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a b s t r a c t 

This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental 

model to address the resource allocation challenges of mitigating COVID-19. This epidemiological logistics 

model involves the uncertainty of untested asymptomatic infections and incorporates short-term human 

migration. Disease transmission is also forecasted through a new formulation of transmission rates that 

evolve over space and time with respect to various non-pharmaceutical interventions, such as wearing 

masks, social distancing, and lockdown. The proposed multi-stage stochastic model overviews different 

scenarios on the number of asymptomatic individuals while optimizing the distribution of resources, 

such as ventilators, to minimize the total expected number of newly infected and deceased people. The 

Conditional Value at Risk (CVaR) is also incorporated into the multi-stage mean-risk model to allow for a 

trade-off between the weighted expected loss due to the outbreak and the expected risks associated with 

experiencing disastrous pandemic scenarios. We apply our multi-stage mean-risk epidemics-ventilator- 

logistics model to the case of controlling COVID-19 in highly-impacted counties of New York and New 

Jersey. We calibrate, validate, and test our model using actual infection, population, and migration data. 

We also define a new region-based sub-problem and bounds on the problem and then show their com- 

putational benefits in terms of the optimality and relaxation gaps. The computational results indicate 

that short-term migration influences the transmission of the disease significantly. The optimal number of 

ventilators allocated to each region depends on various factors, including the number of initial infections, 

disease transmission rates, initial ICU capacity, the population of a geographical location, and the avail- 

ability of ventilator supply. Our data-driven modeling framework can be adapted to study the disease 

transmission dynamics and logistics of other similar epidemics and pandemics. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The world is undergoing a major health crisis, which has now 

urned into a pandemic. The Coronavirus Disease 2019 (COVID-19), 

rst detected in Wuhan city of China at the end of 2019, has had

 devastating effect on human life and economies in all parts of 

he world. Countries worldwide enforce lockdown and quarantine 

ules to slow down the spread of the virus. For instance, a 76-day 

trict lockdown was imposed starting on January 23, 2020, pub- 

ic transport was suspended, school re-openings after the winter 

acation were delayed, and population movements were severely 

urtailed in Wuhan. Due to the quick response and successful in- 

erventions, China and some other Asia-Pacific countries have man- 
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ged to control the pandemic rapidly and effectively ( Burki, 2020 ). 

ew Zealand imposed a five-week nationwide lockdown before re- 

urning to close-to-normal. The country closed its borders to for- 

igners for more than a year, reducing their cases and deaths con- 

iderably. On the contrary, a slow reaction delaying interventions, 

uch as mask and social distancing, have aggravated the COVID-19 

eath toll in some other world countries, such as the United States 

nd the United Kingdom (UK) ( CNN, 2021; Lilleker, 2021 ). South 

orea and Ghana gave consistent messages highlighting the risks 

f the new pandemic and how it could be mitigated. However, na- 

ions such as Brazil, the UK, and India gave out inconsistent mes- 

ages about the threat of COVID-19 and encouraged complacency 

ess well, worsening the pandemic’s impact ( CNN, 2021 ). 

The lockdown, imposing travel restrictions, and social distanc- 

ng have also severely affected the economy, from small-scale in- 

ustries to stock prices and international trading. The virus has 

 high transmission rate, causing more than 104.7 million cases 

https://doi.org/10.1016/j.ejor.2021.11.052
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.11.052&domain=pdf
mailto:esratoy@njit.edu
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lobally, of which 2.3 million people have died by mid-February 

021 ( JHU, 2020 ). The continuous increase seen in coronavirus 

ases has made a worldwide scarcity of essential resources, such 

s ventilators, Intensive Care Unit (ICU) beds, Personal Protective 

quipment (PPE), and masks. Effective, sufficient, and timely de- 

ivery of those critical resources to serve COVID-19 patients has 

een a major challenge faced by nations worldwide during the 

andemic. 

COVID-19 is primarily an acute respiratory disease. Ventilator 

ncubation delivers high oxygen concentrations while removing 

arbon dioxide and reduces the risk of hypoxia for COVID-19 pa- 

ients ( Meng et al., 2020 ). The standard Acute Respiratory Distress 

yndrome protocol mandates that the most severe COVID-19 pa- 

ients, who constitute 5% of all COVID-19 patients, should receive 

entilator support ( Bein et al., 2016 ). As a result, the life of many

OVID-19 patients depends on the use of ventilators. The short- 

ge of supplies and uncertainty in disease transmission has af- 

ected the proper allocation of ventilators, causing immense dis- 

ress to the healthcare system. Due to ventilator shortages world- 

ide during the pandemic’s peak times, hospital officials have had 

o make life-altering resource allocation decisions and prioritized 

he care of COVID-19 patients ( Ranney, Griffeth, & Jha, 2020 ). To 

ackle ventilator shortages and reduce the number of COVID-19- 

elated deaths, studies have come up with new approaches for 

entilator distribution. For example, Ranney et al. (2020) suggest 

hat the demand for ventilators can be fulfilled by the government 

y allowing other industries to come together and help medical in- 

ustries to cater to the needs of the ventilators. Another study by 

astro et al. (2020) suggests that the government in Brazil should 

tart thinking about expanding the resource capacity rather than 

nly focusing on the allocation of the available resources for con- 

rolling COVID-19. White & Lo (2020) develop a framework for the 

istribution of ICU beds and ventilators depending on the prior- 

ty scores using a scale of 1 to 8 based on patients’ likelihood of 

urvival and ethical considerations. 

Operations Research (OR) methods have been widely used to 

etermine optimal resource allocation strategies to control an epi- 

emic or pandemic. Several studies have used multi-period OR 

odels to optimize the allocation and redistribution of ventila- 

ors (see, e.g., Mehrotra, Rahimian, Barah, Luo, & Schantz (2020) , 

ertsimas et al. (2020) , and Blanco, Gázquez, & Leal (2020) ). Other 

R research models that study the epidemic diseases and resource 

llocation mainly focus on the logistics and operation management 

o control the disease in optimal ways ( Büyüktahtakın, des Bor- 

es, & Kıbış , 2018; Co ̧s gun & Büyüktahtakın, 2018; Kaplan, Craft, 

 Wein, 2003; Tanner, Sattenspiel, & Ntaimo, 2008; Yin & Büyük- 

ahtakın, 2021a; Zaric & Brandeau, 2001 ). We refer the reader to 

xcellent reviews of Dasaklis, Pappis, & Rachaniotis (2012) and 

ueiroz, Ivanov, Dolgui, & Wamba (2020) for a discussion of OR 

odels for epidemic resource allocation. 

While OR has been an extremely useful tool for effective and 

imely allocation of resources as a response to epidemics, none of 

he former work has considered the ventilator allocation problem 

sing a risk-averse spatio-temporal stochastic programming model 

nder uncertainty of asymptomatic infections. People move be- 

ween regions, states, and countries, which aggravates the disease 

ransmission to the other areas. Evaluating undetected or asymp- 

omatic individuals is critical for determining disease dynamics be- 

ause asymptomatic individuals move around and unknowingly in- 

ect other individuals ( McCrimmon, 2021 ). Thus, the short-term 

igration of people is a critical factor that needs to be considered 

o forecast the transmission of COVID-19 realistically. However, the 

hort-term migration rate is hard to predict and is affected by in- 

erventions and human behaviors. Furthermore, disease transmis- 

ion rates are not constant and rather evolve over time with gov- 

rnment interventions, such as the lockdown or social distancing 
256 
easures. This change in the transmission rates also should be 

onsidered in a realistic model. To our knowledge, none of the for- 

er OR ventilator allocation models have integrated the epidemio- 

ogical aspects of the disease and resource allocation challenges in 

ne optimization model. 

In this paper, we address the limitation of realistically fore- 

asting the transmission of COVID-19 and build a risk-averse 

ulti-stage stochastic epidemics-ventilator-logistics programming 

odel to study the ventilator allocation for the treatment of 

evere COVID-19 patients. Our model considers the uncertainty 

f untested asymptomatic individuals during the transmission of 

OVID-19 and involves various pandemic scenarios during each 

ime stage of the planning horizon. Our model also incorpo- 

ates the short-term migration between the highly-impacted re- 

ions while using changing transmission rates under various non- 

harmaceutical intervention measures. The model optimizes the 

istribution of ventilators while minimizing the total expected 

umber of infected and deceased people. We calibrate, validate, 

nd test our epidemiological ventilator allocation model using 

OVID-19 data collected during the pandemic’s early stages. 

Former research presents bounds and approximation methods 

or risk-averse multi-stage stochastic mixed-integer programming 

roblems, see, e.g., Sandıkçı & Özaltın (2017) , Mahmuto ̆gulları, 

avu ̧s , & Aktürk (2018) , and Bakir, Boland, Dandurand, & Er- 

ra (2020) . Büyüktahtakın (2021) presents a new scenario sub- 

roblem and defines stage- t scenario dominance concept for the 

rst time. The author also defines lower and upper bounds on 

he problem based on scenario sub-problems and presents sce- 

ario dominance decomposition cuts based on a partial ordering 

f scenarios. Bushaj, Büyüktahtakın, & Haight (2021a) later ex- 

end the scenario dominance definition and decomposition cuts of 

üyüktahtakın (2021) under the case of endogenous uncertainty 

nd show their computational benefit for solving a forest insect 

nfestation surveillance and control problem. Inspired by the ap- 

roach of Büyüktahtakın (2021) , we define region-based and risk- 

ased sub-problems and new lower and upper bounds using those 

ub-problems. Computational results also show that the proposed 

ounds significantly reduce the optimality and relaxation gaps. 

.1. Organization of the paper 

This paper is organized into six sections. Section 2 presents a 

eview of the articles that estimate the transmission of COVID- 

9, evaluate various interventions used to control the disease, 

nd optimize resource allocation during an epidemic or pandemic, 

nd summarizes our paper’s contributions. Section 3 presents the 

odel notations, the compartmental sub-model, time and space- 

arying transmission sub-model, the description of uncertainty and 

cenario tree, the risk measure used in the model, and the multi- 

tage stochastic programming model formulation that integrates all 

lements described in this section. Section 4 presents a new region 

ub-problem and lower and upper bounds to tackle the problem 

ifficulty. Section 5 provides the data used in the model, including 

opulation and migration data, epidemiological data, initial infec- 

ion data, and capacity and cost data. Section 6 presents the results 

f the model’s application to the case of COVID-19 control in the 

ounties of New York and New Jersey states. Section 7 discusses 

ey insights from the results and provides future research direc- 

ions. 

. Literature review 

This section presents a review of the articles that study math- 

matical models to estimate the transmission rate of COVID-19, 

valuate various interventions used to control the disease, and 

ptimize resource allocation during the pandemic. The literature 
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Table 1 

Summary of the Literature Review. 

Approach Specific Method Reference Modeling or Logistical Feature Outbreak 

Compartmental, 

Simulation and 

Forecasting Models 

Compartmental and 

Simulation 

Chatterjee et al. (2020) Estimate the impact of nonpharmacological interventions COVID-19 

Ku et al. (2020) Determine forces of infections and R 0 COVID-19 

Li et al. (2020) Estimate the effects of under-detection of confirmed cases COVID-19 

Wang et al. (2020) Estimate the impacts of required social distancing measures COVID-19 

Weissman et al. (2020) Estimate surges in clinical demand COVID-19 

Stochastic 

Compartmental 

Ambikapathy & Krishnamurthy 

(2020) 

Assess the COVID-19 cases for lockdowns in India COVID-19 

Kucharski et al. (2020) Estimate the transmission rate of COVID-19 infections COVID-19 

Kretzschmar et al. (2020) Estimate R 0 due to delays in testing and isolation COVID-19 

Roberts et al. (2020) Analyze the impacts of ICU bed capacity COVID-19 

Tuan et al. (2020) Calculate the reproduction number COVID-19 

Wei et al. (2020) Understand the impacts of transportation in epidemics COVID-19 

Zeb et al. (2020) Find the number of infections using the isolation compartment COVID-19 

Regression and 

Time-Series Models 

Badr et al. (2020) Estimate transmission using mobile data COVID-19 

Katris (2020) Estimate the number of infections COVID-19 

Loeffler-Wirth et al. (2020) Visualize transmission rate COVID-19 

Manca et al. (2020) Forecast hospital capacity COVID-19 

Murray (2020) Forecast ICU occupancy and ventilators COVID-19 

Optimization Two-Stage Stochastic 

Programming 

Blanco et al. (2020) Minimize the expected non-covered demand COVID-19 

Mehrotra et al. (2020) Optimize the allocation of ventilators COVID-19 

Tanner et al. (2008) Optimize the vaccination policy General 

Multi-Stage Stochastic 

Programming 

Yin & Büyüktahtakın (2021a) Optimize resources and centers allocation under uncertainty and equity Ebola 

Yin & Büyüktahtakın (2021b) Optimize vaccine allocation and treatment logistics under a mean-CVaR 

objective 

Ebola 

This paper Optimize ventilator allocation under asymptomatic uncertainty and risk COVID-19 

MIP and/or Machine 

Learning 

Bertsimas et al. (2020) Optimize ventilator allocation in the US COVID-19 

Bushaj et al. (2021b) Integrate reinforcement learning and simulation for epidemic 

decision-making 

COVID-19 

Büyüktahtakın et al. (2018) Integrate compartmental and logistics models to minimize infections Ebola 

Huang et al. (2017) Optimize the allocation of mechanical ventilators Influenza 

Lacasa et al. (2020) Optimize ventilator and ICU bed allocation in the UK and Spain COVID-19 

Yin et al. (2021) Integrate agent-based simulation and MIP to optimize vaccine 

location-allocation 

COVID-19 

Network Optimization Billingham et al. (2020) Optimize the distribution of ventilators COVID-19 

Robust Optimization Parker et al. (2020) Optimize resource transfer to reduce critical shortages COVID-19 

Approximate Dynamic 

Programming 

Co ̧s gun & Büyüktahtakın (2018) Optimize resource allocation under a limited intervention budget HIV 

Stochastic System 

Dynamics 

Kaplan et al. (2003) Vaccinate incorporating the tracing/vaccination queue Smallpox 

Zaric & Brandeau (2001) Maximize the number of new infections averted General 

Review Systematic Review Dasaklis et al. (2012) Survey the literature on epidemic control logistics General 

Structured Review Queiroz et al. (2020) Survey literature on the COVID-19 pandemic supply chains COVID-19 
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overs various methods, including compartmental models, such as 

he Susceptible (S)-Exposed (E)-Infectious (I)-Recovered (R) [SEIR] 

ormulations, simulations, optimization models, stochastic, statisti- 

al, or probabilistic approaches, and network or graph-theory mod- 

ls, and is summarized in Table 1 . 

