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ABSTRACT
Recent advances in our understanding of epitranscriptomic RNA methylation have expanded the 
complexity of gene expression regulation beyond epigenetic regulation involving DNA methylation 
and histone modifications. The instalment, removal, and interpretation of methylation marks on RNAs 
are carried out by writers (methyltransferases), erasers (demethylases), and readers (RNA-binding pro
teins), respectively. Contrary to an emerging body of evidence demonstrating the importance of RNA 
methylation in the diverse fates of RNA molecules, including splicing, export, translation, and decay in 
the nucleus and cytoplasm, their roles in plant organelles remain largely unclear and are only now being 
discovered. In particular, extremely high levels of methylation marks in chloroplast and mitochondrial 
RNAs suggest that RNA methylation plays essential roles in organellar biogenesis and functions in plants 
that are crucial for plant development and responses to environmental stimuli. Thus, unveiling the 
cellular components involved in RNA methylation in cell organelles is essential to better understand 
plant biology.
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Introduction

RNA modifications have recently emerged as a ubiquitous 
additional regulatory layer in the flow of genetic information 
from DNA through RNA to protein. Approximately 160 che
mical modifications in RNAs have been identified to date 
[1,2], among which methylation is of particular interest for 
its implications in almost every step of RNA metabolism, 
including RNA processing, maturation, transport, translation, 
and degradation [3–7]. Several recent studies demonstrated 
the importance of RNA methylation in plants, influencing 
flowering, shoot and root development, organ formation, 
and abiotic or biotic stress responses [8–11]. 
Methyltransferases (referred to as ‘writers’), demethylases 
(referred to as ‘erasers’), and RNA-binding proteins (RBPs; 
referred to as ‘readers’), which instal, remove, and interpret 
methylation marks, respectively, have been identified and 
characterized in animals [12–15]. By contrast, the identity 
and functions of their plant counterparts are just beginning 
to be uncovered. Moreover, most of these studies have 
focused on the nuclear-cytoplasmic RNA modifications, i.e. 
the cellular components responsible for RNA methylation and 
interpretation in the nucleus and cytoplasm as well as their 
roles in plant development have been extensively reviewed [8– 
11,16,17]. Although methylation levels in chloroplast and 
mitochondrial RNAs are particularly high [18], only few wri
ters in plant chloroplasts and mitochondria have been char
acterized to date (Fig. 1). Given its importance in animal 
mitochondria [19], RNA methylation may have similar essen
tial roles in plant organelles. In this review, we present the 
latest discoveries about chloroplast and mitochondrial RNA 
methylation in plants. Moreover, we summarize the current 

knowledge regarding RNA methylation in animal mitochon
dria as well as in bacteria and suggest a comparative ‘endo
symbiotic’ approach to increase our understanding of the 
roles of RNA methylation in plant organelles.

Methylation of mRNA, tRNA, and rRNA in 
chloroplasts and mitochondria in plants

RNA metabolism, including processing, splicing, editing, and 
decay, is essential for chloroplast and mitochondrial gene 
regulation [20,21], which is crucial for plant survival and 
fitness in response to dynamically changing environmental 
conditions. Given that RNA methylation affects transcript 
fates and translation in the nucleus and cytoplasm [22–24], 
it also likely plays an essential role in plant organelles. In 
animals and plants, N6-methyladenosine (m6A) is the most 
abundant methylation mark in mRNAs [25,26]. Chloroplast 
and mitochondrial RNAs are highly m6A-methylated (98‒ 
100% of transcripts in chloroplasts and 86‒90% in mitochon
dria) with approximately 4‒6 m6A sites per transcript [18,27]. 
Majority of highly m6A-methylated nuclear transcripts encode 
proteins that target chloroplasts [27,28], and a negative cor
relation between m6A methylation levels and gene expression 
has been demonstrated in both organelles [18,27]. Unlike 
nuclear mRNAs showing the enrichment of m6A primarily 
near the stop codon and in the 3ʹUTR, m6A sites in the 
organellar mRNAs appear to be distributed throughout the 
transcripts, with the exception of introns, suggesting a role of 
RNA methylation in splicing [18]. Furthermore, the position 
of methylation sites might be an important signal to regulate 
mRNA translation in plant mitochondria [29].
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Compared to those in animals, the variety of methylated 
nucleotides and their density in tRNAs and rRNAs are high in 
plant organelles [18,29,30], occurring at structurally and func
tionally important positions [31–33]. Methylated residues in 
tRNA and rRNA appear to be evolutionarily conserved from 
unicellular algae up to dicotyledons and monocotyledons [34]. 
In particular, organelle-encoded rRNAs show 5-methylcytosine 
(m5C) methylation at several structurally and functionally 
important positions, whereas organelle-encoded tRNAs are 
mostly depleted of this specific modification, in contrast to 
those of nuclear origin [34]. These results might reflect divergent 
mechanisms of post-transcriptional regulation of tRNAs in 
chloroplasts and mitochondria, which retain the bacteria- 
derived features.

