illumina, 

USA). Three to four mice per group were used for analysis. Resulting FastQC files were 

aligned to the mouse genome mm10 using STAR (version 2.5.3a). Ensembl-Gene-level 

counts were generated for nonmitochondrial genes through featureCounts (Subread package, 

version 1.6.2) and Ensembl annotation build 92 (uniquely aligned proper pairs, same strand). 

SAMtools (version 1.8 was used to count reads aligning to proper pairs at least once 

to either strand of the mitochondrial chromosome or to sense or antisense strands of 

Ensembl loci of gene biotype “rRNA” or of nonmitochondrial RepeatMasker loci of the 

class “rRNA” (as defined in RepeatMasker track retrieved from the University of California 

Santa Cruz Table Browser). FASTQ quality was determined using FastQC (version 0.11.3), 

alignment quality was determined by RSeQC (version 2.6.4), and principal component 

analysis was assessed using the prcomp R function with regularized logarithm-transformed 

expression values that were z-normalized for each sample within a given gene. Differential 

expression was determined via the Wald test implemented in the DESeq2 R package 

(version 1.19.49) (22), with correction for multiple-hypothesis testing completed using the 

Benjamini–Hochberg false discovery rate (FDR). Human homologs of mouse genes were 

identified using HomoloGene (version 68), and all data analyses were accomplished using 

the R environment for statistical computing (version 3.5.0). Gene expression differences 

were considered statistically significant when the FDR q value was <0.05. Ingenuity 

Pathway Analysis (IPA; Qiagen Bioinformatics) and Mouse Gene Atlas (ENRICHR) (23, 

24) were further used for analysis to identify relevant pathways and connections.

Proteomics and analysis

BALF samples were sent to the Yale MS & Proteomics Resource (New Haven, CT), where 

they were processed and analyzed via a Label Free Quantification workflow as described 

by Charkoftaki et al. (25). The sample preparation was slightly modified from the 2019 

protocol of Charkoftaki et al. (25) given the samples were BALF. In brief, samples were 

filtered through a 3-kDa Amicon Ultra filter, and the retentate was SpeedVac dried and 

used for downstream proteomics preparation. Dried protein pellets were reduced with DTT, 

alkylated with iodoacetamide, enzymatically digested with LysC and trypsin, and desalted 

using C18 RP microspin column. High-resolution liquid chromatography mass spectrometry 

(MS)/MS data were collected on an Orbitrap Fusion mass spectrometer coupled to a 

NanoACQUITY UPLC and analyzed using Progenesis QI (Waters, Milford, MA) and 

Mascot search engine. Quantitative data were normalized based on equal total amount of 
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peptides/proteins injected on column, and positive protein identification and quantitation 

were based on hits with two or more unique peptides per protein. Experimental groups were 

compared and considered statistically significant when the FDR q value was <0.05, unless 

otherwise stated. IPA (Qiagen Bioinformatics) was used for further analyses.

Statistics

Statistical analyses were performed using GraphPad Prism software. Graphs are represented 

as mean, with error bars indicating SEM. Two-group comparisons were made using a 

Student t test. Multiple-group comparisons used nonparametric 1-way ANOVA (Kruskal–

Wallis test) followed by a Tukey multiple-comparison test or 2-way analysis followed by a 

Sidak test. Data were tested for normality (Shapiro–Wilk test) and homoscedasticity (F-test) 

and were log transformed if either condition was not met. Data were considered significant 

if p < 0.05.

Accession numbers

All gene expression data have been deposited to the National Center for Biotechnology 

Information Gene Expression Omnibus database under Series ID GSE167277 (https://

www.ncbi.nlm.nih.gov/geo/). All MS proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE (26, 27) partner repository with the dataset 

identifier PXD024663 (http://proteomecentral.proteomexchange.org/cgi/GetDataset).

Results

Liver activity modifies the lung transcriptome during endotoxemia

Previously, we found that during endotoxemia, STAT3-dependent hepatocyte activity is 

essential for limiting pneumonia susceptibility in response to a subsequent intrapulmonary 

challenge with E. coli (19). As described previously, hepSTAT3−/− mice have decreased 

survival and increased bacterial burdens in both the lungs and the blood (19). To more 

comprehensively evaluate the impact of liver activity on lung biological pathways, we 

performed RNA sequencing (RNAseq) on whole lungs collected from wild-type (WT) or 

hepSTAT3−/− mice treated for 18 h with i.p. LPS to induce endotoxemia with or without a 

second 24-h challenge with i.t. E. coli (Fig. 1A). A fifth group of WT mice treated with 18 h 

i.p. saline alone was included as an unchallenged control group. Unsurprisingly, 18 h of LPS 

alone had a strong and profound influence on lung gene expression, regardless of genotype 