Compartmental, Simulation and Network Models. Several 

tudies on COVID-19 modeling use SEIR-type models with simu- 

ations, such as the Monte Carlo Simulation, to predict the dis- 

ase transmission rate and analyze the effectiveness of proposed 

on-pharmaceutical interventions and resource allocation strate- 

ies (see, e.g., Chatterjee, Chatterjee, Kumar, & Shankar (2020) , 

eissman et al. (2020) , Wang et al. (2020) , and Li et al. (2020) ).

or example, Li et al. (2020) develop a novel epidemiological model 

alled DELPHI based on an SEIR model to estimate the effec- 

iveness of government interventions and the effects of under- 

etection of confirmed cases. They find that the world-widely im- 

lemented travel restriction policies, social distancing, and mass 

athering restrictions play a crucial role in reducing the infection 

ate. Ku, Ng, & Lin (2020) develop an empirical approach based 

n a Bass Susceptible-Infected-Recovered model to predict specific 

ransmission parameters, exogenous forces of infection, and effec- 
257 
ive population sizes to determine the reproductive number ( R 0 ) 

or COVID-19 transmission in Chinese provinces. 

Stochastic compartmental models have also been used to ana- 

yze the uncertain transmission dynamics of COVID-19. For exam- 

le, Kucharski et al. (2020) develop the stochastic dynamic Sus- 

eptible, Isolated, Infected, Recovered, and Exposed model to de- 

ive the transmission rate using COVID-19 cases in Wuhan as well 

s the associated international infections. The initial reproductive 

umber of 2.35 was reduced to 1.05 after imposing travel re- 

trictions in Wuhan. Kretzschmar et al. (2020) develop a stochas- 

ic mathematical model to understand the impact of time delays 

n testing and isolation on the reproductive number of COVID- 

9 transmission. Differential equations have been mainly used to 

olve compartmental disease models (see, e.g., Ambikapathy & Kr- 

shnamurthy, 2020; Wei et al., 2020; Zeb, Alzahrani, Erturk, & Za- 

an, 2020; Tuan, Mohammadi, & Rezapour, 2020 ; and Wang et al., 

020 ). For example, Roberts, Seymour, & Dimitrov (2020) come up 

ith a series of differential equations that are designed to compare 

he two scenarios based on delaying of ICU bed shortage - effects 

f hospitalizing fewer COVID-19 patients versus increasing the ICU 

ed capacity. 
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The literature also includes many studies that present statistical 

pproaches, such as logistic regression, generalized additive, and 

ime-series models to predict the growth of the disease over time 

nd implement resource allocation strategies accordingly during 

he pandemic (see, e.g., Murray, 2020; Manca, Caldiroli, & Storti, 

020 ; and Katris, 2020 ). Graph-theoretical methods have also been 

uite useful in studying the COVID-19 transmission patterns and 

nding out the practices to reduce the transmission rate (see, e.g., 

u et al., 2020; Loeffler-Wirth, Schmidt, & Binder, 2020 ; and Badr 

t al., 2020 ). For example, Badr et al. (2020) model the transmis- 

ion rate of COVID-19 based on mobile phone mobility and support 

he role of social distancing in combating COVID-19. 

Optimization Models. Optimization models have also been 

idely studied for resource allocation in the fight against COVID- 

9. Queiroz et al. (2020) provide a systematic review of various 

upply chain and logistics approaches for optimizing the distribu- 

ion of critical resources amid COVID-19. To tackle the shortage 

f ventilators, Mehrotra et al. (2020) develop a two-stage stochas- 

ic programming model, optimizing ventilator allocation during the 

andemic under various demand scenarios. The authors find that 

hen 60% of the ventilator inventory is allocated to non-COVID- 

9 patients, there is no shortfall. In comparison, when 75% of the 

tock is allocated to the non-COVID-19 patients, a shortfall in the 

upply of the ventilators to COVID-19 patients occurs. Also, they 

nd that it is essential to ramp up the production of the ventilators 

o meet the additional requirements of the ventilators that might 

ome up during the peak times of the pandemic. Lacasa, Challen, 

rooks-Pollock, & Danon (2020) come up with an algorithm for op- 

imizing the allocation of the ventilators and ICU beds and validate 

heir algorithm during the peak and declining times of the pan- 

emic based on the data from the United Kingdom and Spain. 

Bertsimas et al. (2020) develop a four-step approach, com- 

ining descriptive, predictive, and prescriptive analytics and pro- 

ose an optimization model for the re-allocation of the ventilators 

hroughout the U.S. during the COVID-19 pandemic. Blanco et al. 

2020) present a two-stage stochastic mixed-integer programming 

odel, which minimizes the expected non-covered demand, us- 

ng robust objective functions of type min-max regret. Billingham, 

idrick, Edwards, & Klaus (2020) present a network optimiza- 

ion model to tackle the problem of scarce ventilator distribution. 

arker, Sawczuk, Ganjkhanloo, Ahmadi, & Ghobadi (2020) develop 

ixed-integer programming and robust optimization models to re- 

istribute patients instead of resources, such as ventilators among 

ifferent hospitals under demand uncertainty. Govindan, Mina, & 

lavi (2020) develop a practical decision support system hinging 

n the knowledge of the physicians and the fuzzy interference sys- 

em (FIS) to help manage the demands of essential hospital ser- 

ices in a healthcare supply chain, to break down the pandemic 

ropagation chain, and reduce stress among the health care work- 

rs. Huang et al. (2017) introduce a two-stage forecasting and op- 

imization framework for optimizing stockpiles of mechanical ven- 

ilators, which are critical for treating hospitalized influenza pa- 

ients in respiratory failure under a pandemic situation. They also 

ncorporate their model into a web-based decision-support tool 

or pandemic preparedness and response. Yin & Büyüktahtakın 

2021b) develop a multi-stage stochastic programming vaccine al- 

ocation model and apply it to the case of the Ebola virus disease 

n the Democratic Republic of the Congo. The authors also define 

wo new equity metrics for fair resource allocation. Bushaj, Yin, 

eqiri, Andrews, & Büyüktahtakın (2021b) present an integrated 

imulation-deep reinforcement learning (SiRL) framework to deter- 

ine best intervention strategies over time for epidemic decision- 

aking, while Yin, Bushaj, Yuan, & Büyüktahtakın (2021) present 

n agent-based simulation-optimization approach to solve the vac- 

ine center location vaccine allocation problem with an application 

o controlling COVID-19. 
258 
.1. Key contributions 

In summary, former stochastic programming approaches on 

entilator allocation in a pandemic situation have involved a time 

omain of only two stages and have not integrated an epidemic 

odel within the stochastic program. Furthermore, the mathemat- 

cal models on the forecast of COVID-19 do not include the uncer- 

ainty of untested asymptomatic infections. They do not incorpo- 

ate the impact of short-term migrations on COVID-19 transmis- 

ion in an epidemiological model. Also, former studies on COVID- 

9 modeling and logistics have omitted the time consistency of 

he risk for making decisions over multiple stages of a stochastic 

rogram under extreme pandemic scenarios. Our methodological, 

odeling, and applied contributions to the epidemiology and OR 

iterature are summarized below. 

Methodological contributions: We define region- and risk- 

ased sub-problems. Then using those sub-problem solutions, we 

enerate new lower and upper bounds on the original problem 

ptimal objective function value. We also present proofs for those 

esults and bounds. Our computations demonstrate that the pro- 

osed region-based upper and lower bounds significantly reduce 

he optimality and relaxation gaps, respectively. We also compare 

nd discuss the efficiency of region sub-problem bounds with re- 

pect to that of the scenario sub-problem bounds of Büyüktahtakın 

2021) . 

Modeling contributions: First, to our knowledge, this is the 

rst study that addresses the optimal distribution of ventilators to 

ontrol a pandemic in a multi-stage stochastic mean-Conditional 

alue at Risk (CVaR) model. This model includes many realistic ef- 

ects critical in the COVID-19 pandemic, including untested asymp- 

omatic infections, human movement among multiple regions, and 

volving transmission rates under non-pharmaceutical intervention 

easures. Considering multiple stages in a multi-stage SP is essen- 

ial to capture uncertain disease dynamics over multiple time pe- 

iods since disease transmission dynamically changes over time. 

Second, we consider the uncertainty of the proportion of 

ntested asymptomatic infections at each stage and integrate this 

nknown dimension of the pandemic by generating a multi-stage 

cenario tree. As opposed to robust optimization, which focuses 

n the worst-case outcomes assuming a hostile environment, in 

tochastic programming, decision makers consider all possible out- 

omes (e.g., scenarios) by assigning weights to outcomes and op- 

imizing some aggregated measure of performance over all likely 

utcomes ( Defourny, Ernst, & Wehenkel, 2012 ). Thus, our multi- 

tage stochastic programming approach to modeling the uncer- 

ainty in the proportion of asymptomatic infections is more advan- 

ageous and provides less conservative results compared to robust 

ptimization ( Yin & Büyüktahtakın, 2021a ). 

Third, we present a new susceptible (S)- tested infected (I)- 

ntested asymptomatic (X)- hospitalized (H)- ICU (C)- recov- 

red (R)- death (D) compartmental disease model specialized 

or COVID-19, and also incorporate short-term human migration 

mong multiple regions into this epidemiological model. Fourth, 

e derive a new time- and space-varying disease transmission for- 

ulation, which takes into account the impact of government in- 

erventions on transmission rates. Fifth, we formulate a budget- 

onstrained ventilator allocation logistics model. Sixth, we incor- 

orate a time-consistent CVaR risk-measure and the expectation 

riterion in the objective function to alleviate the impacts of ex- 

reme pandemic scenarios. Lastly, we integrate all those elements 

nto one epidemics-ventilator-logistics mathematical formulation, 

hich minimizes the number of infections and deceased individ- 

als under different intervention strategies while determining the 

ptimal timing and location of resources (ventilators) allocated. 

ur model combines the forecast of the transmission of COVID-19 

nd the determination of optimal ventilator allocation strategies in 
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ne formulation. Accordingly, the decision-maker can evaluate pos- 

ible outcomes of wait-and-see decisions while foreseeing how the 

isease could progress in each time period. 

Applied Contributions: We apply our general multi-stage 

ean-risk epidemics-ventilator-logistics model to the case of con- 

rolling COVID-19 in highly-impacted counties of New York and 

ew Jersey. We collect real data from various resources and pro- 

ide researchers with compact epidemiological, population, and 

ogistics-capacity data for COVID-19. Using this data, we calibrate, 

alidate, and test our model, which could be used as a decision 

upport tool for fighting against COVID-19. Our model can also be 

dapted to study other similar diseases’ transmission dynamics and 

ogistics. 

Key Recommendations to Decision Makers: This study pro- 

ides optimal risk-averse ventilator allocation policies under differ- 

nt risk levels that the decision-maker can apply to control COVID- 

9. Based on our results, we offer the following recommendations 

o inform resource allocation policies under a pandemic: 

• The short-term movement of people influences the number of 

new infections even if the disease transmission rate stays the 

same. 
• The number of treated people in the ICU may stay at the ca- 

pacity limit under different intervention strategies because this 

value depends on the minimum number of patients who re- 

quire a ventilator for treatment and the scarce ventilator sup- 

ply. There is also a lag time to observe the impacts of govern- 

ment non-pharmaceutical interventions on the number of hos- 

pitalized and deceased individuals, as well as ICU patients. 
• “Lockdown” is the best strategy to control COVID-19. However, 

the “Mask and Social Distance” intervention following a certain 

period of “Lockdown” is the second-best choice, considering the 

need for opening facilities and businesses. 
• The ventilator allocation under different budget levels and sce- 

narios indicates that the number of ventilators allocated to each 

region depends on various factors, such as the number of initial 

infections, initial disease transmission rates, initial ICU capacity, 

and the population of a geographical location. 
• Overall, the region with a high initial transmission rate and low 

initial ICU capacity has more ventilators allocated. Under a lim- 

ited budget level, the region with low initial infections and low 

initial ICU capacity gets more ventilators allocated when the 

transmission scenario changes from “All Low” to “All Medium”

and “All High.”
• Independent from the transmission scenarios, the region with 

a high initial transmission rate has more ventilators allocated 

when the budget level increases. There are also increasing 

trends in the number of ventilators allocated when either the 

budget level increases or the cost for each ventilator reduces. 