Confirmed RNA methyltransferases in chloroplasts 
and mitochondria in plants

The identity and functions of writers, readers, and erasers in 
chloroplasts and mitochondria in plants remain largely elusive 
(Fig. 1). To date, only a few methyltransferases responsible for 
rRNA methylation in chloroplasts and mitochondria in plants 
have been identified and characterized. Two m6A rRNA 
dimethylases of the ksgA/DIM family have been characterized 
in Arabidopsis thaliana. One of them, PFC1 (paleface1), is 
responsible for the dimethylation of two adenines in 16S 
rRNA, which is important for chloroplast development and 
chlorophyll biosynthesis under cold stress [35]. Similarly, in 

mitochondria, DIM1B modifies 18S rRNA at positions A1914 
and A1915 [36]. Recently, the S-adenosyl-methionine (SAM)- 
dependent methyltransferase, Chloroplast MraW-like 
(CMAL), was identified as the writer responsible for installing 
N4-methylcytosine 1352 (m4C1352) in chloroplast 16S rRNA. 
Loss of this modification causes severe growth defects due to 
impaired plastid development and translation [37,38]. 
Moreover, cmal mutants showed an altered response to gib
berellic acid, auxin, and abscisic acid [37]. Given that the 
nature of writers, erasers, and readers in chloroplasts and 
mitochondria remains unclear, it is imperative to identify 
these cellular factors in plant organelles via systematic com
parative analysis of the methyltransferases that are evolutio
narily conserved among different organisms, which will be the 
main topic of this review (see below).

Potential mRNA writers in plant chloroplasts

Several mRNA writers responsible for m6A, m1A, m3C, m5C, 
and m7G have been identified in the nucleus in animals and 
plants [39‒40] (Table 1). In contrast, mRNA writers in chlor
oplasts and mitochondria in plants are yet to be discovered.

Considering the high levels of m6A methylation in chlor
oplasts and mitochondria [18], it is highly likely that plant 
organelles contain writer proteins that are responsible for 
m6A modification. LC-MS/MS and prediction analysis using 
the SUBA server showed that the m6A writer components 
(methyltransferase A (MTA), MTB, and FIP37) found in 
plant nuclei are also possibly localized in chloroplasts and 
mitochondria [29,41,42] (Table 1). However, whether these 
m6A writer proteins are indeed responsible for m6A methyla
tion in organelles remains to be determined. Additionally, as 
more than 3,000 and 2,000 nucleus-encoded proteins are 
transported to chloroplasts and mitochondria, respectively 
[43], it is probable that writer, eraser, and reader proteins 
are among them (Fig. 1). In particular, several putative 
SAM-dependent methyltransferase proteins, including 
At1g78140, At2g41040, At4g29590, Ag5g44590, At5g44600, 
and At5g63100, which are targeted to chloroplasts in 
Arabidopsis (The Plant Proteome Database, http://ppdb.tc.cor 
nell.edu) (Table 1), might be potential m6A writers in chlor
oplasts. Further biochemical analysis, such as confirmation of 
in vitro methyltransferase activity of the purified recombinant 
proteins, as well as molecular studies of the mutants of puta
tive SAM-dependent methyltransferases, will shed light on the 
nature of writer proteins in plant organelles.