(Fig. 1B). However, after LPS alone (without pneumonia), a significant genotype-dependent 

effect was also observed, as evidenced by the detection of 1898 differentially expressed 

genes (DEGs; FDR q value < 0.05) in the lungs of hepSTAT3−/− mice when compared with 

WT controls of the same treatment group (Fig. 1B–D). Interestingly, significant genotype­

dependent effects were not present after pneumonia following endotoxemia, suggesting that 

liver-dependent lung transcriptional responses may be particularly important for shaping 

lung immunity before bacterial exposure, likely contributing to compromised responses 

previously observed thereafter (19).
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Lungs exhibit a hyperimmune phenotype in the absence of STAT3-dependent liver activity

To determine biological pathways reflected by lung gene expression differences in 

endotoxemic hepSTAT3−/− lungs, we conducted bioinformatics analyses of changes from the 

LPS-only groups before pneumonia using IPA. The top 15 upstream regulators identified by 

IPA consistently suggest elevated responses to known inflammatory triggers in hepSTAT3−/− 

lungs compared with those from WT mice, based on candidate regulators such as TNF, 

IFN-γ, IL-1β, and others (Table I). In addition, the top five activated diseases and functions 

mapped in IPA indicate increased activation and movement of myeloid cells in hepSTAT3−/− 

lungs, whereas the most decreased categories suggest a dysregulation of cellular dynamics 

that may be inherent to additional aspects of immune activation (Table II) (28–30). These 

categories were rated by the predicted activation z-score, a quantitative inference on likely 

activation of biological function through comparison of the observed dataset and known 

established directional changes from applicable literature. Validation of RNAseq results 

using qRT-PCR confirms elevations of GM-CSF (Csf2), G-CSF (Csf3), CXCL1, and LCN2 

in lung homogenates from endotoxemic hepSTAT3−/− mice compared with WT after LPS 

alone, as well as a loss of genotype-dependent differences by 24 h of pneumonia (Figs 2A–

D). To more specifically determine whether and how altered immune baselines (after LPS 

treatment alone) directly influence responses to secondary lung infections, we conducted an 

alternative analysis on lung qRT-PCR data to specifically calculate the effect of pneumonia 

within either mouse genotype (Fig. 3). Interestingly, these results revealed almost a complete 

loss of gene responsiveness in hepSTAT3−/− lungs after the introduction of bacteria (Fig. 

3). This was consistent across all immune genes analyzed. WNT3A is included as a 

representative decreased gene (from RNAseq results), which we validated with qRT-PCR 

(Figs. 2E, 3E) and which was chosen given its potential protective role in pneumonia (31, 

32).

To establish whether diminished mRNA responsiveness could extend to pathogens other 

than E. coli, we conducted a separate experiment with S. aureus to determine its capacity 

to elicit gene expression in WT and hepSTAT3−/− mice beyond that observed with i.p. LPS 

alone (Supplemental Fig. 1). WT and hepSTAT3−/− mice received i.p. LPS followed by a 

6-h challenge with i.t. S. aureus, a time point typically sufficient to detect lung cytokines. 

After endotoxemia, the impact of pneumonia on CXCL1 and GM-CSF mRNA was reduced 

in hepSTAT3−/− mice compared with the induction achieved in WT mice. Unlike the 

values detected for CXCL1 (~10-fold induction; Supplemental Fig. 1B), S. aureus was 

insufficient to elicit further GM-CSF mRNA in WT mice beyond that stimulated by the 

preceding LPS challenge, but this response was even further diminished in hepSTAT3−/− 

mice (Supplemental Fig. 1A). In both cases, therefore, the impact of pneumonia on cytokine 

induction was reduced in mutant mice, consistent with the notion that hepatocyte STAT3 

activity preserves the capacity of lungs to respond to secondary infection.

