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Abstract

Background: Efforts to explain the burden of cardiovascular disease (CVD) often focus on 

genetic factors or social determinants of health. There is little evidence on the comparative 

predictive value of each, which could guide clinical and public health investments in measuring 

genetic versus social information. We compared the variance in CVD-related outcomes explained 

by genetic versus socioeconomic predictors.

Methods: Data were drawn from the Health and Retirement Study (N=8,720). We examined 

self-reported diabetes, heart disease, depression, smoking, and body mass index, and objectively 

measured total and high-density lipoprotein cholesterol. For each outcome, we compared the 

variance explained by demographic characteristics, socioeconomic position (SEP), and genetic 

characteristics including a polygenic score for each outcome and principal components (PCs) 

for genetic ancestry. We used R-squared values derived from race-stratified multivariable linear 

regressions to evaluate the variance explained.

Results: The variance explained by models including all predictors ranged from 3.7% to 14.3%. 

Demographic characteristics explained more than half this variance for most outcomes. SEP 

explained comparable or greater variance relative to the combination of the polygenic score and 

PCs for most conditions among both white and Black participants. The combination of SEP, 

polygenic score, and PCs performed substantially better, suggesting that each set of characteristics 

may independently contribute to prediction of CVD related outcomes.
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Conclusions: Focusing on genetic inputs into personalized medicine predictive models, without 

considering measures of social context that have clear predictive value, needlessly ignores relevant 

information that is more feasible and affordable to collect on patients in clinical settings.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death in the United States.1 

Conceptual frameworks guiding efforts to reduce the burden of CVD are often motivated 

around either a precision medicine approach primarily focused on genetics or a social 

determinants of health perspective that discounts the potential relevance of genetic 

factors. Precision medicine typically focuses on precisely tailoring treatment based on an 

individual’s genetic and other biomedical characteristics.2 In contrast, social determinants 

frameworks emphasize the importance of addressing social factors, such as components 

of socioeconomic position (SEP), to reduce CVD burden and disparities at the population 

level.3 Although these need not be competing frameworks, in practice precision medicine 

is rarely used to motivate strategies leveraging social determinants of health, and social 

determinants of health initiatives rarely engage with biomarker or genetic metrics. To date, 

there is little evidence on whether more relevant predictive information is likely to be 

derived from genetic data or social factors, because few studies have included both types of 

data as explanatory variables in the same models.

Given the decrease in price, a whole genome assay is currently feasible as a routine part 

of clinical care and a precision medicine framework would suggest the information derived 

from such genetic data could be used to identify risk strata for clinical care.4 Genetic 

information is already being used to guide some treatment decisions.5,6 At the same time, 

some have proposed routinely incorporating information on social determinants of health 

into clinical records.7 Social determinants data may be useful to identify high-risk groups 

and guide clinical decisions based on the social context faced by the patient, although this is 

not widespread practice in the U.S. For example, closely related work has evaluated adding 

social characteristics (like SEP) to clinical risk prediction algorithms,8–10 and this is now 

common practice in some international settings (e.g., the ASSIGN score in Scotland) but not 

in the U.S.11

Integrating any type of new information into clinical care entails costs related to collecting, 

storing, and creating user-friendly access to the data. Given this, if we want to maximize 

our ability to anticipate high risk of CVD, what information is in fact most important 

to collect? Is there substantial added value of genetic tests in explaining the variation in 

CVD outcomes, over and above standard questions on demographics? Similarly, is there 

added value in assessing social determinants? Would the two types of data in combination 

substantially outperform either in isolation? There are increasing calls in population health 

research for a more robust engagement between genetic research and social epidemiology to 

address this gap in our understanding.12
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In this study, we help to answer these questions by leveraging longitudinal data on a large 

sample of U.S. older adults. We examine the variance in CVD and related risk factors that 

is explained by demographic, genetic, and socioeconomic predictors. We do not attempt to 

identify causal determinants of CVD and related risk factors in our analysis or develop a 

clinical prediction model; instead, we focus here on the relative importance of prediction in 

the context of a precision health approach to disease prevention.