Lessons from the mitochondrial RNA methylation in 
animals

mRNA methylation

The role of mRNA methylation has been extensively studied 
in animals due to its various roles in RNA processing, cell 
metabolism regulation, developmental processes, and diseases 
[26,58,59]. Although the roles of mRNA methylation in mito
chondria are similar to those in other cellular compartments, 
specific functions are determined by the position of the mod
ified residue along the transcript. For instance, nucleus- 

Figure 1. Cellular factors involved in RNA methylation and their roles in 
plant growth and stress responses. The proteins that instal, remove, and 
recognize methylation marks are methyltransferases (‘writers’), demethylases 
(‘erasers’), and RNA-binding proteins (‘readers’), respectively. Several of these 
factors in the nucleus and cytoplasm have been identified, which affect splicing, 
RNA export, translation, and RNA storage and decay. The nucleus-encoded 
potential writer, eraser, and reader proteins are transported to chloroplasts or 
mitochondria, which are responsible for the methylation of mRNAs, tRNAs, and 
rRNAs. These cellular factors in organelles are yet to be identified. RNA methyla
tion plays a vital role in organellar biogenesis and function, which is essential for 
plant growth, development, and stress responses.

2128 S. MANDUZIO AND H. KANG

http://ppdb.tc.cornell.edu
http://ppdb.tc.cornell.edu


encoded transcripts show N1-methyladenosine (m1A) enrich
ment predominantly in the 5ʹ UTR, whereas mitochondrial 
mRNAs (mt-mRNAs) are modified primarily in the CDS and 
3ʹ UTR [60–62]. Unlike some other methylation marks, m1A 
interferes with the normal Watson-Crick base pairing via the 
addition of a positive charge to the modified nucleoside, 
giving rise to alternative conformations or destabilizing tran
script structures [63,64]. This difference in m1A topology 
between the nucleus-cytoplasm and mitochondria is also cor
related with an enhancement or impairment of translation in 
the two compartments, respectively. Both phenomena are 
suggested to be caused by structural destabilization upon 
m1A incorporation, which is correlated with inefficient tran
script-ribosome association in mitochondria [60,61]. Despite 
the essential role of mRNA methylation in animal mitochon
dria, TRMT61B responsible for m1A modification is the only 
mt-mRNA writer identified to date [60] (Table 1).

tRNA methylation

All 22 human mitochondrial tRNAs (mt-tRNAs) are mod
ified at position 9, and five of them also have m1A at 
position 58 [60,65], which is essential for folding and stabi
lizing the correct three-dimensional structures of mt-tRNAs 
through Hoogsteen pairing [63,64,66,67], affecting polysome 
association and translation initiation [68]. Several writer 
proteins responsible for tRNA methylation in animal mito
chondria, yeast, and bacteria have been identified (Table 2). 
The cytoplasmic m1A58 is generated by a yeast-like hetero
dimeric methyltransferase complex (Trmt61A/Trmt6), 
whereas the m1A58 in human mt-tRNA is installed by 
bacteria-derived Trmt61B, an ortholog of bacterial TrmI 
[69‒70], which is also responsible for the methylation of 
m1A947 in mitochondrial 16S rRNA [71]. In contrast, 
methylation of m1A and 1-methylguanosine (m1G) at posi
tion 9 of mt-tRNA is carried out by the RNase P protein 
complex TRMT10C/SDR5C1, the paralog of Saccharomyces 
cerevisiae Trm10 [72‒73]. m1A marks on tRNA in both 
cytoplasm and mitochondria are reverted by the α- 

ketoglutarate-Fe(II)-dependent dioxygenase ALKBH1 
[68,74]. The lack of these proteins causes mitochondrial 
dysfunction, abnormal development, and severe diseases 
[72,75–77].