We next determined whether differences in gene expression were also observable on a 

protein level in lung homogenates and whether these changes were reflected in the systemic 

circulation. Plasma and lung cytokine concentrations were measured by multiplex bead 

array after 18 h i.p. LPS alone. Increases in CXCL1, CCL2, CXCL2, and GM-CSF 

concentrations were observed in both the lungs (Fig. 4A) and plasma (Fig. 4B) of 
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endotoxemic hepSTAT3−/− mice compared with WT, indicating a systemic increase in 

inflammation in hepSTAT3−/− mice that is potentially tempered by intact liver activity in 

WT mice. Genotype-dependent increases in factors such as TNF-α, urokinase plasminogen 

activator surface receptor, and IL-10 (Fig. 4B) suggest additional changes in inflammatory 

and coagulation mediators, any of which may be a cause or consequence of liver-dependent 

reprogramming. Protein changes were not observed in the lungs after 18 h i.p. LPS followed 

by 6 h of pneumonia (data not shown), supporting that early liver-dependent modifications 

in endotoxemic mice may be more influential before infection as indicated by both RNAseq 

and qRT-PCR.

Lungs are histologically unaffected by liver STAT3 deletion

Given the liver-dependent transcriptional and protein changes observed at a whole-lung level 

after endotoxemia alone, we wanted to determine whether changes in gene expression were 

related to histopathological differences in hepSTAT3−/− mice challenged with endotoxemia 

with or without secondary lung infections. Paraffin-embedded sections of WT and 

hepSTAT3−/− lungs collected after 18 h i.p. saline, after 18 h i.p. LPS, or after 18 h i.p. LPS 

followed by 24 h of pneumonia (Fig. 5) were stained with H&E. At baseline, there appeared 

to be no observable differences between lungs, as expected (Fig. 5). Despite the differences 

to whole-lung transcription and protein concentrations after 18 h of endotoxemia, WT and 

hepSTAT3−/− lungs were also comparable histologically and remained similar throughout an 

additional 24 h of pneumonia (Fig. 5), suggesting that established defects in hepSTAT3−/− 

immunity (19) are not linked to differences in immunopathology during endotoxemia.

Lung leukocyte numbers are unaffected by liver STAT3 deletion during endotoxemia

Despite the histological similarities observed in WT and hepSTAT3−/− lungs, we remained 

unsure of whether lung transcriptional differences (Figs. 1–3) reflected altered gene 

expression signatures in similar populations of lung cells, altered numbers of cells, 

or a combination therein. Macrophages were of particular interest for several reasons. 

First, prior results from our group indicated reduced reactive oxygen species (ROS) in 

macrophages collected from hepSTAT3−/− mice using the current two-hit challenge of 

endotoxemia followed by pneumonia (19). In addition, our gene expression data revealed 

increases in hepSTAT3−/− lung cytokines, such as GM-CSF and G-CSF (Figs. 2–4), 

consistent with potential increases in myeloid activation (Table II). Most importantly, 

when the significantly upregulated genes were mapped to the Mouse Gene Atlas (https://

maayanlab.cloud/Enrichr/), the only significantly represented gene sets were generated from 

LPS-stimulated macrophages (Table III), further suggesting changes in macrophage number 

or function in the lungs of hepSTAT3−/− mice. To address this possibility, we used flow 

cytometry to determine immune cell proportions and numbers after endotoxemia alone, 

the condition in which both gene expression and protein differences were observed. Lungs 

from WT and hepSTAT3−/− mice were isolated and stained for flow cytometry using a 

myeloid panel to enumerate macrophages and neutrophils. Total immune cell numbers 

(CD45+ cells) were unaffected in hepSTAT3−/− mice, and this outcome was consistent across 

subpopulations, including alveolar macrophages, lung neutrophils, monocytes, and other 

lung macrophage populations (comprising interstitial macrophages) (Fig. 6). HepSTAT3−/− 

lungs showed more variability in cell count than what was observed in WT mice, but no 

Odom et al. Page 8

J Immunol. Author manuscript; available in PMC 2021 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/


significant increases were detected, suggesting liver-dependent changes in cellular activity 

rather than changes in cell number as a more prominent driver of transcriptional remodeling.

Alveolar exudate is shaped by the hepatic APR

We have previously shown that during endotoxemia followed by pneumonia, airspace 

constituents from hepSTAT3−/− mice (as reflected by cell-free BALF) provide a more 

favorable environment for bacterial growth (19), indicating important humoral alterations 

in alveolar exudate that are liver dependent. To determine whether compromised defense 

may be related to differences in the airspace proteome, we collected BALF from 

endotoxemic WT and hepSTAT3−/− mice with or without pneumonia and performed label­

free quantitative MS. Significant pneumonia-induced proteomic changes were identified in 

BALF from both genotypes, most of which were shared between WT and hepSTAT3−/− 

mice. However, 67 pneumonia-induced proteomic changes were exclusive to hepSTAT3−/− 

mice, whereas 211 proteins were detected in only WT BALF (Fig. 7A). Given that these 

211 factors represent those in less susceptible WT mice, they were mapped to canonical 

pathways using IPA to identify candidate protective factors underlying improved defense 

in response to secondary lung infection. WT-exclusive protein changes include those 

indicative of “acute-phase responses,” “production of ROS” (already established as impaired 

in hepSTAT3−/− mice) (19), “LXR/RXR activation,” and “coagulation system” (Fig. 7B). 