METHODS

Data

Our sample was drawn from the U.S. Health and Retirement Study (HRS), a longitudinal 

cohort study that has been conducted biennially since 1992 among a nationally 

representative sample of men and women over 50 years of age and their spouses (N = 

37,495). Additional details on the survey design have been described previously.13 We used 

data through the 2014 survey wave, the latest available at the time data analysis began. 

Neighborhood-level socioeconomic characteristics at the census tract level were drawn from 

the 2000 Decennial Census,14 linked to HRS based on census tract of residence in 2000.

We restricted the sample to individuals who participated in genetic testing and for whom 

valid data were available on the polygenic scores of interest (N = 12,367, details on 

genetic testing below). We also restricted the sample to individuals for whom data were 

available on neighborhood of residence (N = 9,909). Finally, we restricted the sample 

to self-reported non-Hispanic white participants (N = 7,522, which HRS labels as those 

with “European ancestry” for the purposes of their genetic data) and self-reported Black 

participants (N = 1,198, which HRS labels as those with “African ancestry”). HRS has 

released polygenic scores—derived from prior genome-wide association studies—only for 

these two populations (see details below), and there are few individuals of other racial/

ethnic subgroups in HRS. Because the majority of genome-wide association studies are 

done among European-ancestry populations, polygenic scores constructed from these data 

may not necessarily have the same predictive capacity for populations of non-European 

ancestry.15 In addition, Black and white participants may be of mixed genetic ancestry 

despite how they are categorized in HRS.

Variables

Outcomes—In each survey wave, HRS asks respondents whether they have ever been 

diagnosed with a list of specific conditions. We selected self-reported and objectively 

measured CVD outcomes and risk factors for which prevention or treatment is available 

in a clinical setting, and for which information on demographic and other characteristics 

may influence clinical guidelines. We also required that a relevant polygenic score for 

these outcomes was available in HRS. For self-reported outcomes, we defined someone as 

having that condition if they ever reported that they had the condition in any survey wave. 

These included self-reported measures of diabetes, heart disease, smoking, and body mass 

index (BMI) based on self-reported height and weight. We also included depression risk, 

as depression and poor mental health have been repeatedly documented as risk factors for 

CVD.16,17 We determined depression risk based on whether an individual ever scored 3 or 
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more on the shortened 8-item Center for Epidemiologic Studies Depression scale used by 

HRS.18 Finally, we included objectively measured serum markers of total cholesterol and 

high-density lipoprotein (HDL, “good”) cholesterol that were collected in the 2006–2012 

survey waves for a subset of study participants. For individuals who provided a blood 

sample in more than one survey wave, we took the mean of the observed values.

Demographic Characteristics—Demographic characteristics included a range of 

measures that have been associated with CVD: gender, foreign-born status, birth year, and 

census region of residence (Northeast, Midwest, South, and West). Census region was drawn 

from the first wave in which the subject participated in HRS, to reduce confounding by 

health status. Birth year was included as a cubic spline to account for possible non-linear 

relationships with the outcomes. Because age and birth year are highly correlated in our data 

due to the nature of the HRS sampling, we did not include both variables in the models.

Socioeconomic Position—To measure SEP as comprehensively as possible, we 

included variables that captured multiple socioeconomic dimensions at both the individual 

and neighborhood levels. The individual-level variables included educational attainment 

(less than high school, high school, some college, college or more), assets, income, 

longest held occupation (manager/professional versus other), and an index of childhood 

SEP. Household assets and income were drawn from the first wave in which the subject 

participated, to reduce confounding by health status (i.e., worsened CVD in early survey 

waves might lead to reduced income and assets in later waves), and the variable was 

transformed with a natural logarithm for our analysis due to variable skew. The childhood 

SEP index was constructed and validated in HRS data in prior work, and included measures 

of childhood social capital, financial capital, and human capital.19

Neighborhood socioeconomic status was captured using 16 census tract characteristics, 

drawn from the 2000 Decennial Census14 and linked based on census tract of residence in 

2000 (see eAppendix). To reduce the dimensionality of these data, we conducted principal 

components analysis, similar to the construction of composite measures of neighborhood

level disadvantage used in prior work.20,21 Based on graphical examination of the elbow 

(i.e., kink) in the resulting scree plot,22 we selected the first five principal components (PCs) 

to include in subsequent regressions.