Together with m1G and pseudouridine (Ψ), m5C is the 
most abundant methylation mark in tRNA, and its presence 
is particularly higher in mitochondria than that of nucleus- 
encoded transcripts, suggesting additional roles of this mod
ification in the regulation of organellar RNA metabolism [78– 
80]. For instance, the combined functions of ALKBH1 and the 
methyltransferase NSUN3 are essential for 5-formilcytidin 
(f5C) biogenesis at position 34 of mt-tRNAMet via m5C for
mation [74,81–83]. These secondary modifications at the 
anticodon wobble position are required for recognizing non- 
canonical codons during mitochondrial translation [84,85]. 
Another NSUN family protein, NSUN2, is responsible for 
the methylation of cytosine 48, 49, and 50 in most mamma
lian mt-tRNAs in addition to several cytoplasmic tRNAs, 
mRNAs, and non-coding RNAs [86,87]. Recently, the 
human methyltransferase TRMT2B, an ortholog of yeast 
Trm2 and bacterial TrmA, has been identified as a writer 
for the installation of highly conserved m5U54 in mt-tRNA 
and m5U429 in 12S rRNA in human mitochondria [88‒89]. In 
addition, several writer proteins responsible for tRNA methy
lation in yeast and bacteria have been identified (Table 2): for 
instance, yeast Trm8 and bacterial YggH responsible for m7G 
[90,91], and yeast Trm1 and Trm13 responsible for m2

2G and 
Am, respectively [92,93]. However, the animal and plant 
counterparts of these enzymes are still unknown.

rRNA methylation

Contrary to other RNA molecules and their cytoplasmic or bac
terial counterparts, mammalian mitochondrial rRNAs (mt- 
rRNAs) are less heavily methylated. In fact, only 10 modifications 
in mt-rRNA have been identified to date, with a prevalence of Ψ 
and 2ʹ-O-methylation (Gm) [96]. Nevertheless, these modifica
tions are conserved between bacteria and humans and are indis
pensable for 55S ribosome biogenesis [97]. Only five modified 

Table 1. List of mRNA methyltransferases in animals, yeast, and plants alongside their putative orthologs in Arabidopsis chloroplasts.

Animal nucleus Yeast Plant nucleus References Arabidopsis chloroplasts+

METTL3 (m6A) Ime4 (m6A) MTA (m6A) [39,44,45] MTA (MS, *)
METTL14 (m6A) MTB (m6A) [46,47] MTB (MS, *)
VIRMA (m6A) Virilizer (m6A) [47,48]
WTAP (m6A) Mum2 

(m6A)
FIP37 (m6A) [49–51] FIP37 (MS, *)

HAKAI (m6A) HAKAI (m6A) [47]
ZC3H13 (m6A) [52]
NSUN2 (m5C) NSUN2 (m5C) 

TRM4B 
(m5C)

[53–55]

TRMT6/61A 
(m1A) 
TRMT61B 
(m1A)#

TRMT61A 
(m1A)

[56,60]

METTL8 (m3C) [57]
METTL1 (m7G) [40]

The Plant Proteome Database (http://ppdb.tc.cornell. 
edu)

At1g78140 (*), At2g41040 (*) 
At4g29590 (*), Ag5g44590 (*) At5g44600 (*), 

At5g63100 (*)
+The putative mRNA methyltransferases in Arabidopsis chloroplasts are indicated with confirmed or predicted subcellular localization. MS, mass spectroscopy analysis; 

*, predicted. #TRMT61B is a mitochondria-localized methyltransferase in humans. 
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nucleosides have been identified in the large subunit of mamma
lian mitochondrial ribosome [96]. Among these, Gm is known to 
greatly influence RNA structures due to its stabilizing property 
and the ability of modulating polarity, steric hindrance, and base 
pairing [64]. In particular, human Gm1145 and Gm1370 are 
localized in the evolutionarily conserved A-loop and peptidyl- 
site of 16S rRNA, which is important for the recognition of 
tRNA. The absence of methyltransferases responsible for these 
modifications results in the reduction of translation and respira
tory activity and defective mitochondrial biogenesis [98‒99].