Corresponding top upregulated and downregulated pneumonia-induced protein changes for 

each category are shown in Supplemental Table I. We also performed a pairwise comparison 

between WT and hepSTAT3−/− BALF after pneumonia, and the top 10 analysis-ready genes 

corresponding to the protein differences between WT and hepSTAT3−/− after endotoxemia 

and pneumonia corroborate decreases in the APR and coagulation (Table IV). To be 

considered analysis-ready, genes had to be identifiable and pass any given filters or cutoffs, 

after which they were ranked by fold change. Within these genes, 9 of the 10 are directly 

classified as APPs (33–36), with only CPB2 falling short of the classification. Five of 

these are also involved in the coagulation system (33–35, 37–40), indicating two important 

liver-driven systems impacting lung airspace content.

Interestingly, all three fibrinogen protein chains were identified as WT-exclusive changes 

in our BALF proteomics analysis, suggesting fibrin and/or its precursors as particularly 

relevant liver-dependent factors. To study this further, we measured fibrinogen across the 

liver, blood, and lungs of WT and hepSTAT3−/− mice after endotoxemia and pneumonia. 

In the liver, mRNA encoding all three protein chains was similarly affected by STAT3 

deficiency, with no observable differences in saline controls but a substantial loss of gene 

induction in hepSTAT3−/− mice after 18 h of LPS that persisted during pneumonia (Fig. 8A). 

Plasma (Fig. 8B) and BALF (Fig. 8C) protein concentrations (indicative of pan-fibrinogen) 

also confirmed reduced circulating levels that were ultimately evident in pneumonic lungs, 

likely resulting from diminished fibrinogen in plasma-derived exudate, which was not 

present until after the onset of pneumonia. Although the exact roles and contributions of 

fibrinogen and other liver-dependent APPs remain unclear in the context of our current 

challenge model, we speculate that such changes are directly linked to the established 

protective effects when lungs encounter infection after a systemic inflammatory event (19).
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Discussion

The results of this study, to our knowledge, are the first to reveal liver-dependent remodeling 

of the lungs, here initiated in response to a systemic challenge with LPS. Together with our 

prior work (19), we believe that the lung’s response to liver-initiated signals is essential for 

maintaining its ability to respond to secondary bacterial challenges, likely influencing the 

degree to which systemic duress, such as that elicited by trauma, burn, and sepsis (1–3, 10–

12), impacts pneumonia susceptibility. Our laboratory previously established the presence, 

activation mechanics, and functional significance of liver acute-phase changes across 

multiple settings, including lung infections with several pathogens and the two-hit challenge 

involving endotoxemia followed by pneumonia as implemented here (17–20). Although 

these prior studies consistently revealed hepatocyte STAT3 activation as a requirement for 

full liver activity, the direct influence of this response on biological pathways in the lungs 

has been relatively underdeveloped. This study advances our understanding of the lung–liver 

axis by comprehensively detailing liver-dependent transcriptional and protein changes to the 

lung, depicting kinetic differences in response between genotypes, implicating myeloid and 

macrophage activation as liver dependent, and revealing the strong influence of liver activity 

on coagulation mediators and other humoral changes within the pneumonic airspaces, many 

of which likely collaborate to promote defense and tissue homeostasis.

In our transcriptional profiling studies, we were surprised to detect a far greater influence 

of the liver after endotoxemia alone compared with that observed after the secondary 

intrapulmonary challenge, with nearly 2000 significant gene changes between genotypes 

present before the introduction of bacteria to the lungs. This result demonstrates a profound 

impact of the liver on the pulmonary environment in response to a systemic inflammatory 

challenge, which, based on our prior study (19), is essential for limiting vulnerability 

to secondary bacterial infections. Given the substantially compromised immune response 

that we previously reported in hepSTAT3−/− mice under these circumstances (19), we 

were initially surprised to discover an exaggeration of proinflammatory gene programs in 

endotoxemic mice lacking an intact liver response. Indeed, the predicted upstream regulators 

based on this gene set include quintessential proinflammatory triggers, many of which 

promote innate pulmonary defense in response to bacterial infection (41–44), seemingly 

contradicting the impaired responses observed in this context (19). Activated functional 

pathways predicted for hepSTAT3−/− lungs after endotoxemia were also consistent with 

an exaggerated immune state, including evidence of elevated myeloid cell function and 

mobility, as well as diminished cytoskeletal organization (perhaps attributable to migration/

engulfment), again implicating liver function as a regulatory measure for lung immune 

responsiveness. This notion was further supported by increased protein concentrations of 

numerous lung cytokines, many of which promote myeloid cell activation and migration (43, 

45–48).