Genetic Characteristics—Genetic data were collected from HRS participants during the 

2006–2012 waves using a mouthwash technique. Genotyping was conducted by the NIH 

Center for Inherited Disease Research using the Illumina Human Omni-2.5 Quad beadchip, 

which includes roughly 2.4 million single-nucleotide polymorphisms (SNPs). Additional 

details are available from HRS.23

Using genome-wide association study data, HRS constructed genome-wide polygenic scores 

for a range of phenotypes, aggregating thousands to millions of SNPs across the genome 

and weighting them by effect sizes derived from genome-wide association study data. 

HRS defined weights by the odds ratio or beta estimate from the genome-wide association 

study meta-analysis files corresponding to the phenotype of interest, and additional details 

are available in HRS documentation.23 Using genome-wide polygenic scores is preferred 
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over including only SNPs deemed significant in prior genome-wide association studies, 

as the former are thought to explain more variance in the phenotype of interest.24 Each 

polygenic score therefore estimates an individual’s genetic risk of developing the disease of 

interest. HRS provides separate polygenic scores for self-reported white participants (which 

it labels as those with “European ancestry”) and self-reported Black participants (which it 

labels as those with “African ancestry”). For each participant, we used the polygenic score 

corresponding with their self-reported race, although it should be noted that racial identity is 

a social construct, and that systematic biological/health differences between Black and white 

adults reflect the embodiment of social inequalities and systemic racism targeting Black 

people in the U.S. context.

Using these SNPs, HRS also constructed race-specific PCs (i.e., separately for white and 

Black participants) to represent genetic ancestry.23 We included the first 10 components in 

regression models to account for population stratification.25

Data Analysis

We first tabulated characteristics of the sample. We then constructed a series of models, 

to test how different combinations of covariates altered the variance explained for each 

outcome. Model 1 regressed each health outcome of interest (e.g., diabetes) on the 

demographic characteristics above. Model 2 included demographic characteristics and 

measures of SEP. Model 3 included demographic characteristics and PCs for genetic 

ancestry. Model 4 included demographic characteristics and the disease-specific polygenic 

score (e.g., for diabetes). Model 5 included demographic characteristics and both PCs and 

the polygenic score. Finally, Model 6 included all predictors: demographic characteristics, 

SEP, PCs, and the polygenic score.

We assessed variance explained using adjusted R-squared, defined as the variance in the 

outcome explained by predictions from the estimated model divided by the total variance in 

the outcome, or fraction of the variance explained by the model. This metric has been used 

to quantify prediction in prior related work.26,27 Since R-squared (or an appropriate analog) 

is not available with an equivalent interpretation for logistic regressions,28,29 ordinary least 

squares linear regressions were used for both continuous and binary outcomes, to allow 

comparability of the measure of variance explained across all outcomes. Robust standard 

errors were clustered at the household level to account for correlated observations among 

spouses.

We also examined the additional variance explained by SEP, PCs, and the polygenic score, 

individually and in combination, over and above the variance explained by demographic 

characteristics alone. To do so, we subtracted the R-squared for Model 1 from the R-squared 

for Models 2–6, as Model 1 is nested within (i.e., has a subset of the covariates from) 

Models 2–6. We approximated confidence intervals for the R-squared values using the 

Fisher’s z-transformation and approximate standard error for a correlation coefficient.30

Finally, we conducted formal evaluations of model performance for binary outcomes by 

calculating sensitivity, specificity, accuracy, and Brier scores for each set of models, (see 

eAppendix). For logistic regression models with binary outcomes, we also computed 
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likelihood ratio tests, comparing each model with the base model that included only 

demographic predictors.

Ethics Approval

Approval for this study was provided by the institutional review board of the first author’s 

institution (15–18340).