Several methyltransferases responsible for methylation of 
mt-rRNA in small ribosomal subunit and their implications in 
mitochondrial biogenesis and translation in animals have 
been characterized (Table 3). Human METTL15, an ortholog 
of bacterial RsmH/MraW, catalyzes m4C839 and m5C841 
modifications in mitochondrial 12S rRNA and is required 
for mitoribosome biogenesis [100‒101]. The lack of m5C 
methylation in 12S mt-rRNA at position 841, installed by 

NSUN4, a mammalian ortholog of bacterial YebU, results in 
severe impairments in ribosome biogenesis and translation 
[102‒103]. TFB1M in mouse mitochondria and DIM1 in 
yeast are methyltransferases responsible for N6,N6-dimethyla
denosine at the conserved stem-loop structure of 12S mito
chondrial rRNA, which is essential for the assembly of 
functional ribosomes [104,105]. The lack of these two mod
ifications causes a reduction in electron transport chain com
ponents, which results in abnormal mitochondria 
development and human diseases [105–107]. In addition, a 
few methyltransferases responsible for methylation of mt- 
rRNA in large ribosomal subunit have been identified (Table 
3). MRM1, an ortholog of yeast Pet56 and bacterial RlmB, and 
MRM3 are responsible for Gm1145 and Gm1370, respectively, 
in human mitochondria [98,108–110]. Human MRM2, an 
ortholog of E. coli RlmE that catalyzes 2′-O-methylation of 
uridine residue, is involved in the biogenesis of the large 
subunit of the mitochondrial ribosome [98,99,111].

Table 3. List of rRNA methyltransferases in animal mitochondria, yeast, and bacteria alongside their putative orthologs in Arabidopsis organelles.

Ribosomal subunit Animal mitochondria Yeast Bacteria References Arabidopsis organelles+

Small subunit

METTL15 (m4C839) RsmH/MraW (m4Cm1402) [100,112,113, 
101]

CMAL (m4C1352) (C)

NSUN4 (m5C841) ‒ YebU (m5C1407) [102,103,114] At4g40000 (M*)
TFBIM 

(m2
6A1583-1584)

DIM1 
(m2

6A1781-1782
KsgA/RsmA 

(m2
6A1518-1519)

[35,104,105] DIM1B (m2
6A1914-1915) (M) 

PFC1 (m2
6A) (C)

Trmt2B (m5U429) ‒ ‒ [72] At3g21300 (C*)
‒ snR70 (Cm1639) yraL (m4Cm1402) [101,124] At1g45110 (C*)
‒ ‒ RsmB (m5C967) [125] At1g06560 (C*/M*) 

At3g13180 (C*) 
At5g26180 (C*)

‒ ‒ RsmD (m2G966) [126] At3g28460 (C*)
‒ ‒ RsmE (m3U1498) [127] At1g50000 (C*)
‒ ‒ RsmG (m7G527) [128] At5g50110 (C*/M*)

Large subunit

MRM1 (Gm1145) Pet56 (Gm2270) RlmB (Gm2251) [98,108–110] At2g19870 (C*/M*)
MRM2 (Um1369) MRM2 (Um2791 

21S mt-rRNA)
RlmE (Um2552) [98,99,111] At4g25730 (N*) 

At5g13830 (N*)
MRM3 (Gm1370) ‒ ‒ [98,99] At5g15390 (C*) 

At4g38020 (C*)
‒ ‒ RlmA (m1G745) [129] At1g69520 (M*) 

At1g69523 (C*) 
At1g69526 (C*) 
At2g41040 (C*)

‒ ‒ RlmC (m5U747) [130] At3g21300 (C*)
‒ ‒ RlmD (m5U1939) [130] At3g21300 (C*)
‒ ‒ RlmH (m3Ψ1915) [131] At5g10620 (C*)
‒ ‒ RlmN (m2A2503) [132] At1g60230 (C*) 

At2g39670 (C*)
+The putative rRNA methyltransferases in Arabidopsis organelles are indicated with their subcellular localization. N, nucleus; C, chloroplast; M, mitochondria; *, 

predicted. En dash indicates the absence of specific modifications. 

Table 2. List of tRNA methyltransferases in animal mitochondria, yeast, and bacteria alongside their putative orthologs in Arabidopsis organelles.