Although the heightened immune status of hepSTAT3−/− lungs was not sufficient to cause 

detectable changes in cell numbers or histopathology, we believe that it modulates the 

activation capacity of the lungs to further stimulation, such that immune “bandwidth” is 

compromised by the inappropriately elevated baseline. This indicates that liver remodeling 

of the lung during endotoxemia (and perhaps other settings of systemic inflammation) 
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tailors the immunological tone of the lungs, rendering an environment that is appropriately 

responsive to secondary bacterial challenges. In support of this, we observed substantial 

pneumonia-induced effects in WT lungs that were virtually absent in the lungs of 

hepSTAT3−/− mice (Fig. 5), in which inflammatory cytokine responses peaked after 

endotoxemia alone (Fig. 4). Ultimately, these findings raise the question of whether a 

heightened immune baseline is detrimental to the lung’s capacity to respond further when 

needed. This concept has, in fact, been observed across multiple conditions that increase 

pneumonia susceptibility, including age, obesity, and chronic diseases (1, 13–16, 49). For 

instance, older patients, a group associated with higher pneumonia risk, showed increased 

inflammatory cytokine levels and immune cells in BAL compared with younger patients 

(50), indicating a lingering level of inflammation at baseline. In addition, age-associated 

inflammation has been shown to increase pulmonary bacterial ligand expression while also 

delaying immune responses (13, 51); particularly, the aged lung microenvironment has 

been implicated in dysfunctional alveolar macrophage responses (52). Moreover, premature 

and unbalanced inflammation may elicit biological changes similar to those observed after 

endotoxin tolerance, which also precedes blunted responses to secondary infection (53). 

Here we have established the liver as an important checkpoint through which the lungs and 

likely other tissues are calibrated in response to systemic inflammatory triggers.

As discussed earlier, changes in lung gene expression profiles did not correspond to changes 

in cellularity, indicating that the observed alterations in lung immune activity are more 

likely attributable to differences in cell function. Although the identity of lung cell types 

influenced by the liver remains an active area of investigation for our laboratory, we 

speculate that macrophage populations may be particularly reliant on hepatic input for 

several reasons. First, this is supported by our prior results in which alveolar macrophages 

from hepSTAT3−/− lungs produced significantly less ROS after endotoxemia followed by 

pneumonia (19). In this study, bioinformatics analysis of upregulated genes in hepSTAT3−/− 

lungs (after endotoxemia) revealed significant alignment with other gene sets generated 

from stimulated macrophages, whereas such effects were not identified for any other cell 

type. Meanwhile, at the mRNA and/or protein levels, we detected exaggerated expression 

of cytokines, such as GM-CSF, CCL2, and CXCL1/2, which serve known roles either 

upstream or downstream of macrophage activity in the lungs (54–56). Our own studies, 

however, are not the first to consider responses of lung macrophages to remote stimuli. 

For instance, macrophage defects in models of sepsis-induced immunosuppression have 

been previously described (57–61), and recent evidence suggests that alveolar macrophage 

immunoparalysis may be because of epigenetic modifications after a systemic inflammatory 

challenge (62). Similar circumstances have been described for interstitial macrophages, 

which are reprogrammed by endothelial production of Rspondin3 during endotoxemia to 

dampen inflammatory responses (63). Sepsis, stroke, and myocardial infarction were also 

recently shown to have substantial effects on tissue macrophages, including, but not limited 

to, those in the lungs (64). These observations combined with our own substantiate lung 

macrophages as a target of nonpulmonary duress. However, the precise degree to which this 

impacts pneumonia susceptibility in a liver-dependent manner remains to be determined.