RESULTS

Sample Characteristics

More than half the sample was female, with a mean birth year of 1935 (SD 9.0) among 

white participants and 1937 (SD 8.8) for Black participants (Table 1). About half of white 

participants and two-thirds of Black participants had a high school education or less. Mean 

annual household income was $56,914 (SD $57,299) for white participants and $35,133 

(SD $35,855) for Black participants. Nearly a third of white participants and 16% of Black 

participants were managers or professionals in their longest held occupations.

Nearly a quarter of white participants and 41% of Black participants self-reported diabetes, 

41% of white participants and 34% of Black participants reported heart disease, and 38% 

of white participants and 53% of Black participants met criteria for high risk of depression. 

Over half were ever-smokers. Mean BMI was 27 (SD 4.9) among white participants and 29 

(SD 5.6) among Black participants, mean total cholesterol was 196 (SD 38) among white 

participants and 195 (SD 37) among Black participants, and mean HDL was 54 (SD 15) 

among white participants and 55 (SD 16) among Black participants.

Variance in CVD Explained by Demographic Characteristics

R-squared values for regressions models incorporating only demographic characteristics 

(i.e., gender, foreign-born status, birth year, and census region of residence) ranged from 

1% (for diabetes) to 8% (for total cholesterol) among white participants (blue diamonds in 

Figure 1A), and from 2% (for heart disease) to 8% (for BMI) among Black participants 

(blue diamonds in Figure 1B). The total variance explained when including all categories 

of predictors was below 15% for all outcomes, ranging from 4% for diabetes to 14% for 

BMI among white participants (Figure 1A), and from 6% for HDL to 11% for BMI among 

Black participants (Figure 1B). For heart disease, smoking, and total and HDL cholesterol, 

demographic factors accounted for at least half of the variance that could be explained by 

all predictors combined among white participants. Among Black participants, demographic 

factors accounted for at least half of the total variance explained by all predictors for 

smoking, BMI, and total and HDL cholesterol.

Additional Variance in CVD Explained by Socioeconomic and Genetic Characteristics

The additional variance explained by the addition of SEP, genetic PCs, and polygenic scores 

over and above the model including only demographic predictors differed across outcomes 

and for white and Black participants (Figure 2, eTables 1–2). Among white participants, PCs 

for genetic ancestry consistently contributed the least amount of explained variance (green 

triangles in Figure 2A), such that estimates for R-squared were not different from models 
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including only demographic characteristics (eTable 1). This was followed by polygenic 

scores for all conditions except BMI and total cholesterol (purple circles). Among Black 

participants, the polygenic score contributed the least amount of explained variation for all 

conditions except for BMI (purple circles in Figure 2B), such that estimates for R-squared 

were not significantly different from models including only demographic characteristics 

(eTable 2). This was followed by PCs for genetic ancestry (green triangles).

When including both sets of genetic predictors—genetic PCs and polygenic scores (blue 

squares in Figures 2A, 2B)—the additional variance explained increased relative to the 

variance explained by demographic characteristics alone, and was comparable to the 

variance explained by SEP (eTables 1–2). For depression, however, SEP characteristics 

explained a higher percentage of the variance than the combination of PCs and polygenic 

scores for both white (7%, 95%CI: 6, 8 for SEP versus 4%, 95%CI: 3, 5 for PCs and 

polygenic scores) and Black participants (9%, 95%CI: 6, 13 for SEP versus 4%, 95%CI: 2, 

6 for PCs and polygenic scores) (eTables 1–2). For BMI among white participants, PCs and 

polygenic scores together explained a higher percentage of the variance (13%, 95%CI: 11, 

14) than SEP characteristics (8%, 95%CI: 7, 9).

For nearly all outcomes, among both white and Black participants, there was substantially 

more variance explained when all three of SEP, PCs, and polygenic scores were included in 

the models (orange circles in Figures 2A, 2B; eTables 1–2). This suggests that SEP is not 

collinear with the genetic factors, and that they each may contribute to prediction of CVD 

and related risk factors, although the magnitude of this additional prediction varied by risk 

factor.

Finally, likelihood ratio tests for binary outcomes demonstrated that adding predictors to the 

base model increased the goodness-of-fit of the model for the White sample for all outcomes 

(i.e., diabetes, heart disease, depression, and smoking). For the Black sample, only models 

that included SEP improved the goodness-of-fit for diabetes, heart, disease, and smoking, 

while all predictors increased the goodness-of-fit for depression (eTable 3).