A large-enough budget also provides some flexibility in delay- 

ing ventilator allocation to some regions. In contrast, all of the 

ventilators are allocated at the first two stages under a limited 

budget. 
• Considering risk in decision-making improves the confidence 

level for reducing the loss of lives under risky pandemic scenar- 

ios. However, a risk-averse decision-maker should also expect a 

possible increase in the number of infections and deaths while 

mitigating disastrous scenarios. 

. Problem formulation 

This section discusses important features and submodels used 

n the risk-averse multi-stage stochastic epidemics-ventilator- 

ogistics compartmental model and then presents its formula- 

ion (5a) –(5w) . Specifically, Section 3.1 presents the descrip- 

ion of the notations used in the model, Section 3.2 describes 
259 
ompartment flow of population dynamics in the mathemati- 

al model, Section 3.3 introduces the formulation for time and 

pace-varying transmission rates in the model, Section 3.4 ex- 

lains the uncertainty and scenario tree generation scheme, 

ection 3.5 states the specific features and assumptions made in 

he mathematical model, and Section 3.6 provides a brief descrip- 

ion of the measure of multi-stage risk used in the model, CVaR. 

hen Section 3.7 presents the mathematical formulation for our 

pidemics-ventilator-logistics model that integrates all elements 

escribed in this section. 

.1. Model notation and formulation 

Below we provide notations used for the rest of the paper. 

Sets and Indices: 

J: Set of time periods, J = { 0 , . . . , J } . 
R : Set of regions, R = { 1 , . . . , R } . 
�: Set of scenarios, � = { 1 , . . . , �} . 
N: Set of nodes in the scenario tree, where n ∈ N. 

j: Index for time period, where j ∈ J. 

r: Index for region where r ∈ R . 

ω: Index for scenario, where ω ∈ �. 

State Variables: 

S ω 
j,r 

: Susceptible individuals in region r at stage j under scenario 

ω. 

I ω 
j,r 

: Tested symptomatic and part of asymptomatic infected in- 

dividuals in region r at stage j under scenario ω. 

X ω 
j,r 

: Untested asymptomatic infected individuals in region r at 

stage j under scenario ω. 

H 

ω 
j,r 

: Hospitalized individuals in region r at stage j under sce- 

nario ω. 

C ω 
j,r 

: Individuals treated in the intensive care unit (ICU) in region 

r at stage j under scenario ω. 

R ω 
j,r 

: Recovered individuals in region r at stage j under scenario 

ω. 

F ω 
j,r 

: Deceased individuals in region r at stage j under scenario 

ω. 

O 

ω 
j,r 

: Number of tested symptomatic infected individuals admit- 

ted to the hospital in region r at stage j under scenario ω. 

I 
ω 
j,r : Number of tested symptomatic infected individuals who 

cannot be admitted to the hospital due to limited capacity 

in region r at stage j under scenario ω. 

C 
ω 
j,r : Number of individuals admitted to ICU in region r at stage 

j under scenario ω. 

K 

ω 
j,r 

: Number of hospitalized individuals not admitted to the ICU 

due to the limited availability of ventilators in region r at 

stage j under scenario ω. 

U 

ω 
j,r 

: Number of cumulative ventilators (ICU capacity) in region 

r at stage j under scenario ω. 
ˆ I ω 
j,r 

: Number of infections caused by short-term migration in re- 

gion r at stage j under scenario ω. 

Parameters: 

λ1 ,r : Recovery rate of tested symptomatic and part of asymp- 

tomatic infected individuals in region r. 

λ2 ,r : The death rate of tested symptomatic and part of asymp- 

tomatic infected individuals in region r. 

λ3 ,r : Hospitalization requirement rate of tested symptomatic 

and part of asymptomatic infected individuals in region r. 

λ4 ,r : Recovery rate of the hospitalized individuals in region r. 

λ5 ,r : Death rate of hospitalized individuals in region r. 

λ6 ,r : Ventilator requirement rate of hospitalized individuals in 

region r. 
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Fig. 1. One-step COVID-19 compartmental model. Note that λ3 ,r and λ6 ,r are not constant transition rates; and they depend on the available hospital and ICU capacity, 

respectively. 
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λ7 ,r : Recovery rate of ICU patients in region r. 

λ8 ,r : Death rate of ICU patients in region r. 

λ9 ,r : Recovery rate of untested asymptomatic individuals in re- 

gion r. 

σ1 , j,r : Transmission rate of tested symptomatic and part of 

asymptomatic infected individuals in region r at stage j. 

σω 
2 , j,r 

: Proportion of untested asymptomatic infections in region 

r at stage j under scenario ω. 

T ω 
j,r 

: Hospital capacity in region r at stage j under scenario ω. 

U 0 ,r : Initial number of ventilators (ICU capacity) in region r. 

e 1 : Cost of each ventilator. 

�: Total budget for ventilators. 

πr : Initial number of susceptible individuals in region r. 

� r : Initial number of tested infected individuals in region r. 

ϕ r : Initial number of untested asymptomatic infected individu- 

als in region r. 

κr : Initial number of hospitalized individuals in region r. 

υr : Initial number of ICU patients in region r. 

ϑ r : Initial number of recovered individuals in region r. 

τr : Initial number of deceased individuals in region r. 

Risk parameters: 

α: Confidence level of value-at-risk, where α ∈ [ 0 , 1 ) . 

φ: Non-negative risk preference parameter or mean-risk trade- 

off coefficient. 

Risk variables: 

ηω 
j 

: Value at risk for each stage j under scenario ω. 

z ω 
j 

: Value exceeding the value-at-risk at the confidence level α

at stage j under scenario ω. 

Non-anticipativity parameters: 

n : The serial number of nodes in the scenario tree, where n ∈ N.

t(n ) : The corresponding stage that node n marked in the sce- 

nario tree. 

β(n ) : The set of scenarios that pass through node n . 

Decision variables: 

y ω 
j,r 

: Number of ventilators allocated to region r at the end of 

stage j under scenario ω. 
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Other variables: 

Q 

ω 
j,r 

: Auxiliary variable to be substituted with λ3 ,r I 
ω 
j,r 

. 

W 

ω 
j,r 

: Auxiliary variable to be substituted with T ω 
j,r 

− H 

ω 
j,r 

. 

V ω 
j,r 

: Auxiliary variable to be substituted with λ6 ,r H 

ω 
j,r 

. 

G 

ω 
j,r 

: Auxiliary variable to be substituted with U 

ω 
j,r 

− C ω 
j,r 

. 

m 

ω 
j,r 

: Binary variable, which takes the value 0 if the number of 

infected individuals who need to be hospitalized is restricted 

by the number of available beds in hospitals, and the value 

1 if the number of beds in hospitals is sufficiently large to 

hospitalize all infected individuals who need to be hospital- 

ized. 

d ω 
j,r 

: Binary variable, which takes the value 0 if the number 

of hospitalized individuals need to be treated in ICUs is re- 

stricted by the number of available ventilators, and the value 

1 if the number of ventilators is sufficiently large to treat all 

hospitalized individuals who need to be treated in ICUs. 

A UB : Upper bound of λ6 ,r H 

ω 
j,r 

. 

A LB : Lower bound of λ6 ,r H 

ω 
j,r 

. 

T UB : Upper bound of T ω 
j,r 

− H 

ω 
j,r 

. 

T LB : Lower bound of T ω 
j,r 

− H 

ω 
j,r 

. 

B UB : Upper bound of λ3 ,r I 
ω 
j,r 

. 

B LB : Lower bound of λ3 ,r I 
ω 
j,r 

. 

C UB : Upper bound of U 

ω 
j,r 

− C ω 
j,r 

. 

C LB : Lower bound of U 

ω 
j,r 

− C ω 
j,r 

. 

.2. Compartmental disease model description 

This subsection describes the compartment flow of population 

ynamics at each stage in each region. Figure 1 shows the trans- 

ission dynamics of COVID-19 in each region r at each time pe- 

iod j for a particular scenario ω. In this figure, susceptible in- 

ividuals (S) can be infected and become infected (either symp- 

omatic or asymptomatic). Asymptomatic infections (X) may have 

light or no symptoms throughout the infection period and will 

ecover with a rate of λ9 ,r . Tested symptomatic and part of asymp- 

omatic infections (I) may recover or die with rates of λ1 ,r and 

2 ,r , respectively, if they are not treated in the hospital (H). Note 

hat ˆ I ω 
j,r 

with an incoming dashed arc to the I compartment rep- 

esents the number of infected people coming into the region 

at stage j under scenario ω from neighboring regions. Tested 
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nfected individuals (I) move to the hospital (H) compartment, 

epending on the number of tested infections (I) and available 

ospital capacity (we use λ3 ,r to represent the associated non- 

onstant transmission rate). Some of the treated infected peo- 

le in the hospital (H) will recover with a rate of λ4 ,r , where R

epresents recovered individuals. The situations of some patients 

n the hospital (H) may worsen, and thus they may be trans- 

erred to the intensive care unit (we use C to represent ICU), and 

hose individuals need ventilators for their treatment (similar to 

3 ,r , λ6 ,r represents the non-constant rate from (H) to (C) since 

his number depends on the minimum number of patients who 

eed to be treated in ICU and the available ventilator supply in 

he ICU). 

Similar to the case of admittance into the hospital, the number 

f hospitalized patients transferred to an ICU at each time period 

s equal to the minimum of the number of patients who need to 

e transferred to an ICU and the number of available ventilators. 

he patients who are not able to receive the treatment in the ICU 

ue to the limitation on the number of available ventilators may 

ie at a rate of λ5 ,r , where F represents deceased individuals. After 

eing treated in the ICU, some of the patients may recover with 

 rate of λ7 ,r , while others may die with a rate of λ8 ,r . Different

rom a typical compartmental model, the transfer rate from I to 

 and H to C is not a constant, and it depends on the available

apacity in the H and C compartments, respectively, as discussed 

bove. 

.3. Time and space-varying transmission rate 

This subsection introduces how we model COVID-19 transmis- 

ion under government interventions in the mathematical model. 

e formulate the transmission rate σ1 , j,r as a time- and space- 

arying parameter, which depends on the government interven- 

ions taken at time j and region r. Since the onset of COVID-19, 

any governments have imposed different intervention strategies 

o reduce the transmission rate. At a certain stage, each interven- 

ion has a different im pact on the transmission rate for the next 

tage. In this paper, we incorporate three main non-pharmaceutical 

nterventions to formulate the time-varying transmission rate —

one, mask and social distancing, and lockdown. Under the mask 

nd social distancing, people are allowed to go to public places, 

ut they have to wear masks and keep a 6-feet distance from each 

ther. The lockdown represents that all the public areas are closed, 

nd people must stay where they are. During the lockdown period, 

eople may go out to buy necessities, but they have to wear masks 

nd keep a 6-feet distance from each other. 

Let x 1 
j,r 

, x 2 
j,r 

, and x 3 
j,r 

be binary decision variables that corre- 

pond to none ( i = 1 ), mask and social distancing ( i = 2 ), and lock-

own ( i = 3 ) interventions, respectively, taken at stage j and region 

. If x i 
j,r 

takes a value of 1, then intervention i is employed; other- 

ise, it is not employed at stage j and region r. The transmission 

ate at stage j + 1 in region r is a function of the transmission rate

nd specific intervention employed at stage j in the same region, 

s given in the below equations: 

1 , j+1 ,r = σ1 , j,r (m 

1 
j,t x 

1 
j,r + m 

2 
j,t x 

2 
j,r + m 

3 
j,t x 

3 
j,r ) ∀ j ∈ J \ { J } , r ∈ R, 

(1) 

 

1 
j,r + x 2 j,r + x 3 j,r = 1 ∀ j ∈ J, r ∈ R, (2) 

 

1 
j,r , x 

2 
j,r , x 

3 
j,r ∈ { 0 , 1 } ∀ j ∈ J, r ∈ R, (3) 

here m 

i 
j,t 

represents the percent change in the transmission rate 

ith respect to the binary decision variable x i 
j,r 

for intervention 

 = 1 , 2 , 3 taken at stage j in region r. Equation (1) shows that the
261 
ransmission rate at stage j + 1 is a function of the transmission 

ate at stage j and the intervention strategy i taken at stage j. 

quation (2) indicates that only one intervention measure can be 

aken at each stage j. Equation (3) describes the binary nature of 

ntervention decisions. 

The transmission rate in our model is not equal to the basic re- 

roduction number, R 0 . It shows how many new tested infections 

ill be caused by the symptomatic and asymptomatic infections 

rom the previous stage. Since the number of new asymptomatic 

nfections is uncertain, the number of new infections (both symp- 

omatic and asymptomatic) changes under different scenarios even 

f the transmission rates at each stage j stay the same. 