Although gene expression differences were detected in hepSTAT3−/− lungs before 

pneumonia (after endotoxemia), seemingly dictating responses to bacteria thereafter, we 
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also detected significant modifications to the alveolar proteome during pneumonia, with 

results demonstrating liver activation as a requirement for the accumulation of coagulation 

mediators and other APPs. Inflammation and coagulation are integral for tissue homeostasis 

but require delicate coordination, as evidenced recently by the specific pathology seen 

in patients with coronavirus disease 2019 (65). Poorly regulated coagulation can be 

pathological, especially given its significance in sequestering pathogens within tissues such 

as the lungs to prevent spread of infection (66–72). Yet, the manner in which coagulation 

mediators and other liver-derived APPs collaborate in the airspaces to control pneumonia 

outcome is poorly understood. Our data highlight fibrinogen as a potential APP of interest, 

given substantial reductions in all three fibrinogen peptides across the liver, circulation, 

and lungs of hepSTAT3−/− mice during endotoxemia and pneumonia. Fibrinogen and its 

downstream products are known to exhibit direct antimicrobial functions, constrain bacterial 

dissemination, and facilitate immune function independent of other coagulation factors 

(71–74). We also identified A2M and CPB2 as prominent liver-dependent constituents of 

pneumonic lung. These factors cannot only control coagulation through fibrin stabilization, 

but they also have immunomodulatory effects through their respective interactions with 

complement proteins and urokinase plasminogen activator, whose receptor is implicated as 

a liver-dependent change during endotoxemia (Fig. 4B) (37–39, 75–81). Together, these 

findings implicate fibrinogen as a key liaison for liver-dependent protection in the lungs, 

aided by supporting factors, such as A2M, CPB2, and likely others, that constitute important 

avenues for future investigation.

Although our current studies were mostly performed using E. coli as a secondary challenge 

after systemic LPS, we anticipate that our findings are similar in response to other secondary 

infections given: (1) similar results in cytokine mRNA induction in response to S. aureus 
(Supplemental Fig. 1); and (2) the abundance of liver-dependent changes that occur before 

the introduction of E. coli as a result of LPS alone (Figs. 1, 2, 4), any number of which 

could potentially impact secondary challenges of any type. That said, we acknowledge 

that the experimental conditions used here, including our choices for inducing systemic 

inflammation (LPS), respiratory infection (E. coli/S. aureus), or any combination therein, 

may not reflect the conditions of other important biological contexts, which will require 

further consideration.

Another limitation of our study relates to the challenge of delineating precisely which 

targets are most responsible for the pulmonary effects observed in hepSTAT3−/− mice. By 

targeting hepatocyte STAT3, which was originally named “acute phase response factor” 

on its discovery in 1994 (82), we have blocked the induction of myriad gene programs 

constituting the liver APR. This approach importantly benefits from not eliciting baseline 

changes in hepatic gene expression (17). Thus, although hepSTAT3−/− mice lack the ability 

to respond to inflammatory stimulation, circulating levels of APPs, such as fibrinogen (Fig. 

8) and others (17), are intact. This differs from mouse models in which specific liver-derived 

factors are deleted (83–86), which have their own strengths and limitations. For instance, 

mice lacking the gene encoding serum amyloid P (Apcs) are susceptible to pneumonia, 

providing an important example whereby a specific factor contributes to lung immunity 

(83). Similar results have been reported for other APP-specific knockout mice (86, 87), 

but this strategy neither accounts for baseline APP concentrations nor does it specify the 
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importance of hepatocytes as the origin of gene expression. In all likelihood, the benefits 

of STAT3-driven hepatocyte activity observed in our prior and current studies are due to 

integrated contributions from multiple factors that alter lung immunity in a complex and 

coordinated fashion. Further investigations using conditional liver-specific mutant mice will 

be required to more precisely understand which factors affect which lung cell types in which 

ways.

Overall, we have identified biological pathways in the lung that rely on an intact liver 

response during systemic inflammation. These changes involve myriad transcriptional 

programs and an altered airspace proteome. We believe that this response calibrates lung 

immunity to respond more appropriately and efficiently to secondary challenges, resulting 

in a scenario whereby hepatic acute-phase changes counter the deleterious consequences of 

systemic inflammation. Further studies are needed to determine the extent to which lung 

transcriptional programs, macrophage activity, coagulation modulators, and other pathways 

responsive to hepatic input coalesce to reduce the vulnerability of lungs to infection.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Liver activity modifies the lung transcriptome during endotoxemia in a genotype-dependent 

manner. (A) Two-hit model of endotoxemia and pneumonia. WT and hepSTAT3−/− mice 

received i.p. LPS (1 mg/kg) for 18 h and were either collected then (at 0 h) or given a 

direct pulmonary infection via an i.t. instillation of E. coli (106 CFUs) for an additional 