Animal mitochondria Yeast Bacteria References Arabidopsis organelles+

Trmt61B (m1A58) TRM61 
TRM6

TrmI [69,70,94] At5g14600 (N) 
At2g45730 (N)

Trmt10C (m1A9; m1G9) Trm10 ‒ [72,73,75] At5g47680 (N*)
NSUN2 (m5C48-49-50) Nop2p RsmB/Nop2p [86,87] ‒
NSUN3 (m5C34) Nop2p RsmB/Nop2p [81–83] ‒
Trmt2B (m5U54) Trm2 TrmA [88,89,95] At3g21300 (C*/M*) 

At2g28450 (N*)
‒ Trm8 (m7G) YggH (m7G) [90,91] At5g24840 (N*/M*) 

At5g17660 (C*)
‒ Trm1 (m2

2G) ‒ [92] At5g15810 (M*) 
At3g56330 (C*)

‒ Trm13 (Am) ‒ [93] At4g01880 (C*)
+The putative tRNA methyltransferases in Arabidopsis organelles are indicated with their subcellular localization. N, nucleus; C, chloroplast; M, mitochondria; *, 

predicted. En dash indicates the absence of specific modifications. 

2130 S. MANDUZIO AND H. KANG



Potential tRNA and rRNA writers in plant organelles: 
Evolutionary perspective

Although mitochondrial and plastid genomes have shrunk 
during the endosymbiotic evolution [115,116], plants still 
retain a large number of nucleus-encoded proteins of α-pro
teobacterial and cyanobacterial origin [117,118]. Moreover, 
their organellar RNA metabolism, albeit with some differences 
between mitochondria and chloroplasts, exhibits both eukar
yotic features, such as introns and splicing, and typical prokar
yotic characteristics, including polycistronic transcripts, 
polyadenylation-mediated RNA decay, 70S ribosomes, and 
Shine-Dalgarno sequence-mediated translation initiation 
[20,21,119–121]. Therefore, RNA methylation in chloroplasts 
and mitochondria might play different roles compared with 
that in the nucleus and cytoplasm. High levels of RNA methy
lation [18] and the importance of post-transcriptional regula
tion in chloroplasts and mitochondria [20,21] point firmly 
towards the centrality of this chemical modification in orga
nellar metabolism in plants. However, the limited knowledge 
regarding the chloroplast- or mitochondria-localized writers, 
readers, and erasers hinders a deeper understanding of epitran
scriptomics in these cellular compartments. Reverse genetic 
approach searching for the plant orthologs of known cellular 
factors in other organisms, such as bacteria, yeast, and human 
mitochondria, will be helpful for this purpose. Similarities in 
RNA methylation between animal mitochondria and bacteria 
have been documented in recent reviews [19,97].

Systematic comprehensive bioinformatics analyses show 
that Arabidopsis possesses putative orthologs of bacterial, 
yeast, or animal mitochondrial tRNA methyltransferases 
(Table 2). Combined LC-MS/MS data [41,42], The Plant 
Proteome Database (http://ppdb.tc.cornell.edu), protein 
sequence homology and conserved domain analysis using 
PROSITE (https://prosite.expasy.org), and subcellular locali
zation prediction analysis using PSORT server (https://psort. 
hgc.jp) and TargetP server (http://www.cbs.dtu.dk/services/ 
TargetP) reveal that chloroplasts and mitochondria in 
Arabidopsis contain several potential methyltransferases 
responsible for tRNA methylation. These include At3g21300 
(ortholog of TrmA for m5U), At5g17660 and 
At5g24840 (ortholog of YggH for m7G), At3g56330 and 
At5g15810 (ortholog of Trm1 for m2

2G), and At4g01880 
(ortholog of Trm13 for Am) (Table 2). Interestingly, in con
trast to animals, chloroplast- and mitochondria-encoded 
tRNAs in Arabidopsis and across Plantae are devoid of or 
rare m5C [34], suggesting independent evolution of organelle 
methylation in these two domains. Given that tRNA methyl
transferases target specific substrates and display diverse func
tions [122] and might be associated with plant development 
and stress responses [123], it will be of great interest to 
characterize above-mentioned nucleus-encoded organellar 
proteins as the potential writers of tRNA methylation. In 
particular, considering that four methylated nucleosides in 
tRNA, m1A, m7G, Am, and Cm, were found to be associated 
with stress response in rice (Oryza sativa) and Arabidopsis 
[123], identification of tRNA methyltransferases responsible 
for these modifications will be beneficial to develop stress- 
tolerant crops via engineering RNA methylation.