There is a delay in the impact of the government’s interven- 

ions on the number of infections and the reaction to the test re- 

ults is also slow. Therefore, we calculate the transmission rate for 

he first two stages directly using the real data from JHU (2020) , 

ndependent of the intervention type. Based on the first two-stage 

ransmission rates, we calculate the transmission rates from stages 

hree to five using the formulation (1) –(3) for each intervention 

trategy. Also, the values of m 

i 
j,t 

are trained using the real data 

btained from JHU (2020) . As an example, the initial transmission 

ates for the first two stages in New York and New Jersey and the 

mpacts of government intervention strategies m 

i 
j,t 

are shown in 

able 7 under Section 5.2 . 

.4. Evolution of uncertainty and multi-period scenario tree 

In this subsection, we explain how we address the uncertainty 

f disease transmission in the mathematical model. Data regarding 

ndetected or untested asymptomatic cases is lacking and uncer- 

ain. Therefore, we model the uncertainty regarding the proportion 

f untested asymptomatic infections (σω 
2 , j,r 

) by generating a set of 

cenarios ω ∈ �, each representing a specific realization of the un- 

ertain proportion of untested asymptomatic individuals over mul- 

iple time periods. Our scenario generation approach is similar to 

lonso-Ayuso, Escudero, Guignard, & Weintraub (2018) ’s method 

eveloped to model the demand uncertainty in forestry manage- 

ent. Each scenario has a probability of p ω and 

∑ 

ω∈ � p ω = 1 . 

ince data is not available to describe the probability distribu- 

ion of the uncertain variable (σω 
2 , j,r 

) , we assume that the uncer- 

ain parameter follows a normal distribution. The lower and upper 

ounds for the proportion of asymptomatic infections are obtained 

rom the study of Meller (2020) . The lower bound value for the 

andom variable is considered as the value of 0.001-quantile, and 

he upper bound is considered as the value of 0.999-quantile of 

he normal distribution. 

As an example, Fig. 2 shows a particular scenario tree for the 

roportion of untested asymptomatic infections (σω 
2 , j,r 

) for a two- 

tage problem. We consider three realizations at each node of the 

cenario tree by dividing its normal distribution into three discrete 

arts [low (L), medium (M), high (H)]. The low and high realiza- 

ions have a probability of 0.3, and the medium realization has a 

robability of 0.4. Each path from the root node to the leaf node 

f the scenario tree represents a scenario ω. The probability of a 

cenario ω, p ω , is calculated as the multiplication of probabilities 

n the path for scenario ω. For two stages, 9 ( 3 2 ) scenarios will

e generated in this instance. The non-anticipativity constraints in- 

icate that two scenarios are inseparable at stage j if they share 

he same scenario path up to that stage. This means that the cor- 

esponding decision made at this stage for those two scenarios 

hould also be the same. 

The value of the proportion of asymptomatic infections has 

 mean μ j 
r and standard deviation σ j 

r at stage j. We use Q h 

o represent the value of h -quantile in the normal distribution. 

or each node n in the scenario tree, the mean value of the 
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Fig. 2. Multi-stage scenario tree generation example for the uncertain proportion of untested asymptomatic infections ( σω 
2 ,r ). 
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ow realization is the value of 0.15-quantile (E(μn 
r,low 

| Q 0 . 001 ≤
n 
r,low 

≤ Q 0 . 30 ) = Q 0 . 15 ) , the mean value of medium realization is 

he value of 0.50-quantile (E(μn 
r,medium 

| Q 0 . 30 ≤ μn 
r,medium 

≤ Q 0 . 70 ) = 

 0 . 50 ) , and the mean value of high realization is the value of 0.85-

uantile (E(μn 
r,high 

| Q 0 . 70 ≤ μn 
r,high 

≤ Q 0 . 999 ) = Q 0 . 85 ) . For node 0 in 

ur example, the proportion of untested asymptomatic infections 

t stage j = 0 has μ0 
r = 0.26 and σ 0 

r = 0.05. The low, medium,

nd high realizations at node 0 in stage j = 0 and nodes 1 and 3

n stage j = 1 are given in Table 2 below. According to the distri-

utions presented in Table 2 , the proportion of untested asymp- 
t

262 
omatic infections in stage 1 is realized as 0.21 (Low) at node 1, 

.26 (Medium) at node 2, and 0.31 (High) at node 3. 

.4.1. Decision process under uncertainty in multiple stages 

Decisions at stage j ∈ J = { 0 , . . . , J̄ } are made based on the avail-

ble information up to stage j, which is also known as the non- 

nticipativity requirement. In our multi-stage stochastic program, 

e have two types of decision variables, namely here-and-now 

nd wait-and-see variables. Here-and-now variables refer to ven- 

ilator allocation decision variables ( y ω 
j,r 

) that must be decided at 

he beginning of each time stage j prior to the realization of 
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Table 2 

The 0.15-, 0.50-, 0.85-quantiles of the normal distribution at nodes 0, 1, and 3 of the scenario tree in 

Fig. 2 and the associated node of the uncertain parameter realization. 

Low (realized node) Medium (realized node) High (realized node) 

Q 0 . 15 Q 0 . 50 Q 0 . 85 

Node 0 Distribution 0.21 (node 1) 0.26 (node 2) 0.31 (node 3) 

Node 1 Distribution 0.17 (node 4) 0.21 (node 5) 0.25 (node 6) 

Node 3 Distribution 0.12 (node 10) 0.31 (node 11) 0.50 (node 12) 

Fig. 3. Decision process in a multi-stage stochastic program over stages j = { 1 , . . . , ̄J − 1 } . 
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he uncertain parameter ( σω 
2 , j,r 

) at that stage. Wait-and-see vari- 

bles, on the other hand, refer to State Variables presented under 

ection 2.1 (e.g., S, I, and X) that are to be determined at the end of

ach time stage j after ventilator allocation decisions at that stage 

re made and the outcome of the uncertain parameters are known. 

or example, at the beginning of stage j we take a ventilator al- 

ocation action before the uncertain parameter σω 
2 , j,r 

is known at 

tage j. Once the uncertain parameter value is realized at stage j, 

e update the state variables at stage j + 1 based on the optimal

reatment actions and the ventilator allocation decisions made up 

o stage j, and then take another ventilator allocation action before 

he uncertainty in stage j + 1 is realized. This is followed up by 

pdating the value of state variables based on the optimal treat- 

ent actions and the ventilator allocation decisions made up to 

hat point in the subsequent stages. 

The decision process in a multi-stage stochastic problem is 

quivalent to sequential decision making over multiple periods 

here here-and-now and wait-and-see decisions follow each other, 

s illustrated in an example in Fig. 3 . In this example figure, we

epresent here-and-now and wait-and-see decisions to be taken at 

ach stage j = { 1 , . . . , J̄ − 1 } as y ω 
j,r 

and I ω 
j,r 

, respectively, and the un-

ertain parameter in stage j and in region r is represented by ξ j,r . 

n each time stage j, the realization of ξ j,r is known only after the 

ecisions at stage j, y ω 
j,r 

, have already been made. Once ξ j,r is re- 

lized, we make the state decisions represented by I ω 
j+1 ,r 

at stage 

j + 1 . 

.5. Model features and assumptions 

Since the transmission of COVID-19 is affected by many factors, 

ata to calibrate some of the model parameters, such as the impact 

f human mobility, is either lacking or inaccurate. Therefore, we 

ncorporate some important features and make some assumptions 

n the model formulation. 

Important features. First, we consider the impact of different 

ntervention strategies on the disease transmission rate and adjust 

he short-term migration population depending on the interven- 

ion strategy. For instance, under the lockdown strategy, we as- 

ume that the short-term migration among each county is zero. 

nder mask and social distancing strategies, the short-term migra- 

ion population among each county is reduced to 60% of the orig- 

nal value, as estimated from the study of Lee et al. (2020) . Sec-

nd, we incorporate the cost for purchasing ventilators to provide 

 capacity limitation on the total number of ventilators that could 

e allocated for treating COVID-19 patients. Since there are signifi- 
263 
ant fluctuations in the ventilator prices ( Glass, 2020 ), we consider 

he minimum purchase price for each ventilator acquired. Third, 

e train the real data to determine the impact rate of each in- 

ervention strategy on the disease transmission rate. The trained 

alue of the impact of interventions can only be used in the re- 

ions considered in our case study since all the selected counties 

n New York and New Jersey are geographically close to each other, 

nd thus interventions have similar social effects. However, for ex- 

mple, the impact of intervention strategies in a rural area may be 

ifferent from those taken in a city. To estimate the transmission 

f COVID-19 in other U.S. regions, the model should be re-trained 

sing the associated data. 

Assumptions. First, the proportion of untested asymptomatic 

eople is an uncertain parameter in our model. Studies regarding 

he asymptomatic infections specific to New York City region are 

imited. Since studied counties in New Jersey and New York are 

eographically and socially close to each other, the proportions of 

ntested asymptomatic infections at each stage j under scenario ω
re set to be the same for each region r. We make this assump- 

ion based on the characteristics of these regions. Many people 

ho live in these counties work in New York City, and the short- 

erm migration among each region is quite frequent. Thus, we use 

he same lower and upper bound of untested asymptomatic in- 

ections for these regions. Although the asymptomatic proportion 

s the same under each scenario, the number of untested asymp- 

omatic infections is different in each region because of the differ- 

nce in the transmission rate and the initial number of infections. 

econd, the model considers allocating newly purchased ventila- 

ors for the treatment of COVID-19 patients instead of re-allocating 

xisting ventilators from other counties or states since the demand 

or ventilators during the disease’s peak periods is high for all the 

ounties and states, and there is a lead time for transfer of the 

entilators between the states that are far from each other. Here, 

e also assume a central decision maker is entitled to allocate a 

iven supply of ventilators to multiple regions. Third, the infected 

ndividuals who cannot be treated in the hospital (both severe 

nd less severe) due to the limited capacity have the same death 

ate as people who cannot be treated in the ICU due to the lim- 

ted ventilator supply. This is because the health condition of both 

roups may worsen without professional treatment. Fourth, we as- 

ume that “I” compartment represents tested infected individuals, 

ncluding all symptomatic and part of the asymptomatic infections. 

hus, all the symptomatic infections and part of the asymptomatic 

nfections are tested. The uncertain parameter is the proportion of 

he untested asymptomatic infections. It is natural for humans to 

rotect themselves as they learn more about an epidemic due to 
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heir survival instincts. Thus, fifth, we assume that people react 

o the pandemic by anticipating the government’s interventions 

nd may start social distancing and quarantining days or weeks 

efore an intervention is imposed, as also reported in multiple 

tudies, see, e.g., Zhang et al. (2020) and Fischer et al. (2020) . 

herefore, the transmission rate with either doing nothing or mask 

nd social distancing shows a decreasing trend in later stages of 

he pandemic due to physical distancing among people. Sixth, we 

se each county’s ICU capacity from JHU (2020) as the initial ven- 

ilator availability. We assume that non-COVID-19 patients use 60% 

f this capacity ( Mehrotra et al., 2020 ). Thus, only 40% of the initial

CUs are available for treating COVID-19 patients. Lastly, the incu- 

ation period of COVID-19 ranges from 2 to 14 days ( CDC, 2021 ).

e assume that the infected compartment includes the incuba- 

ion period. Thus, we use a two-week period for each time stage 

o make sure people who are infected but still in the incubation 

eriod at the beginning of each stage are counted as infected at 

he same stage. 

.6. Multi-Stage risk and time consistency 

The α-quantile of the cumulative distribution of a random vari- 

ble z, inf η{ η ∈ R : F z (η) ≥ α} , is defined as the value-at-risk (VaR)

t the confidence level α ∈ { 0 , 1 } and denoted by VaR α(z) . The

onditional expected value that exceeds the VaR at the confi- 

ence level α is called conditional value-at-risk (CVaR), defined as 

VaR α(z) = E (z | z ≥ VaR α(z)) . For a minimization problem, VaR α

s the α-quantile of the distribution of the cost, and it provides an 

pper bound on the cost that is exceeded only with a small prob- 

bility of 1 − α. CVaR α measures an expectation of the cost that is 

ore than VaR α , and can be calculated as an optimization problem 

s follows ( Rockafellar & Uryasev, 2002 ): 

VaR α(z) = inf 
η∈ R 

{ 

η + 

1 

1 − α
E ([ z − η] + ) 

} 

, 

here (a ) + := max (a, 0) for any a ∈ R . 

We formulate our model as a mean-risk minimization problem: 

in 

x ∈ X 
{ E ( f (x, ω)) + φCVaR α( f (x, ω)) } , (4) 

here E ( f (x, ω)) is the expected cost function over the scenar- 

os ω ∈ �, CVaR α represents the conditional value-at-risk at α, and 

∈ [0 , 1] is a non-negative weighted risk coefficient, and it can be

djusted for a trade-off between optimizing an expectation value 

nd the level of risk taken. 

Time Consistency. Time consistency is considered as a critical 

ssue when modeling a risk-averse multi-stage stochastic program. 

ime consistency means that if you solve a multi-stage stochas- 

ic programming model today, you should get the same solution 

f you resolve the problem tomorrow, given the information that 

s observed and decided today. We consider a nested risk measure, 

xpected conditional value-at-risk ( E -CVaR ), as defined in Homem- 

e Mello & Pagnoncelli (2016) since it is shown to satisfy the time 

onsistency of multi-stage stochastic programs. The E -CVaR can 

e linearized and formulated as a linear stochastic programming 

odel. In the following section, we will utilize the E -CVaR as a 

isk measure in our formulation. 