24 h. (B) RNAseq was performed on WT or hepSTAT3−/− mice challenged with LPS for 

18 h and either 0 or 24 h of pneumonia (PNA). A control group of WT mice with 18 h 

i.p. saline was included. The principal component analysis (PCA) plot indicates a distinct 

genotypic clustering between WT and hepSTAT3−/− mice after endotoxemia alone, with 

1898 significant gene changes between the lungs of each group. (C) The table indicates 

the number of DEGs between hepSTAT3−/− and WT lungs at 18 h i.p. LPS and at 18 h 

LPS/24 h pneumonia with the corresponding q value. (D) The volcano plot depicts genes 

in hepSTAT3−/− lungs that are significantly (q < 0.05) increased (red) or decreased (blue) 

versus WT controls after 18 h i.p. LPS. n = 3–4/group from four independent experiments.
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FIGURE 2. 
After endotoxemia, immune transcripts are exaggerated in the lungs of hepSTAT3−/− mice 

before the induction of pneumonia (PNA). Select lung transcripts were quantified using qRT­

PCR to validate RNAseq results. Lung mRNA induction was determined for (A) GM-CSF, 

(B) G-CSF, (C) CXCL1, (D) LCN2, and (E) WNT3A in specimens collected from mice 

treated for 18 h with i.p. LPS with or without a subsequent i.t. instillation with E. coli 
(106 CFUs). Fold induction was calculated versus gene expression values detected in WT 

mice treated with i.p. saline (n = 4) alone. Data are represented as means with SEM, and 

significance was determined using a 2-way ANOVA followed by a Sidak test for multiple 

comparisons (*p < 0.05, **p < 0.01). n = 5–8/group from five independent experiments.
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FIGURE 3. 
After endotoxemia, lungs from hepSTAT3−/− mice are resistant to pneumonia-induced 

cytokine changes. Lung mRNA induction was determined for (A) GM-CSF, (B) G-CSF, 

(C) CXCL1, (D) LCN2, and (E) WNT3A in specimens collected from mice treated for 18 

h with i.p. LPS with or without a subsequent i.t. instillation with E. coli (106 CFUs). Fold 

induction was calculated versus gene expression values detected in uninfected mice of the 

same genotype. Data are represented as means with SEM, and significance was determined 

using a 2-way ANOVA followed by a Sidak test for multiple comparisons (***p < 0.001, 

****p < 0.0001 versus LPS alone within genotype). n = 5–8/group from five independent 

experiments.
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FIGURE 4. 
Lung and circulating cytokine concentrations are exaggerated in hepSTAT3−/− mice during 

endotoxemia. WT and hepSTAT3−/− mice were treated for 18 h with i.p. LPS, and the 

indicated cytokines were quantified in (A) lungs and (B) plasma by Luminex multiplex bead 

array. Data are represented as means with SEM, and significance was determined using 

an unpaired t test; *p < 0.05. n = 7–11/group from two independent experiments. nd, not 

detectable.
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FIGURE 5. 
Lungs are histologically unaffected by liver STAT3 deletion after endotoxemia with or 

without pneumonia. WT and hepSTAT3−/− mice were given 18 h i.p. saline (n = 2–5 from 

two independent experiments), 18 h i.p. LPS (n = 6–7 from two independent experiments), 

or 18 h i.p. LPS followed by 24 h i.t. E. coli (n = 4–7 from three independent experiments). 

Nonperfused left lung lobes were collected, paraffin embedded, and stained with H&E. 

Representative images of all groups from at least two independent experiments illustrate 

comparable lung architecture under all three conditions between WT and hepSTAT3−/− 

lungs.
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FIGURE 6. 
Lung leukocyte numbers are unaffected by liver STAT3 deletion during endotoxemia. 

Eighteen hours after i.p. LPS, single-cell suspensions were generated from the lungs 

of WT and hepSTAT3−/− mice and stained for flow cytometric quantification of the 

indicated populations. Total cell numbers are illustrated for (A) all leukocytes (CD45+), (B) 

alveolar macrophages (CD45+/Ly6G−/CD64+/SigF+), (C) neutrophils (CD45+/Ly6G+), (D) 

monocytes (CD45+/Ly6G−/CD64−/CD11b+/SigF−), and (E) other macrophages, including 

the interstitial population (CD45+/Ly6G−/CD64+/CD11bhi/SigF−). Data are represented as 

means with SEM. n = 8–15/group from four independent experiments.
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FIGURE 7. 
The composition of alveolar exudate is modified by hepatic acute-phase changes. WT 

and hepSTAT3−/− mice were given 18 h i.p. LPS with or without an additional 24-h 

challenge with i.t. E. coli. BALF was subjected to MS. (A) Significant pneumonia-induced 