DISCUSSION

This study is among the first to compare the variance explained by demographic, 

socioeconomic, and genetic characteristics across a range of CVD-related outcomes and 

risk factors, with the goal of informing investments in measuring genetic and social 

information for predictive modeling in clinical care settings. Despite the excitement and 

substantial investment in genetic testing and personalized medicine, this study demonstrated 

that in many cases SEP explained a greater or comparable amount of the variance in CVD 

and related risk factors relative to polygenic scores, and it was particularly important in 

explaining the variation in depression risk.

The predictive capacity of polygenic scores was lower among Black participants, even 

though we used scores that were specific to this population. This is likely due to the fact 

that the genome-wide association studies used to create these scores have been conducted 

predominantly in white populations and thus the samples for creating the scores specific 
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to Black participants are less well powered.31 This leads to worse calibration of polygenic 

score-based models for Black people and could contribute to disparities in appropriate 

treatment if incorporated into routine clinical decisions. More generally, HRS only provides 

PC and polygenic score data stratified by race, which is itself a sociopolitical construct. 

Survey documentation from HRS indicates that this is “to control for confounding from 

population stratification, or to account for any ancestry differences in genetic structures 

within populations that could bias estimates,”23 although this does not account for the fact 

that biological differences within racial categories may be more important to consider than 

those between individuals of different races.32–34 For example, PCs may be associated with 

skin color, state of residence, and related experiences of racism for Black participants, 

which is known to affect health. Part or all of the effect attributed to genetic ancestry in 

Black participants could be therefore related to social factors. Practically speaking, this 

precluded our ability to carry out an analysis in the overall sample. Efforts are underway 

to diversify the samples included in genome-wide association studies, and future work 

should replicate this study when more genome-wide association study data from a larger 

number of Black participants become available. Racial inequalities in cardiovascular health 

are stark in the U.S., and by stratifying our models on race, we obscure one of the largest 

demographic predictors. This does not modify interpretations of what could be offered by 

adding genetic or SEP information over and above the demographic-only models. Given 

the national priority of addressing racial disparities in health, we consider the stratified 

models most relevant for prioritizing new sources of information. For Black participants, 

the addition of SEP matched or outperformed the addition of genetic information for all 

outcomes except total and HDL cholesterol.

A handful of prior studies have conducted analyses similar to those in this study. One prior 

study determined that a polygenic score for obesity improved prediction of BMI over and 

above demographic and socioeconomic characteristics. It also found that the predictive value 

of the polygenic score was not as great as that of SEP and concluded that it would likely 

have limited clinical utility.26 Of note, this prior study’s measure of SEP consisted solely 

of a categorical variable for educational attainment. As in our study, it also found that the 

polygenic score had limited utility in Black participants. Another study of schizophrenia 

compared the variance explained by a polygenic score, SEP, and an individual’s family 

history, finding them to be roughly comparable, although the polygenic score included 

only highly significant SNPs, and the measure of SEP was limited to information on each 

individual’s parents’ socioeconomic status in the year prior to his/her birth.27 This study was 

conducted in Denmark and racial heterogeneity was not examined.

In general, in our population sample of community-residing adults, the total variance 

explained for each outcome was still small, with R-squared values of less than 15% for 

all conditions even when including all of the covariates that represented a broad array of 

measures of demographics, SEP, and genetic characteristics. This modest percentage reflects 

the role of measurement error of constructs included, and other unmeasured factors, both 

genetic and socioeconomic. For example, whole genome sequencing and examination of 

rare variants has shown promise for prediction,35 as have prior generation measurements 

of SEP.36 However, the possibility remains that the majority of unexplained variation may 

be due to randomness.37 For most outcomes, more than half of the variation that could 
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be explained with measured covariates was explained by demographic characteristics alone 

(i.e. gender, age, place of birth, and census region of residence) which likely represents the 

tremendous importance of age as a predictor and likely causal determinant of CVD and 

related risk factors.