.7. Mathematical model formulation and description 

The mathematical formulation for our risk-averse multi-stage 

tochastic epidemics-ventilator-logistics model (5a) –(5w) is given 

elow. 

Epidemics-Ventilator-Logistics Model Formulation: 

 = min 

∑ 

j∈ J 

∑ 

ω∈ �
p ω 

( ∑ 

r∈ R 
(I ω j,r + F ω j,r ) + φ(ηω 

j + 

1 

1 − α
z ω j ) 

) 

(5a) 
264 
.t. S ω 0 ,r = πr , I ω 0 ,r = � r , X 

ω 
0 ,r = ϕ r , H 

ω 
0 ,r = κr , (5b) 

C ω 0 ,r = υr , R 

ω 
0 ,r = ϑ r , F ω 0 ,r = τr , ∀ r ∈ R, ∀ ω ∈ �, (5c) 

S ω ( j+1) ,r = S ω j,r − σ1 ,r (I ω j,r + X 

ω 
j,r ) − σ1 ,r (I ω j,r + X 

ω 
j,r ) 

σω 
2 , j,r 

1 − σω 
2 , j,r 

j ∈ J \ { J } , r ∈ R, ∀ ω ∈ �, (5d) 

I ω ( j+1) ,r = I ω j,r + ̂

 I ω 1 , j,r + σ1 ,r (I ω j,r + X 

ω 
j,r ) − λ1 ,r I 

ω 
j,r − λ2 ,r I 

ω 

j,r − O 

ω 
j,r 

j ∈ J \ { J } , r ∈ R, ∀ ω ∈ �, (5e) 

X 

ω 
( j+1) ,r = X 

ω 
j,r + σ1 ,r (I ω j,r + X 

ω 
j,r ) 

σω 
2 , j,r 

1 − σω 
2 , j,r 

− λ9 ,r X 

ω 
j,r 

j ∈ J \ { J } , r ∈ R, ∀ ω ∈ �, (5f) 

H 

ω 
( j+1) ,r = H 

ω 
j,r + O 

ω 
j,r − λ4 ,r H 

ω 
j,r − λ5 ,r K 

ω 
j,r − C 

ω 

j,r 

j ∈ J \ { J } , r ∈ R, ∀ ω ∈ �, (5g) 

C ω ( j+1) ,r = C ω j,r + C 
ω 

j,r − λ7 ,r C 
ω 
j,r − λ8 ,r C 

ω 
j,r 

j ∈ J \ { J } , r ∈ R, ∀ ω ∈ �, (5h) 

R 

ω 
( j+1) ,r = R 

ω 
j,r + λ1 ,r I 

ω 
j,r + λ9 ,r X 

ω 
j,r + λ4 ,r H 

ω 
j,r + λ7 ,r C 

ω 
j,r 

j ∈ J \ { J } , r ∈ R, ∀ ω ∈ �, (5i) 

F ω ( j+1) ,r = F ω j,r + λ2 ,r I 
ω 

j,r + λ5 ,r K 

ω 
j,r + λ8 ,r C 

ω 
j,r 

j ∈ J \ { J } , r ∈ R, ∀ ω ∈ �, (5j) 

O 

ω 
j,r = Q 

ω 
j,r + W 

ω 
j,r , Q 

ω 
j,r ≤ A UB m 

ω 
j,r , Q 

ω 
j,r ≥ A LB m 

ω 
j,r , 

Q 

ω 
j,r ≤ λ3 ,r I 

ω 
j,r − A LB (1 − m 

ω 
j,r ) , Q 

ω 
j,r ≥ λ3 ,r I 

ω 
j,r − A UB (1 − m 

ω 
j,r ) , 

W 

ω 
j,r ≤ T UB (1 − m 

ω 
j,r ) , 

W 

ω 
j,r ≥ T LB (1 − m 

ω 
j,r ) , W 

ω 
j,r ≤ T ω j,r − H 

ω 
j,r − T LB m 

ω 
j,r , 

W 

ω 
j,r ≥ T ω j,r − H 

ω 
j,r − T UB m 

ω 
j,r j ∈ J, r ∈ R, ∀ ω ∈ �, (5k) 

C 
ω 

j,r = V 

ω 
j,r + G 

ω 
j,r , V 

ω 
j,r ≤ B UB d 

ω 
j,r , V 

ω 
j,r ≥ B LB d 

ω 
j,r , 

V 

ω 
j,r ≤ λ6 ,r H 

ω 
j,r − B LB (1 − d ω j,r ) , V 

ω 
j,r ≥ λ6 ,r H 

ω 
j,r − B UB (1 − d ω j,r ) , 

G 

ω 
j,r ≤ C UB (1 − d ω j,r ) , 

G 

ω 
j,r ≥ C LB (1 − d ω j,r ) , G 

ω 
j,r ≤ U 

ω 
j,r − C ω j,r − C LB d 

ω 
j,r , 

G 

ω 
j,r ≥ U 

ω 
j,r − C ω j,r − C UB d 

ω 
j,r j ∈ J, r ∈ R, ∀ ω ∈ �, (5l) 

U 

ω 
j,r = U 0 ,r + 

j ∑ 

l=1 

y ω l,r , j ∈ J, r ∈ R, ∀ ω ∈ �, (5m) 

I 
ω 

j,r ≥ λ3 ,r I 
ω 
j,r − (T ω j,r − H 

ω 
j,r ) j ∈ J, r ∈ R, ∀ ω ∈ �, (5n) 

I 
ω 

j,r ≥ 0 j ∈ J, r ∈ R, ∀ ω ∈ �, (5o) 
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K 

ω 
j,r ≥ λ6 ,r H 

ω 
j,r − (U 

ω 
j,r − C ω j,r ) j ∈ J, r ∈ R, ∀ ω ∈ �, (5p) 

K 

ω 
j,r ≥ 0 j ∈ J, r ∈ R, ∀ ω ∈ �, (5q) 

∑ 

j∈ J 

∑ 

r∈ R 
y ω j,r e 1 ≤ � ∀ ω ∈ �, (5r) 

z ω j ≥
∑ 

r∈ R 
(I ω j,r + F ω j,r ) − ηω 

j j ∈ J, ∀ ω ∈ �, (5s) 

z ω j ≥ 0 j ∈ J, ∀ ω ∈ �, (5t) 

y ω t(n ) ,r − y n,r = 0 , z ω t(n ) − z n = 0 , 

ηω 
t(n ) − ηn = 0 , ∀ ω ∈ β(n ) , ∀ n ∈ N, (5u) 

S ω j,r , I ω j,r , T ω j,r , H 

ω 
j,r , C ω j,r , R 

ω 
j,r , F ω j,r , B 

ω 
j,r , C 

ω 

j,r , O 

ω 
j,r ≥ 0 , 

j ∈ J, r ∈ R, ∀ ω ∈ �, (5v) 

y ω j,r ∈ { 0 , 1 , 2 , . . . , 
�

e 1 
} j ∈ J \ { J } , r ∈ R, ∀ ω ∈ �. (5w) 

Objective Function (5a) . The objective function (5a) mini- 

izes the total expected number of tested infected individuals and 

eaths and the conditional value-at-risk over all stages j and sce- 

arios ω. 

Population Infection Dynamics Constraints (5b) –(5j) . Con- 

traints (5c) give the initial number of the susceptible, tested in- 

ected, untested asymptomatic infected, hospitalized, ICU patients, 

ecovered, and deceased individuals, respectively, in each region r

t the beginning of the planning horizon. Constraint (5d) makes 

ure that the number of susceptible individuals in region r at 

tage j + 1 under scenario ω equals the number of susceptible in- 

ividuals at stage j minus the number of susceptible individuals 

ho become either tested infected or untested asymptomatic in- 

ected at stage j. In this equation, the number of untested asymp- 

omatic infections equals the number of tested infections multi- 

lied by the proportion of the untested asymptomatic infections 

o the tested infections. Constraint (5e) shows that the number of 

ested infected individuals in region r at stage j + 1 under scenario 

equals the number of tested infected individuals at stage j plus 

he infected individuals caused by short-term migration, plus the 

ewly tested infections at time j, minus the recovered and de- 

eased infections of tested individuals at stage j, minus the hospi- 

alized individuals at stage j. Constraint (5f) implies that the num- 

er of untested asymptomatic infections in region r at stage j + 1 

nder scenario ω equals the number of untested asymptomatic 

nfections at stage j plus new, untested asymptomatic infections, 

inus the recovered untested asymptomatic infections at stage j. 

onstraint (5g) shows that the hospitalized individuals in region 

at stage j + 1 under scenario ω equals the number of hospital- 

zed individuals at stage j plus the newly hospitalized individuals 

t stage j, minus the recovered and deceased individuals at stage j, 

inus the individuals who move to the intensive care unit (ICU) at 

tage j. Constraint (5h) indicates that the total number of individ- 

als in ICU in region r at stage j + 1 under scenario ω equals the 

otal number of individuals in ICU at stage j plus the individuals 

ho moved to an ICU at stage j, minus the individuals who are re-

overed or died at the ICU at stage j. Constraint (5i) shows that the

umber of recovered individuals in region r at stage j under sce- 

ario ω equals the number of recovered individuals at stage j plus 
265 
he recovered individuals from tested infected, untested asymp- 

omatic infected and hospitalized individuals, and ICU patients at 

tage j. Constraint (5j) indicates that the number of deceased in- 

ividuals in region r at stage j + 1 under scenario ω equals the 

umber of deceased individuals at stage j plus the deceased indi- 

iduals from tested infected and hospitalized individuals and ICU 

atients at stage j. 

Ventilator Logistics and Capacity Constraints (5k) –(5r) . 

Both (5k) and (5l) are, respectively, equivalent linear constraints 

f 

 

ω 
j,r = min { λ3 ,r I 

ω 
j,r , T 

ω 
j,r − H 

ω 
j,r } j ∈ J, r ∈ R, ∀ ω ∈ �, (6) 

 

ω 

j,r = min { λ6 ,r H 

ω 
j,r , U 

ω 
j,r − C ω j,r } j ∈ J, r ∈ R, ∀ ω ∈ �, (7) 

ith additional linearization variables, using the method presented 

n Yin & Büyüktahtakın (2021a) , Kıbış & Büyüktahtakın (2017) . 

onstraints (5k) [or non-linear equivalent (6) ] ensure that the 

umber of individuals admitted to the hospital in region r at stage 

j under scenario ω equals the minimum number of individuals 

ho require hospitalization and the available hospital capacity at 

tage j. Constraints (5l) [or non-linear equivalent (7) ] imply that 

he number of individuals admitted to an ICU in region r at stage j

nder scenario ω equals the minimum number of individuals who 

equire treatment in ICU and the number of available ventilators 

t stage j. Constraint (5m) represents that the cumulative number 

f ICU beds (equivalent to ventilators) in region r at stage j under 

cenario ω equals the initial number of ICU beds plus the cumu- 

ative number of ICU beds (new ventilators) allocated from stage 

 to stage j. Constraints (5n) –(5q) show that the number of indi- 

iduals who can not be admitted to the hospital or the ICU due to 

imited capacity should be greater than or equal to zero. Constraint 

5r) represents that the cost of ventilators allocated over all regions 

nd time stages under scenario ω cannot exceed the total budget 

llocated for ventilators. The budget here also represents the maxi- 

um total ventilator supply that could be available throughout the 

lanning horizon. 

Risk Measure Constraints (5s) and (5t) . Constraint (5s) indi- 

ates the difference between the objective function value and the 

alue-at-risk for each stage j under each scenario ω. Constraint 

5t) ensures that the loss value exceeding the value-at-risk is in- 

luded in the CVaR calculation, and thus z ω 
j 

should be greater than 

r equal to zero. 

Non-Anticipativity, Non-Negativity and Integrality Con- 

traints (5u) –(5w) . Constraint (5u) is the non-anticipativity 

onstraint, indicating that the scenarios that share the same path 

p to stage j should also have the same corresponding decisions. 

onstraint (5v) indicates that the number of individuals in each 

ompartment in region r at stage j under scenario ω should be 

reater or equal to zero. Constraint (5w) implies that the number 

f allocated ventilators should be an integer. We implement this 

ixed-integer linear programming (MILP) formulation (5a) –(5w) 

or the rest of the paper. 