protein differences (FDR < 0.05) were determined for endotoxemic WT (white circle) and 

hepSTAT3−/− (gray circle) mice, with shared and genotype-specific differences illustrated as 

a Venn diagram. (B) Canonical pathways (top five) unique to WT mice were determined 

using IPA (n = 4/group from two independent experiments).
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FIGURE 8. 
Synthesis and delivery of fibrinogen to pneumonic airspaces is compromised in 

hepSTAT3−/− mice in response to endotoxemia followed by pneumonia (PNA). WT and 

hepSTAT3−/− mice were given 18 h i.p. saline, 18 h i.p. LPS, or 18 h i.p. LPS followed 

by a 24-h challenge with i.t. E. coli (106 CFUs). (A) qRT-PCR was used to determine 

liver mRNA induction for all three fibrinogen peptide chains. ELISAs were performed 

to determine fibrinogen concentrations in (B) plasma and (C) BALF from the indicated 

experimental groups. Data are represented as means with SEM, and significance was 

determined using a 2-way ANOVA followed by a Sidak test for multiple comparisons (*p < 

0.05, **p < 0.01). n = 3–6/group from eight independent experiments.
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Table I.

Top 15 predicted upstream regulators of DEGs

Upstream Regulators p Value of Overlap

TNF 9.76E–47

IL-1B 6.69E–31

IFNG 3.22E–25

TGFB1 8.05E–22

NFKBIA 1.79E–20

IL-4 2.78E–18

Ige 4.94E–18

NF-κB (complex) 3.37E–16

STAT3 4.65E–16

DUSP1 8.49E–16

Vegf 1.41E–15

CSF2 1.49E–15

IKBKG 2.31E–15

HIF1A 3.97E–15

IKBKB 6.25E–15

The 1898 DEGs (FDR < 0.05) between endotoxemic WT and hepSTAT3−/− lungs were analyzed using IPA, and the predicted top 15 upstream 

regulators of hepSTAT3−/− lungs (versus WT) after endotoxemia are listed.
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Table II.

Top five increased and decreased disease and function categories

Diseases or Functions Annotation p Value Activation z-Score

Cell movement of myeloid cells 1.75E–23 4.190

Cell movement of phagocytes 7.42E–25 3.985

Chemotaxis of phagocytes 2.36E–11 3.453

Chemotaxis of myeloid cells 2.87E–10 3.452

Cell movement of granulocytes 2.72E–17 3.397

Cell death of T lymphocytes 3.06E–9 −2.614

Organization of cytoskeleton 2.2E–13 −2.621

Organization of cytoplasm 1.67E–12 −2.621

Microtubule dynamics 2.09E–12 −2.926

Formation of cellular protrusions 7.12E–10 −3.302

IPA mapped the significantly different gene changes between endotoxemic WT and hepSTAT3−/− lungs to top diseases and functions categories. 
The top five increased and decreased categories (rated by predicted activation z-score) are illustrated.
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Table III.

Cell-specific gene sets represented by upregulated lung genes

Cell Type (Mouse Gene Atlas) Adjusted p Value

Macrophage bone marrow 6 h LPS 8.557E–12

Macrophage bone marrow 2 h LPS 4.168E–4

Macrophage peri-LPS thio 7 h 6.476E–4

T cells FoxP3 + 1.04E–1

Bone 1.04E–1

The upregulated differentially expressed lung genes between genotypes were mapped to the Mouse Gene Atlas (ENRICHR) to determine overlap 
with established cell-specific gene sets.
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Table IV.

Top differentially expressed analysis-ready molecules in BALF

Gene Names ANOVA (p) q Value Fold Change

A2m
a,b 7.2E–5 0.11 −15.69

Apcs
a 1.9E–4 0.11 −11.23

Saa1
a 2.3E–4 0.11 −10.45

Fgg
a,b 8.3E–4 0.16 −9.72

Fga
a,b 7.2E–4 0.16 −8.84

Fgb
a,b 9.2E–4 0.16 −8.61

Orm1/2
a 1.9E–3 0.22 −4.32

Cpb2
b 2.0E–3 0.22 −3.77

Itih4
a 3.5E–4 0.11 −3.61

Serpina3n
a 8.0E–4 0.16 −3.06

a
Established APPs.

b
Known coagulation mediators.

Top 10 analysis-ready molecules between WT and hepSTAT3−/− BALF after 18 h i.p. LPS and 24 h i.t. E. coli according to IPA, ranked by fold 
change.
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