This study has several limitations. First, it was restricted to a sample of white and Black 

participants due to lack of availability of PCs and the small sample size for other racial/

ethnic groups in HRS. Similarly, due to the use of HRS, there may be selection bias 

due to the inclusion of only older adults and possibly higher-SEP individuals that are 

likely to participate in surveys and genetic testing,38 and the size of the sample precluded 

the ability to conduct rigorous tests of overfitting. However, there are very few data sets 

other than HRS—particularly in the U.S.—that include this level of detail on demographic, 

socioeconomic, as well as genetic characteristics; future studies can replicate these analyses 

when data become available on younger, lower-SEP populations, and larger samples. 

Additionally, it is important to note that these models are not focused on determining 

the causal determinants of CVD and related risk factors, although predictive modeling is 

often a first step in understanding causal relationships. Thus, while social factors may be 

a direct target of intervention in clinical settings and in sectors outside of healthcare to 

reduce disease burden and disparities,39 this work does not necessarily speak to the possible 

effectiveness of such strategies. It is also unclear how the current results would generalize 

to health conditions other than CVD and its related risk factors, as we demonstrated 

heterogeneity in the variance explained by demographics, SEP, and genetic characteristics 

even among the handful of related outcomes included in this study. Of note, most outcomes 

were self-reported and likely correspond to prevalent cases. The use of prevalent outcomes 

will mix prediction of incidence and survival, and misclassified outcomes are likely to 

reduce the ability of the predictors to be useful. Additionally, for some of the health 

outcomes examined, more recent polygenic scores may have been developed, but these 

were not available for analysis in HRS. Finally, we did not evaluate interactions between the 

various categories of predictors, which might improve predictive capacity.

In conclusion, this is among the first studies to compare the variance explained by 

demographic, socioeconomic, and genetic characteristics for CVD and related risk factors. 

Social factors explained a large amount of variance in CVD-related outcomes, independent 

of genetic factors. However, polygenic scores also typically added to predictive precision. 

To focus only on incorporating genetic information into personalized medicine models, 

without considering social context, is needlessly ignoring relevant information that may 

be more feasible and affordable to gather in many cases. These findings may help to 

inform conversations about investments in measuring genetic versus social information for 

predictive modeling so that clinics and public health practitioners can more effectively 

identify risk at both the individual and the population level.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Hamad et al. Page 9

Epidemiology. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sources of funding:

This work was supported by grant K08-HL132106 from the National Institutes of Health to Dr. Hamad, and by 
grant Talent Attraction Program 2018-T1/BMD-11226 from the Community of Madrid, Spain, to Dr. Walter.

Data sharing statement:

The data used for our study can be requested by submitting an application for restricted 

data from the Health and Retirement Study at the University of Michigan (https://

hrs.isr.umich.edu).

REFERENCES

1. Heron M Deaths: Leading Causes for 2016. National Vital Statistics Reports 2018;67(6).

2. Ashley EA. The Precision Medicine Initiative: A New National Effort. JAMA 2015;313(21):2119–
2120. [PubMed: 25928209] 

3. Fiscella K, Tancredi D. Socioeconomic Status and Coronary Heart Disease Risk Prediction. JAMA 
2008;300(22):2666–2668. [PubMed: 19066387] 

4. Manolio TA, Rowley R, Williams MS, Roden D, Ginsburg GS, Bult C, Chisholm RL, Deverka PA, 
McLeod HL, Mensah GA. Opportunities, resources, and techniques for implementing genomics in 
clinical care. The Lancet 2019;394(10197):511–520.

5. Sibbing D, Aradi D, Alexopoulos D, ten Berg J, Bhatt DL, Bonello L, Collet J-P, Cuisset T, 
Franchi F, Gross L, Gurbel P, Jeong Y-H, Mehran R, Moliterno DJ, Neumann F-J, Pereira NL, Price 
MJ, Sabatine MS, So DYF, Stone GW, Storey RF, Tantry U, Trenk D, Valgimigli M, Waksman 
R, Angiolillo DJ. Updated Expert Consensus Statement on Platelet Function and Genetic Testing 
for Guiding P2Y12 Receptor Inhibitor Treatment in Percutaneous Coronary Intervention. JACC: 
Cardiovascular Interventions 2019;12(16):1521–1537. [PubMed: 31202949] 

6. Peters N, Opherk C, Bergmann T, Castro M, Herzog J, Dichgans M. Spectrum of Mutations 
in Biopsy-Proven CADASIL: Implications for Diagnostic Strategies. Archives of Neurology 
2005;62(7):1091–1094. [PubMed: 16009764] 

7. Institute of Medicine. Capturing social and behavioral domains and measures in electronic health 
records: Phase 2. Washington, D.C.: The National Academies Press, 2014.