. New lower and upper bounds 

.1. Region sub-problem and bounds 

We present a new region sub-problem and lower and upper 

ounds to reduce the optimality gap of solving our risk-averse 

ulti-stage stochastic programming problem (5a) –(5w) . We are 

nspired by the study of Büyüktahtakın (2021) , where the gen- 

ral risk-averse stochastic MILP problem was decomposed into sce- 

ario sub-problems, while keeping all original constraints the same 

n the sub-problem. However, our sub-problem is different than 

hat of Büyüktahtakın (2021) in that we decompose the problem 
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ith respect to the regions rather than scenarios and then derive 

ounds based on those sub-problems. Further, we decompose the 

roblem into two: region- r and risk sub-problems. The new sce- 

ario sub-problem and bounds are described below. 

efinition 4.1. (Region- r Sub-problem) The region- r problem (P r ) 

s formulated as follows: 

 

r = min 

∑ 

j∈ J 

∑ 

ω∈ �
p ω 

(
I ω j,r + F ω j,r 

)
(8a) 

s.t. Constraints (5 b) − (5 w ) . (8b) 

Specifically, in P r we minimize the objective function value only 

nder region r while keeping all the variables and the constraints 

rom the original problem (5a) –(5w) , P . 

roposition 1. ( Region - r Lower Bound ) Let ( I ω 
j,r 

∗
, F ω 

j,r 
∗) be the op-

imal solution for P corresponding to region r. Then the following in- 

quality holds: 
 

j∈ J 

∑ 

ω∈ �
p ω 

(
I ω j,r 

∗ + F ω j,r 
∗) ≥ Z r ∀ r ∈ R. (9) 

roof. P and P r share the same feasible region, but P minimizes 

he full objective function (5a) , while P r only minimizes the objec- 

ive function for only region r (8a) . Thus, the optimal solution of P 

or region r, ( I ω 
j,r 

∗
, F ω 

j,r 
∗) , is feasible but sub-optimal for P r . �

In order to get a lower bound on the full objective function (5a) ,

e define the risk sub-problem as follows: 

efinition 4.2. (Risk Sub-problem) The risk sub-problem is formu- 

ated as follows: 

 

risk = min 

∑ 

j∈ J 

∑ 

ω∈ �
p ω φ

(
ηω 

j + 

1 

1 − α
z ω j 

)
(10a) 

s.t. Constraints (5 b) − (5 w ) . (10b) 

roposition 2. Z R̄ is superadditive on R̄ ⊆ R , which means that for 

 1 , R 2 ⊆ R 

 

R 1 ∪ R 2 ≥ Z R 1 + Z R 2 . (11) 

roof. P R 1 , P R 2 , and P R 1 ∪ R 2 share the same feasible region with P .

hus, the optimal solution of the P R 1 ∪ R 2 is feasible but sub-optimal 

or each of P R 1 and P R 2 . �

roposition 3. ( Lower Bound ) Let Z ∗ represent the objective func- 

ion of the original problem (5a) –(5w) , P . Then we have: 

 

∗ ≥
∑ 

r∈ R 
Z r + Z risk . (12) 

roof. The proof follows from the generalization of the superaddi- 

ivity result in Proposition 2 and the equivalence of Z R and 

∑ 

r∈ R 
Z r 

y Definition 4.1 . In other words, we have: 

 

∗ ≥ Z R + Z risk = 

∑ 

r∈ R 
Z r + Z risk . �

roposition 4. ( Upper Bound ) Let ˙ x r be the optimal solution of 

egion- r problem, P r , and Z( ̇ x r ) be the objective value of original prob-

em (5a) –(5w) where ˙ x r is substituted in the original problem objec- 

ive function (5a) . Then we have: 

 

∗ ≤ min 

r∈ R 
Z( ̇ x r ) . (13) 

roof. Because ˙ x r is the optimal solution for P r , it is feasible for 

roblem P (5a) –(5w) . As Z ∗ ≤ Z( ̇ x r ) holds for each r ∈ R , Z ∗ is
r 
ounded above by the minimum Z( ̇ x ) over all r ∈ R . � l

266 
.2. Computational results 

In our computational experiments, we demonstrate the effec- 

iveness of the proposed region- r bounds ( R ) in solving our risk- 

verse multi-stage stochastic programming problem (5a) –(5w) . We 

se the CPLEX solution and the scenario- ω bounds ( S ) proposed 

y Büyüktahtakın (2021) as comparison benchmarks under differ- 

nt budget levels with the following solution approaches: 

• cpx : Direct solution of the model (5a) –(5w) by CPLEX using its 

default settings. 
• lb : Region- r lower bound inequalities (9) ( lb –R ) or scenario- ω

lower bound inequalities ( lb –S ). 
• ub : Upper bound inequalities (13) ( ub –R ) or scenario- ω upper 

bound inequalities ( ub –S ). 
• lb+ub : Inequalities (9) and (13) ( lb+ub –R ) or scenario- ω lower 

and upper bound inequalities ( lb+ub –S ). 

In Table 3 , we report results for a combination of columns de- 

ned as follows. 

• Budget : The total budget level used. 
• Exp : Solution approach. 
• CutTime : Inequality generation time in CPU seconds, including 

the solution of all sub-problems used to generate bounds. 
• Time : Total CPU seconds required to solve the problem, includ- 

ing inequality generation time ( CutTime ). 
• MIPGap : Final optimality gap for any given Exp ( cpx , lb , ub , or

lb+ub ) at the end of the time limit. 
• GapImp 

1 : Percentage improvement in MIPGap using lb , ub , 

or lb+ub . For example, for ub , (GapImp 

1 = 100 × (1- MIP- 

Gap 

ub /MIPGap 

cpx ), where MIPGap 

cpx and MIPGap 

ub are the final 

optimality gaps by cpx and ub , respectively. 
• IGap : Percentage integrality gap of the formulation before 

inequalities are added (InitGap = 100 × (bestobj - re- 

laxlb)/bestobj), where relaxlb and bestobj are objective function 

values of the initial Linear Programming (LP) relaxation and the 

best feasible solution by cpx , respectively. 
• RGap : Percentage integrality gap of the formulation af- 

ter inequalities are added (RootGap = 100 × (bestobj - 

rootlb)/bestobj), where rootlb is the objective function value of 

the initial LP relaxation after lb and ub are added. 
• GapImp 

2 : Percentage improvement in the integrality gap at the 

root node (GapImp = 100 × (1-RGap/IGap). 
• R : Method using region- r bounds for 5 region sub-problems. 
• S : Method using scenario- ω bounds proposed by Büyüktahtakın 

(2021) for 40 scenario sub-problems. 

Table 3 presents the results for CutTime , Time , MIPgap , and 

apImp 

1 over cpx and lb , ub and lb+ub for both R and S . Since 

 scenario- ω sub-problem is a weaker relaxation of the original 

roblem (5a) –(5w) compared to a region- r sub-problem, lb –S pro- 

ides a weaker lower bound for the original problem than lb –R , 

nd thus does not improve the Igap given a limited number of 

cenario sub-problems used in S . Therefore, we only demonstrate 

gap , Rgap , and GapImp 

2 for R . Each row of Table 3 presents re-

ults for an instance with budget levels $30 M , $35 M , $40 M , $45 M ,

nd $50 M, while the Average row represents average results for 

ll instances. Overall, instances get easier as the budget level in- 

reases, GapImp 

1 and GapImp 

2 due to R show a decreasing and 

ncreasing trend, respectively. Both lb and ub for R and S are gen- 

rated within 10 and 20 CPU minutes, respectively, on average. 

ur preliminary results have shown that region- r lower bound in- 

qualities (9) performed better than the lower bound (12) ; thus 

e do experiments using the inequalities (9) . In Table 3 , ub –R

rovides the best benefit in reducing the MIPgap at the end of 

he time limit, while lb –R helps the most in reducing the LP re- 

axation gap. For example, ub –R improves the MIP gap by 15 . 0% , 
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Table 3 

Optimality gap results using lb , ub , and lb+ub for R and S under different budget levels. 

Budget Exp CutTime Time MIPgap GapImp 1 Igap Rgap GapImp 2 

(CPU sec) (CPU sec) (%) (%) (%) (%) (%) 

R S R S R S R S R R 

$30M cpx 0 7203 13.1 13.9 

lb 797 1330 8098 8536 13.1 13.3 0.1 0.0 13.2 4.9 

ub 848 1306 8068 8524 8.1 7.9 38.3 39.4 13.9 0.0 

lb + ub 965 1331 8294 8535 8.0 9.3 38.6 29.0 13.2 4.9 

$35M cpx 0 7203 9.3 10.3 

lb 171 1234 7476 8438 9.3 13.4 0.0 0.0 9.4 9.0 

ub 157 1314 7393 8530 8.3 7.8 10.4 15.8 10.3 0.0 

lb + ub 178 1270 7501 8481 8.3 10.1 11.0 0.0 9.4 9.0 

$40M cpx 0 7204 9.6 10.7 

lb 434 1080 7736 8282 9.5 13.3 0.4 0.0 9.5 10.7 

ub 434 1098 7654 8302 8.3 7.8 13.4 19.1 10.7 0.0 

lb + ub 434 1088 7754 8291 8.3 9.2 13.1 4.0 9.5 10.7 

$45M cpx 0 7203 9.3 10.4 

lb 1381 1354 8682 8358 9.3 13.4 0.1 0.0 9.2 12.1 

ub 1252 1132 8458 8334 8.1 8.0 13.0 14.4 10.4 0.0 

lb + ub 1335 1121 8639 8324 8.2 7.7 12.2 17.8 9.2 12.1 

$50M cpx 1 6775 0.0 1.1 

lb 204 982 7086 8188 0.0 13.4 0.0 0.0 0.0 100.0 

ub 215 969 7424 8172 0.0 7.4 0.0 0.0 1.1 0.0 

lb + ub 220 956 7524 8168 0.0 7.1 0.0 0.0 0.0 100.0 

Average cpx 0 7118 8.3 9.3 

lb 598 1156 7816 8360 8.2 13.4 0.1 0.0 8.3 27.3 

ub 581 1164 7799 8372 6.6 7.8 15.0 17.7 9.3 0.0 

lb + ub 626 1153 7942 8360 6.6 8.7 15.0 10.2 8.3 27.3 

w

r

t

t

i

a  

i

t

S

p

c

5

e

t

o  

a

a

K

H

s

t

5

i

(

m  

T

b

a

Fig. 4. Counties in New York and New Jersey (Source: Environmental Systems Re- 

search Institute (ESRI) (2021) ). 

5

t

hile lb –R reduces the initial gap by 27 . 3% on average. Thus, we 

ecommend adding ub –R as a cut into the formulation to reduce 

he final MIP gap and using lb –R only in the branch and bound 

ree to strengthen the LP relaxation of the formulation. Note the 

nstance with $50 M is relatively easy, and thus the MIP gap is zero 

fter two hours of the time limit, and the LP relaxation gap of 1 . 1%

s completely closed by lb –R . Compared with R , S takes more time 

o generate and does not provide a better final MIP gap under lb –

 and lb+ub –S over the corresponding R bounds. However, ub –S 

rovides a better MIP gap ( MIPgap and GapImp 

1 ) than ub –R , ex- 

ept for the easiest instance with the $50 M budget level. 

. Case study data 

This section provides the data used to calibrate model param- 

ters and formulate the model, including population and short- 

erm migration data, transmission parameters, as well as the cost 

f a ventilator. As shown in Fig. 4 , we select eight counties that

re most impacted by the pandemic in the states of New York 

nd New Jersey for our case study. They are New York County, 

ings County, Queens County, Bronx County, Richmond County, 

udson County, Bergen County, and Essex County. In our multi- 

tage model, each stage represents a two-week period. Thus, all 

he data regarding transmission and migration are bi-weekly. 

.1. Population and migration data 

Table 4 shows the population data for each considered county 

n New York and New Jersey. Population data is obtained from JHU 

2020) . The migration rates among the considered counties, esti- 

ated from the data on CENSUS (2020) , are presented in Table 5 .

he blank areas in Table 5 represent a zero short-term migration 

ecause the movement among those counties is too small to make 

n impact on the model results. 
267 
.2. Epidemiological data 

Table 6 presents the data values for transmission parameters for 

he studied counties in New York and New Jersey. The data con- 
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Table 4 

Counties and population sizes in New York and New Jersey. 

New York Population New Jersey Population 

New York 1,632,480 Hudson 668,631 

Kings 2,600,747 Bergen 929,999 

Queens 2,298,513 Essex 793,555 

Bronx 1,437,872 

Richmond 474,101 

Total 8,443,713 2,392,185 

Table 5 

Migration rate among counties in New York and New Jersey. 

To New York Kings Queens Bronx Richmond Hudson Bergen Essex 

From 

New York 0.015 0.012 0.009 0.006 0.007 0.007 0.007 

Kings 0.192 0.038 0.004 0.004 

Queens 0.218 0.044 0.009 0.002 

Bronx 0.209 0.014 0.028 0.003 0.003 

Richmond 0.105 0.105 

Hudson 0.040 0.001 0.040 0.040 

Bergen 0.126 0.039 0.039 

Essex 0.079 0.001 0.057 0.057 
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ains the proportion of untested asymptomatic infections, recovery 

ate, and the death rate for tested infections, hospitalized infec- 

ions, and ICU patients. Table 7 shows the transmission rate of each 

ounty at the first two stages and the impacts of applying different 

ntervention strategies, as discussed in Section 3.3 . 

.3. Initial infection, capacity and cost data 

Table 8 shows the initial number of infections, hospital capacity, 

nd ICU capacity for each county. The data is obtained from JHU 

2020) . 

Ventilator Cost. The cost of each ventilator ranges from $50 0 0 

o $50,0 0 0 ( Glass, 2020 ). In our case, we consider a cost of $50 0 0

or each ventilator, and different budget levels are set to impose 

ifferent upper bounds on the ventilator supply. 

. Results 

.1. Model validation 

This section presents the validation results of the mathematical 

odel in Eqs. (5a) –(5w) as presented in Section 3 for the 8-stage 

ime period from April 3, 2020, to July 10, 2020. We consider a 

edium realization of the uncertain asymptomatic proportions at 

ach stage of the planning horizon and compare the number of 

nfections forecasted by our model to the real outbreak data. 