Notably, rRNA methylation is localized mainly in the 
highly conserved peptidyl-site region of the ribosomal sub
unit across all domains of life and plays a vital role in transla
tion [97,101], which raises the possibility that 
methyltransferases responsible for rRNA methylation are evo
lutionarily conserved among different organisms. Systematic 
bioinformatics analyses mentioned above reveal that chloro
plasts and mitochondria in Arabidopsis contain orthologs of 
several methyltransferases responsible for rRNA methylation 
in E. coli (Table 3). These include At1g45110 (ortholog of 
yraL for m4Cm [101,124]), At1g06560, At3g13180 and 
At5g26180 (ortholog of RsmB for m5C [125]), At3g28460 
(ortholog of RsmD for m2G [126]), At1g50000 (ortholog of 
RsmE for m3U [127]), At5g50110 (ortholog of RsmG for m7G 
[128]), At1g69520, At1g69523, At1g69526 and At2g41040 
(ortholog of RlmA for m1G [129]), At3g21300 (ortholog of 
RlmC and RlmD for m5U [130]), At5g10620 (ortholog of 
RlmH for m3Ψ [131]), and At1g60230 and At2g39670 (ortho
log of RlmN for m2A [132]). Given that information on 
mapping of all modified rRNA residues and enzymes respon
sible for rRNA methylation are now available for model 
species, such as E. coli and S. cerevisiae [97], it is feasible to 
identify and determine rRNA methyltransferases in plant 
organelles via a comparative approach. Biochemical analysis 
of the in vitro methyltransferase activity of the purified 
recombinant proteins and genetic studies of the mutants of 
potential rRNA methyltransferases mentioned above will 
greatly enhance our understanding of the nature of rRNA 
writer proteins in plant organelles and their physiological 
significance in plant growth, development, and response to 
environmental cues.

Conclusions and future prospects

Recent technical advances in methylome analysis have 
revealed the transcriptome-wide mapping of several RNA 
methylation marks, including m6A and m5C, in plant chlor
oplasts and mitochondria [18,34]. However, the significance 
of these widespread modifications and their role in organellar 
RNA metabolism are largely unknown. In particular, only a 
few writer components of RNA methylation have been iden
tified in plastids and mitochondria, limiting our understand
ing of the role of organellar RNA methylation. Although our 
knowledge regarding RNA methylation in plant organelles is 
limited, rapid progress is possible via comparative analysis of 
chloroplast and mitochondrial proteomes with microorgan
ism counterparts. Notably, the evolutionary conservation of 
several methylation marks and the prokaryotic origin of orga
nelle-localized proteins have been demonstrated [34,117]. Our 
systematic analysis on RNA methylation in bacteria, yeast, 
animal mitochondria, and their counterparts in plant orga
nelles could stimulate further researches aiming at identifying 
cellular factors responsible for RNA methylation in plant 
organelles. Focused biochemical assays to confirm the methyl
transferase activity of putative writer proteins and the mole
cular analysis of the SAM-dependent methyltransferases will 
greatly accelerate the discovery of the roles of RNA methy
lomes in plant organelles. Considering that photosynthesis in 
chloroplasts and energy metabolism in mitochondria are 
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essential for plant survival and adaptation to changing envir
onmental stimuli, engineering RNA methylation in these 
organelles via A-to-G or C-to-T base editing using CRISPR/ 
Cas9 technology [133,134] can be a powerful means for crop 
improvement. Many unsolved questions and challenging 
hypotheses await further investigation to obtain deeper 
insights into the roles and significance of RNA methylation 
in plant organelles.
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