8. Collins GS, Altman DG. An independent external validation and evaluation of QRISK 
cardiovascular risk prediction: a prospective open cohort study. BMJ 2009;339:b2584. [PubMed: 
19584409] 

9. Fiscella K, Tancredi D, Franks P. Adding socioeconomic status to Framingham scoring to reduce 
disparities in coronary risk assessment. Am Heart J 2009;157(6):988–94. [PubMed: 19464408] 

10. Irvin JA, Kondrich AA, Ko M, Rajpurkar P, Haghgoo B, Landon BE, Phillips RL, Petterson S, 
Ng AY, Basu S. Incorporating machine learning and social determinants of health indicators into 
prospective risk adjustment for health plan payments. BMC public health 2020;20:1–10. [PubMed: 
31898494] 

11. Woodward M, Brindle P, Tunstall-Pedoe H. Adding social deprivation and family history to 
cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended 
Cohort (SHHEC). Heart 2007;93(2):172–176. [PubMed: 17090561] 

12. Belsky DW, Moffitt TE, Caspi A. Genetics in Population Health Science: Strategies and 
Opportunities. American Journal of Public Health 2013;103(S1):S73–S83. [PubMed: 23927511] 

13. Juster FT, Suzman R. An overview of the Health and Retirement Study. Journal of Human 
Resources 1995;30:S7–S56.

14. U.S. Census Bureau. American FactFinder. https://factfinder.census.gov Accessed 12 December, 
2017.

15. Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, Daly MJ, Bustamante 
CD, Kenny EE. Human Demographic History Impacts Genetic Risk Prediction across Diverse 

Hamad et al. Page 10

Epidemiology. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hrs.isr.umich.edu/
https://hrs.isr.umich.edu/
https://factfinder.census.gov


Populations. The American Journal of Human Genetics 2017;100(4):635–649. [PubMed: 
28366442] 

16. Bradley SM, Rumsfeld JS. Depression and cardiovascular disease. Trends in Cardiovascular 
Medicine 2015;25(7):614–622. [PubMed: 25850976] 

17. Joynt KE, Whellan DJ, O’Connor CM. Depression and cardiovascular disease: mechanisms of 
interaction. Biological Psychiatry 2003;54(3):248–261. [PubMed: 12893101] 

18. Radloff LS. The CES-D scale: A self-report depression scale for research in the general population. 
Applied Psychological Measurement 1977;1(3):385–401.

19. Vable AM, Gilsanz P, Nguyen TT, Kawachi I, Glymour MM. Validation of a theoretically 
motivated approach to measuring childhood socioeconomic circumstances in the Health and 
Retirement Study. PLOS ONE 2017;12(10):e0185898. [PubMed: 29028834] 

20. White JS, Hamad R, Li X, Basu S, Ohlsson H, Sundquist J, Sundquist K. Long-term effects 
of neighbourhood deprivation on diabetes risk: quasi-experimental evidence from a refugee 
dispersal policy in Sweden. The Lancet Diabetes & Endocrinology 2016;4(6):517–524. [PubMed: 
27131930] 

21. Messer LC, Laraia BA, Kaufman JS, Eyster J, Holzman C, Culhane J, Elo I, Burke JG, O’campo 
P. The development of a standardized neighborhood deprivation index. Journal of Urban Health 
2006;83(6):1041–1062. [PubMed: 17031568] 

22. Fabrigar LR, Wegener DT, MacCallum RC, Strahan EJ. Evaluating the use of exploratory factor 
analysis in psychological research. Psychological methods 1999;4(3):272.