The government applied a lockdown strategy from April 3, 

020, to July 10, 2020, at those considered locations in New York 

nd New Jersey. Thus, we use the lockdown strategy and the cor- 
Table 6 

Transmission parameters and bi-weekly rates for COVID-19. 

Parameter Description 

σ2 ,r Proportion of untested asymptomatic infections 

λ1 ,r Recovery rate without hospitalization 

λ2 ,r Death rate without hospitalization 

λ3 ,r Hospitalization rate 

λ4 ,r Recovery rate with hospitalization 

λ5 ,r Death rate with hospitalization (No ventilators) 

λ6 ,r Ventilator requirement rate of hospitalized 

λ7 ,r Recovery rate with ventilator 

λ8 ,r Death rate with ventilator 

λ9 ,r Recovery rate with asymptomatic infections 

268 
esponding transmission rate at each stage in our model for vali- 

ation. 

Figure 5 shows the comparison between the predicted infec- 

ions and real outbreak data. The model’s predictions give a good 

pproximation for the actual number of new infections in each re- 

ion, implying that the model can capture the disease transmission 

ynamics under a lockdown intervention strategy. Similar to the 

alidation approaches of Kıbış et al. (2021) and Kıbış & Büyüktah- 

akın (2019) , we also perform a paired- t-test to analyze the differ- 

nce between the pairs of predicted new infections and the actual 

ata in each period. As shown in Table 9 , all p-values are greater 

han 0.05, and thus our model provides statistically similar predic- 

ions with the real outbreak data from April 3, 2020, to July 10, 

020, for each considered county. 

.2. Case study implementation details 

We apply our model described in Section 3 to the selected 

ounties in New York and New Jersey. We first solve the risk- 

eutral model. We incorporate the uncertainty of the proportion of 

ntested asymptomatic infections as well as the short-term migra- 

ion in the disease transmission and forecast the number of new 

nfections, deceased individuals, hospitalized individuals, and ICU 

atients under different intervention strategies. Also, we solve the 

odel to determine the optimal location and number of ventilators 

llocated under different budget levels and scenarios to provide 

nsights into resource allocation over multiple jurisdictions under 

ncertainty. Due to the high complexity of the mathematical for- 

ulation, we solve it for a 5-stage time period. Each stage corre- 

ponds to two weeks, resulting in a planning horizon of ten weeks 

rom March 20, 2020, to May 29, 2020. Because each node of the 

cenario tree has three possible realizations of the random param- 

ters, we solved 243 ( 3 5 ) scenarios simultaneously. 

The mathematical model is solved using CPLEX 12.7.1 on a desk- 

op computer running with Intel i7 CPU and 64.0 GB of memory. 

e set the time limit at 7200 CPU seconds to solve each test in- 

tance. We extend running time for specific budget levels ( $30 Mil- 

ion) and interventions (“Lockdown”) due to the large optimality 

ap. In the following subsections, we present results from solv- 

ng the multi-stage stochastic epidemics-ventilator-logistics model 

ith an application to the case of COVID-19 using the data pre- 

ented in Section 5 . 

.3. Transmission forecast under different intervention strategies 

Here, we present results of our formulation for each time 

eriod under different intervention strategies: No intervention 

“None”), mask and social distancing for all stages (“Mask and So- 

ial Distance”), lockdown for all stages (“Lockdown”), mask and 

ocial distancing for the first three stages and lockdown for the 

ollowing two stages (“Mask + Lockdown”), lockdown for the first 

hree stages and mask and social distancing for the following two 
Data Reference 

0.15-0.4 Meller (2020) 

0.69-0.79 Hogan (2020) 

0.4 Trained using real data from JHU (2020) 

0.21-0.31 Hogan (2020) 

0.88 Hogan (2020) 

0.4 Trained using real data from JHU (2020) 

0.12 Hogan (2020) 

0.643 Bernstein (2020) 

0.357 Bernstein (2020) 

1 Bertsimas et al. (2020) 
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Table 7 

Transmission rate (σ1 ,r ) in New York and New Jersey and impact of interventions. 

County Transmission Rate Transmission Rate Impact of Impact of Impact of 

at Stage 1 at Stage 2 None Mask and Social Distancing Lockdown 

New York 4.5 0.9855 1 0.4 0.6 

Kings 9 0.9855 1 0.4 0.6 

Queens 10 1.095 1 0.4 0.6 

Bronx 12 1.314 1 0.4 0.6 

Richmond 12 1.314 1 0.4 0.6 

Hudson 22 2.409 1 0.3 0.6 

Bergen 11 1.408 1 0.3 0.6 

Essex 22 2.409 1 0.3 0.6 

Fig. 5. Comparison of predicted cases with real outbreak data for new infections in New York and New Jersey. 

Table 8 

Initial number of infections, hospital capacity, and ICU capacity 

for each county. 

County Initial Initial Initial 

Infections Hospital Capacity ICU Capacity 

New York 1200 8650 944 

Kings 1300 5838 282 

Queens 1100 3210 146 

Bronx 554 2816 274 

Richmond 206 1177 72 

Hudson 66 1764 89 

Bergen 249 2874 122 

Essex 73 3541 226 

s
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o

Table 9 

Statistical analysis to compare the bi-weekly predicted new cases and real out- 

break data. 

County Mean Two-tailed paired- t -test 

Outbreak Predicted t -stat t -critical p -value 

New York 7300 7299 0.20 2.36 0.58 

Kings 7413 7754 0.41 0.65 

Queens 8138 8751 0.21 0.58 

Bronx 5956 6214 0.46 0.67 

Richmond 1762 2040 0.04 0.51 

Hudson 2455 2806 0.16 0.56 

Bergen 2444 2656 0.30 0.61 

Essex 2366 2948 0.04 0.51 

fi
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e
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f

s

n

tages (“Lockdown + Mask”). The model is solved under the $30 

illion budget level. The model with the “Lockdown” strategy 

ives a 4 . 54% optimality gap after a run time of 43,241 CPU sec-

nds, while the model solved for all other strategies has a zero 

ptimality gap within 7200 CPU seconds. 

Figure 6 presents the number of infections and deceased indi- 

iduals at each stage under different intervention strategies. Ac- 

ording to the results, short-term migration influences the number 

f new infections even under constant transmission rates. As in the 
269 
rst stage, with the same initial transmission rate, the number of 

nfections under different intervention strategies is different from 

ach other. When the stage increases, the difference in the num- 

er of new infections among each intervention strategy becomes 

ore and more significant. The “None” strategy has the most in- 

ections at each stage, followed by the “Mask and Social Distance”

trategy. The “Lockdown” strategy results in the lowest number of 

ew infections compared to those under other strategies at each 
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Fig. 6. Number of new infections and deaths under different intervention strategies and actual numbers (numbers are rounded in thousands). 
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tage. The “Lockdown” strategy provides a marginally higher num- 

er of infections compared to the actual infection data since our 

odel slightly (but statistically insignificantly) overestimates the 

umber of infections. Compared to the “Mask + Lockdown” strat- 

gy, the “Lockdown + Mask” intervention leads to fewer infections. 

his implies that applying the “Lockdown” strategy immediately at 

he onset of the pandemic followed by the “Mask and Social Dis- 

ance” intervention is a better strategy than enforcing “Mask and 

ocial Distance” first and delaying the lockdown. 

The intervention strategy does not influence the number of de- 

eased individuals as quickly as it impacts the number of infec- 

ions, as shown in Fig. 6 . Here, the number of deceased individuals 

t the first two stages is much lower than that of the last three

tages. Starting from stage three, the number of deceased individ- 

als under different intervention strategies shows a similar trend 

ith the number of new infections. The influence of interventions 

s further delayed for those confirmed infections to be treated in 

he hospital and ICU ( Fig. 7 ). 

To reduce both the number of new infections and deaths, “Lock- 

own” is the best strategy. As shown in Fig. 6 b, the “Lockdown”

trategy with the optimal ventilator allocation further reduces the 

ctual number of deaths. Due to the negative impact of COVID-19 

n employment and its economic burden, governments are often 

orced to stop the lockdown and reopen businesses. In such cases, 

pplying “Mask and Social Distance” after a certain period of “Lock- 

own” will be the best choice. 

Figure 7 shows the number of hospitalized individuals and ICU 

atients at each stage under different intervention strategies. Sim- 

lar to the number of deceased individuals, there are delays in the 

mpact of government interventions on the number of hospitalized 

ndividuals and ICU patients. An infected person may have mild 

ymptoms for about one week, then worsen rapidly ( Harvard Med- 

cal School (2021) ). Thus, it may take some time for patients to be

dmitted to the ICU, so the impact of interventions on the number 

f ICU patients is delayed one more stage compared to the hospi- 

alized cases. As shown in Fig. 7 , a higher number of hospitalized 

ndividuals at stage j will lead to more ICU patients at stage j + 1 . 
270 
For all the stages, the “Lockdown” strategy has the lowest 

umber of hospitalized individuals and ICU patients, followed by 

he “Lockdown + Mask” intervention. The ICU patients of “None,”

Mask and Social Distance,” and “Mask + Lockdown” are almost the 

ame at stages three to five. This is because under those, the need 

or ventilators is large, and the number of treated individuals in 

CUs depends on the minimum number of patients who require 

entilators and the ventilator supply in those ICUs. Therefore, the 

umber of treated patients in ICUs is limited by the tight ventilator 

vailability. 

.4. Optimal ventilator allocation under varying costs and budgets 

Table 10 shows the number of ventilators allocated to each re- 

ion at stages one and two and the total number of ventilators 

llocated throughout the planning horizon under different budget 

evels and three select scenarios. The “All Low,” “All Medium,” and 

All High” scenarios represent low, medium, and high realization of 

he proportion of untested asymptomatic infections at each stage 

f a five-stage planning horizon, respectively. To analyze the im- 

act of budget on the optimal ventilator allocation decisions, we 

elect $10 M as the limited budget level, $20 M as the medium bud- 

et level, and $30 M as the ample budget level. The model has zero 

ptimality gap under the $10 M budget level, 0 . 03% optimality gap 

nder the $20 M budget level, and 1 . 25% optimality gap under the 

30 M budget level within two hours of solution time. 

The results in Table 10 demonstrate that the location and num- 

er of ventilators allocated depend on several factors, including the 

nitial and evolving disease transmission rates, the population and 

he number of initial infections in a region, and the existing ven- 

ilator capacity. Thus, the optimal ventilator allocation should be 

etermined case-by-case. 

According to the results, the total number of ventilators allo- 

ated increases in the budget level due to the high need for venti- 

ators. As shown in Table 10 , some regions with many initial infec- 

ions, e.g., New York County, do not receive ventilators. This situa- 

ion occurs because the initial ventilator capacity of those regions 
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Fig. 7. Number of hospitalized individuals and ICU patients under different intervention strategies (numbers are rounded in thousands). 
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s higher than in other counties. Also, results suggest that more 

entilators should be distributed to other areas with a higher ini- 

ial transmission rate than New York County, such as Kings and 

ueens. Both Kings and Queens have higher initial transmission 

ates and lower initial ICU capacity than New York. Thus, these re- 

ions get more ventilators allocated. Also, regions with a smaller 

opulation, such as Bergen and Essex in New Jersey, get a large 

hare of ventilators due to their high transmission rates at the be- 

inning of the pandemic and under the “All High” scenario com- 

ared to other New Jersey counties, such as Richmond and Hud- 

on. 

Under a limited budget level, some regions with low initial in- 

ections and low initial ICU capacity (e.g., Bronx) get more venti- 

ators allocated when the scenario changes from “All Low” to “All 

edium” and “All High.” Also, the number of ventilators allocated 

n regions with a high initial transmission rate (e.g., Kings and 

ueens) do not significantly increase as the scenario changes from 

All Low” to “All High.” These regions usually have much more 

nitial ICU capacity for the treatment of their patients because of 

heir large population. On the contrary, the areas with a lower 

nitial transmission rate but less initial ICU capacity may benefit 

ore if they receive more ventilators as the disease transmission 

ates get higher. Independent from the scenarios, the majority of 

he regions get more ventilators allocated when the budget level 

ncreases from limited to medium and ample. This is in particu- 

ar observed for the areas with high initial transmission rates (e.g., 

ings). The benefit of giving resources to those regions is higher 

han those regions with low initial disease transmission when the 

udget increases. 

Moreover, the model is forced to make difficult decisions, and 

ome of the regions may not have any ventilator allocated under a 

imited ventilator supply or “All High” transmission scenario under 

 very limited budget (see, e.g., New York and Hudson counties). 

hen the budget is too tight, the regions either with a high trans- 

ission rate or a low capacity get the priority for ventilator alloca- 

ion. As the budget increases to medium and ample, the model al- 
271 
ocates more capacity to the regions with a higher population and 

 larger initial number of infections but with a lower transmission 

ate. Also, the stage-wise distribution of ventilators has a high re- 

ationship with the available budget. If the budget is tight (see to- 

al budgets of $10 M and $20 M), most ventilators are distributed 

ithin the first two stages. As we increase the budget, some of 

he ventilators are allocated in stages three and four in addition to 

tages one and two. Thus, a higher budget level also provides some 

exibility in delaying the ventilator allocation to some regions. 

.4.1. Varying ventilator cost 

In addition to considering a cost of $50 0 0 for each ventilator, 

e perform a sensitivity analysis on different ventilator costs and 

heir impact on the number of ventilators allocated to each re- 

ion. Specifically, we change the ventilator unit cost from $50 0 0 to 

10 , 0 0 0 , $15 , 0 0 0 , and $20 , 0 0 0 under the budget levels of $10 M,

20 M , and $30 M (see Tables S1, S2, and S3 in the Online Supple-

ent S1 for more detailed results). Results show that all ventilators 

re allocated in time stages one and two when the unit ventila- 

or cost of $50 0 0 is increased to $10 , 0 0 0 , $15 , 0 0 0 , and $20 , 0 0 0 .

ccording to the results, the ventilator allocation decisions show 

imilar trends under different ventilator costs. For instance, when 

he ventilator cost increases and the disease transmission situation 

orsens (medium and high scenarios), more ventilators are allo- 

ated to Bergen County. When the ventilator cost increases from 

50 0 0 to $10 , 0 0 0 , $15 , 0 0 0 , and $20 , 0 0 0 , New York County and

ings county receive almost the same number of ventilators allo- 

ated under different budgets and scenarios. Under the “All High”

cenario and $30 M budget level, Bronx County receives more ven- 

ilators than in other scenarios due to the ample budget. 

Furthermore, we can find some trends in the ventilator alloca- 

ions under different costs. Independent from the budget level and 

cenario, when the ventilator cost increases, the number of ventila- 

ors allocated to Queens and Bronx decreases, while other regions 

ave a similar number of ventilators allocated (e.g., Kings). This is 

ecause the model prioritizes allocating an appropriate number of 



X. Yin, İ.E. Büyüktahtakın and B.P. Patel European Journal of Operational Research 304 (2023) 255–275 

Table 10 

Optimal ventilator allocation under different scenarios and budgets with unit ventilator cost of $50 0 0. 

Scenario County Stage Stage Total Stage Stage Total Stage Stage Total 

1 2 Ventilator 1 2 Ventilator 1 2 Ventilator 

(Budget =$10 M) (Budget =$20 M) (Budget =$30 M) 

All Low New York 0 0 0 0 86 86 780 82 970 ∗

Kings 119 0 119 418 0 418 120 1950 2119 ∗

Queens 105 1120 1225 1225 0 1225 4 0 4 

Bronx 28 0 28 28 988 1016 28 988 1016 

Richmond 18 0 18 18 314 332 17 315 341 ∗

Hudson 0 250 250 247 3 254 ∗ 0 250 544 ∗

Bergen 14 128 142 13 438 451 13 438 530 ∗

Essex 0 218 218 218 0 218 0 218 475 ∗

Total 284 1716 2000 2167 1829 40 0 0 ∗ 962 4241 5999 ∗

All Medium New York 0 0 0 0 0 0 780 0 780 

Kings 119 0 119 418 25 443 120 1950 2070 

Queens 105 776 881 1225 0 1225 4 1187 1191 

Bronx 28 44 72 28 988 1016 28 989 1017 

Richmond 18 0 18 18 379 397 17 6 23 

Hudson 0 245 245 247 3 250 0 250 250 

Bergen 14 437 451 13 438 451 13 438 451 

Essex 0 214 214 218 0 218 0 218 218 

Total 284 1716 2000 2167 1833 4000 9,62 5038 6000 

All High New York 0 0 0 0 0 0 780 82 2190 ∗

Kings 119 0 119 418 0 418 120 1950 2070 

Queens 105 137 242 1225 0 1225 4 0 4 

Bronx 28 924 952 28 988 1016 28 988 1016 

Richmond 18 0 18 18 404 422 17 34 51 

Hudson 0 0 0 247 3 250 0 0 0 

Bergen 14 437 451 13 438 451 13 438 451 

Essex 0 218 218 218 0 218 0 218 218 

Total 284 1716 2000 2167 1833 4000 962 3710 60 0 0 ∗

∗Some of the ventilators are allocated at stages three and four. 
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entilators to these regions with a smaller number of ICUs to sup- 

ort the essential operation of the ICU. When the ventilator cost 

ecreases (or more budget is available), more ventilators are allo- 

ated to the regions with high transmission rates and a high initial 

CU capacity to reduce deaths. 

.5. Risk analysis 

In this section, we perform an analysis of the risk parameters 

and α in terms of their impact on the expected number of in- 

ected and deceased people as well as the CVaR of the impact. 

pecifically, under the $30 M budget level, we compare four differ- 

nt problems with respect to their risk-averseness level, adjusting 

and α values accordingly-risk-neutral ( φ = 0 , α = 0 . 95 ), weak 

isk-aversion ( φ = 1 , α = 0 . 3 ), mild risk-aversion ( φ = 10 , α = 0 . 6 ),

nd strong risk-aversion ( φ = 10 , α = 0 . 95 ). The model under the

ild risk-aversion results in a high optimality gap ( 13% ) within 

200 CPU seconds running time. Therefore, we solve the scenario- 

problems described in Section 4.1 and obtain the lower and up- 

er bounds for the original problem. For our problem, we select 

ve representative scenarios and add bounds based on the results 

f those select scenarios in the risk-averse model. After imple- 

enting the scenario bounds, the optimality gaps over all of the 

isk-averseness levels reduce to less than 9 . 13% . 

We decompose the objective function (5a) into the Expected 

mpact [ E ( f (x, ω)) ] and the Expected Risk [ CVaR α( f (x, ω)) ], as

emonstrated in Eq. (4) , to analyze the impact of risk trade-off on 

he results. Table 11 presents the value of the objective function 

5a) , expected impact, and expected risk (without φ) under differ- 

nt risk-averseness levels. Specifically, the expected impact repre- 

ents the expected total number of infections and deceased indi- 

iduals, and the expected risk corresponds to the expected CVaR 

erm in (5a) without the φ value. According to Table 11 , the risk- 

eutral formulation has the highest expected risk since it does not 

onsider the risks related to high-stake scenarios. When compar- 
272 
ng different risk-averseness levels, as both φ and α increase, the 

evel of risk-averseness and the expected risk increase. The opti- 

al objective function value increases due to the additional risk 

erm added into the objective formulation. The expected impact 

lso increases, implying the cost of being risk-averse, which is the 

ncreased number of infections and deceased individuals while try- 

ng to mitigate specific disastrous scenarios. 

The expected impact and expected risk (without φ) for vari- 

us combinations of φ = { 0 , 1 , 10 } and α = { 0 . 3 , 0 . 6 , 0 . 95 } under 

he $30 M budget level are presented in Table 12 . We observe the 

hange of the expected impact and expected risk when chang- 

ng one of the risk parameters and fixing all other original val- 

es. According to the results, when φ = 0 , the expected risk has 

he highest value under each α value (because the risk measure 

s omitted). Fixing the α value, both expected impact and ex- 

ected risk show an increasing trend due to the increase of φ
rom 1 to 10. When we move from risk-neutral ( φ = 0 ) to risk-

verse ( φ = { 1 , 10 } ), the expected impact always increases. Simi- 

arly, φ = { 1 , 10 } increases the expected impact compared to the 

isk-neutral model. Besides, when fixing the φ value and increas- 

ng the α value, the expected risk increases because we increase 

he confidence level for reducing the risk of having an extremely 

arge number of infections and big losses of lives. 

. Discussion and future directions 

In this paper, we present a general multi-stage mean-risk 

pidemics-ventilator-logistics model and apply this model to con- 

rol COVID-19 in select counties of New York and New Jersey. 

e first explicitly formulate the uncertainty of the proportion 

f untested asymptomatic infections at each stage, generating a 

ulti-stage scenario tree. We then develop a compartmental dis- 

ase model and integrate the short-term human movement among 

ultiple regions into this model. We also derive a time- and 

pace-varying disease transmission formulation and a logistics sub- 
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Table 11 

Comparison of objective value, expected impact, and expected risk under various risk-averseness levels. 

Risk Weak Mild Strong 

Neutral Risk-aversion Risk-aversion Risk-aversion 

( φ = 0 , α = 0 . 95 ) ( φ = 1 , α = 0 . 3 ) ( φ = 10 , α = 0 . 6 ) ( φ = 10 , α = 0 . 95 ) 

Objective Value 358,030 721,710 3,997,129 4,011,964 

Expected Impact 358,030 360,438 362,559 363,526 

Expected Risk 421,827 361,272 363,457 364,844 

Table 12 

Expected impact and risk for different risk-averseness levels. 

φ\ α 0.3 0.6 0.95 

Expected Expected Expected Expected Expected Expected 

Impact Risk Impact Risk Impact Risk 

0 358,030 376,318 358,030 392,273 358,030 421.827 

1 360,438 361,272 361,950 363,251 363,882 365,236 

10 360,880 361,341 362,559 363,457 363,526 364,844 
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odel. We then integrate all those components into one math- 

matical formulation, which minimizes the number of infections 

nd deceased individuals under different intervention strategies. 

e also present new bounds on the problem and show their com- 

utational benefits in terms of the optimality and relaxation gaps. 

e find that region bounds provide a better improvement on the 

P relaxation gap, while scenario bounds provide a better MIP gap 

or harder instances with the expense of longer sub-problem solu- 

ion times. 

We solve the epidemics-ventilator-logistics model under differ- 

nt budget levels to determine the ventilator-distribution optimal 

iming and location under various pandemic scenarios. Next, we 

pply the CVaR in a nested form over a five-stage planning hori- 

on to minimize the total expected number of infections and de- 

eased individuals, as well as the weighted risk of the loss. Fi- 

ally, we solve the scenario sub-problems under various scenarios 

o generate the lower and upper bounds for the original problem, 

educing the optimality gap. Our results provide key insights into 

he resource-allocation decisions for controlling COVID-19 and can 

e adapted to study the transmission and logistics of other similar 

iseases. 

According to the results, the number of infections, deceased in- 

ividuals, hospitalized individuals, and ICU patients indicates that 

hort-term migration influences the number of infections, even if 

he transmission rate is constant over time. The impacts of govern- 

ent interventions on the number of deceased individuals, hos- 

italized individuals, and ICU patients are delayed because deaths 

nd hospitalization have a higher lag period compared to zero or 

 small lag period in the growth of infections. Furthermore, the 

umber of ICU patients at each time period depends on the min- 

mum number of patients who require the ICU and the available 

entilators. Thus, the number of ICU patients might be at the ca- 

acity limit even under different intervention strategies at a par- 

icular stage. The “Lockdown” strategy is the best way to control 

isease transmission. Nevertheless, “Mask and Social Distance” ap- 

lied after the several stages of “Lockdown” is the second-best 

trategy to alleviate the pandemic’s economic impacts. 

The region with a high initial transmission rate and low ini- 

ial ICU capacity receives more ventilators. This is because other 

egions with low initial transmission rates have fewer infections, 

ven if they have smaller initial ICU capacity. Independent from 

he transmission scenario, an area with a high initial transmission 

ate has more ventilators allocated. This is because the benefit of 

iving resources to those regions is higher than the regions with 

ow initial disease transmission when the budget increases. More- 

ver, when the budget is limited, all of the ventilators are allocated 
273 
t the first two stages. When the budget becomes ample, decision- 

akers would have some flexibility in delaying ventilator alloca- 

ion to later stages of the planning horizon. 

Overall, we can derive general insights based on our sensitiv- 

ty analysis. However, if the decision-makers prefer to be precise 

n the optimal allocation, they are encouraged to solve a compli- 

ated optimization model as presented in our paper. This necessity 

hows the importance of using complex mathematical models to 

ackle the difficulty of the pandemics control problem over multi- 

le regions and time periods. 

The increase in the mean-risk trade-off coefficients in the risk- 

verse model improves the confidence level, reducing the loss 

n the right tail of the objective function values (the number of 

nfected and deceased individuals over highly-adverse scenarios). 

owever, we should expect more infections and deceased individ- 

als on average considering all possible scenarios when we want 

o decrease the impact of adverse scenarios by increasing the risk- 

verseness level. 

This study leads to several future directions for research. For 

nstance, vaccine allocation is also essential as it can potentially 

rotect people from being infected. The combination of vaccine al- 

ocation and other interventions will provide more flexible strate- 

ies to prevent and control the disease. For example, for the region 

ith a low transmission rate and high vaccine coverage, decision- 

akers could consider lifting the “Lockdown” earlier to stimulate 

he economy. Furthermore, the mathematical model cannot allo- 

ate ventilators to some regions under a very tight budget, and 

o future research could investigate ethical and fair resource al- 

ocation strategies during a pandemic. Also, some of the assump- 

ions and inferences made in our model could be updated in a fu- 

ure study as more data becomes available. The proposed multi- 

tage mean-risk epidemics-ventilator-logistics formulation is highly 

omplex and also interesting in terms of developing new solu- 

ion methodologies. In this paper, we compare our region bounds 

ith the scenario bounds of Büyüktahtakın (2021) . Future research 

ould also investigate the performance of the scenario dominance 

ecomposition cuts of Büyüktahtakın (2021) and other prominent 

ecomposition approaches (e.g., the stochastic dual dynamic inte- 

er programming method of Zou, Ahmed, & Sun (2019) ) proposed 

or multi-stage stochastic mixed-integer programs. 
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simulation-deep reinforcement learning (SiRL) approach for epidemic control 

optimization. Under Review. 
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