23. Ware E, Schmitz L, Gard A, Faul J. HRS Polygenic Scores - Release 3. Ann Arbor, Michigan: 
University of MIchigan, 2018.

24. Ware EB, Schmitz LL, Faul J, Gard A, Mitchell C, Smith JA, Zhao W, Weir D, Kardia SL. 
Heterogeneity in polygenic scores for common human traits. bioRxiv 2017:106062.

25. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal 
components analysis corrects for stratification in genome-wide association studies. Nature genetics 
2006;38(8):904–909. [PubMed: 16862161] 

26. Belsky DW, Moffitt TE, Sugden K, Williams B, Houts R, McCarthy J, Caspi A. Development and 
evaluation of a genetic risk score for obesity. Biodemography and social biology 2013;59(1):85–
100. [PubMed: 23701538] 

27. Agerbo E, Sullivan PF, Vilhjálmsson BJ, Pedersen CB, Mors O, Børglum AD, Hougaard DM, 
Hollegaard MV, Meier S, Mattheisen M, Ripke S, Wray NR, Mortensen PB. Polygenic Risk 
Score, Parental Socioeconomic Status, Family History of Psychiatric Disorders, and the Risk 
for Schizophrenia: A Danish Population-Based Study and Meta-analysisVariables Associated 
With Schizophrenia RiskVariables Associated With Schizophrenia Risk. JAMA Psychiatry 
2015;72(7):635–641. [PubMed: 25830477] 

28. Menard S Coefficients of determination for multiple logistic regression analysis. The American 
Statistician 2000;54(1):17–24.

29. Mittlböck M, Schemper M. Explained variation for logistic regression. Statistics in medicine 
1996;15(19):1987–1997. [PubMed: 8896134] 

30. Cohen J, Cohen P, West SG, Aiken LS. Applied multiple regression/correlation analysis for the 
behavioral sciences Routledge, 2013.

31. Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature News 2016;538(7624):161.

32. Feldman MW, Lewontin RC. Race, ancestry, and medicine. In: Koenig BA, Lee SS-J, Richardson 
SS, eds. Revisiting race in a genomic age, 2008;89–101.

33. Lee C “Race” and “ethnicity” in biomedical research: How do scientists construct and explain 
differences in health? Social Science & Medicine 2009;68(6):1183–1190. [PubMed: 19185964] 

34. Lewontin RC. The apportionment of human diversity. In: Dobzhansky T, Hecht MK, Steere WC, 
eds. Evolutionary biology. New York City, New York: Springer, 1972;381–398.

35. Ashley EA. Towards precision medicine. Nature Reviews Genetics 2016;17(9):507.

36. Mare RD. A multigenerational view of inequality. Demography 2011;48(1):1–23. [PubMed: 
21271318] 

Hamad et al. Page 11

Epidemiology. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Smith GD. Epidemiology, epigenetics and the ‘Gloomy Prospect’: embracing randomness in 
population health research and practice. International Journal of Epidemiology 2011;40(3):537–
562. [PubMed: 21807641] 

38. Domingue BW, Belsky DW, Harrati A, Conley D, Weir DR, Boardman JD. Mortality selection in 
a genetic sample and implications for association studies. International Journal of Epidemiology 
2017;46(4):1285–1294. [PubMed: 28402496] 

39. Gottlieb L, Sandel M, Adler NE. Collecting and applying data on social determinants of health in 
health care settings. JAMA internal medicine 2013;173(11):1017–1020. [PubMed: 23699778] 

Hamad et al. Page 12

Epidemiology. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Percent of variance explained by demographic, socioeconomic, and genetic covariates
Note: N = 7,522 white participants and 1,198 Black participants. Percent of variance 

explained is the R-squared value from a multivariate linear regression of the given outcome 

on the given combination of covariates. BMI: body mass index; HDL: high-density 

lipoprotein cholesterol; PCs: principal components for genetic ancestry; PGS: polygenic 

score specific to relevant health condition; SEP: socioeconomic position.
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Figure 2. 
Additional percent of variance explained by socioeconomic and genetic covariates, relative 

to demographic covariates alone
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