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ABSTRACT

Objective: Hospital capacity management depends on accurate real-time estimates of hospital-wide discharges.

Estimation by a clinician requires an excessively large amount of effort and, even when attempted, accuracy in

forecasting next-day patient-level discharge is poor. This study aims to support next-day discharge predictions

with machine learning by incorporating electronic health record (EHR) audit log data, a resource that captures

EHR users’ granular interactions with patients’ records by communicating various semantics and has been

neglected in outcome predictions.

Materials and Methods: This study focused on the EHR data for all adults admitted to Vanderbilt University

Medical Center in 2019. We learned multiple advanced models to assess the value that EHR audit log data adds

to the daily prediction of discharge likelihood within 24 h and to compare different representation strategies.

We applied Shapley additive explanations to identify the most influential types of user-EHR interactions for dis-

charge prediction.

Results: The data include 26 283 inpatient stays, 133 398 patient-day observations, and 819 types of user-EHR

interactions. The model using the count of each type of interaction in the recent 24 h and other commonly used

features, including demographics and admission diagnoses, achieved the highest area under the receiver oper-

ating characteristics (AUROC) curve of 0.921 (95% CI: 0.919–0.923). By contrast, the model lacking user-EHR

interactions achieved a worse AUROC of 0.862 (0.860–0.865). In addition, 10 of the 20 (50%) most influential fac-

tors were user-EHR interaction features.

Conclusion: EHR audit log data contain rich information such that it can improve hospital-wide discharge pre-

dictions.
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INTRODUCTION

Poor operation of hospital capacity management often prolongs a

patient’s waiting time until admission (ie, delayed care) and dis-

charge (ie, prolonged length of stay). Both of these delays lead to in-

efficient planning and utilization of care resources, increased

healthcare costs, and consequently, a higher risk of in-hospital com-

plications and mortality.1,2 Uncertainty in when patients will be dis-

charged from the hospital is a prominent contributor to capacity

management problems in that it challenges care teams in delivering

appropriate care and can drive the inpatient flow into undesirable

scenarios, such as overcrowding.3 As a consequence, hospital

administrators have paid an increasing amount of attention to the

discharge prediction problem to align timely care services with a

patient’s needs and streamline inpatient flow of hospitals.1,4–11

Prediction of which patient will be discharged and when is typi-

cally based on a clinicians’ assessments, whereby predictions are

made by manually reviewing a patient’s clinical status, as well as

their anticipated treatment.12,13 This process begins at a patient’s

admission and is updated throughout their stay.14,15 Notably, real-

time demand capacity management, which was designed by the In-

stitute for Healthcare Improvement and has been implemented at

multiple hospitals, has shown promise in improving inpatient flow

via a set of assessments centered on the same-day discharge predic-

tion made in morning clinician huddles.16 However, such clinical

assessments require a nontrivial amount of hospital-wide manual

effort, which may reduce clinician time spent on patient care and in-

crease their workload.7,17 Moreover, clinicians can bias the predic-

tion subjectively due to personal experiences and training levels.

A wide variety of machine learning models have been developed

to automate discharge prediction based on data from electronic

health records (EHRs).17–25 For instance, Barnes et al17 learned a

tree-based model to predict (at 7 AM of each day) the same-day dis-

charge before 2 PM and 12 PM. This model was significantly better

than physicians’ in the general inpatient setting. Safavi et al26 devel-

oped a neural network to predict the discharge likelihood of a surgi-

cal care patient within 24 h, outperforming a clinician surrogate

model by a wide margin. Levin et al19 evaluated multiple clinical

unit-specific models that relied on real-time EHR data to assess

same, as well as next, day discharge and demonstrated their effec-

tiveness in reducing the length of stay.

Though EHR-derived features have been integrated into these

models, they are mostly those that directly indicate a patient’s health

status, such as diagnoses, procedures, laboratory tests, and medica-

tions. A critical source of information that has been neglected is

EHR audit logs, which capture EHR users’ interactions with patient

records and provide clues into the complexity of care delivered.27–33

This type of data is widely collected by EHR systems and communi-

cates various semantics (eg, orders, messages, flowsheets, chart re-

view notes, and general documentation), such that they have been

utilized to support many endeavors, including health process model-

ing,34–36 clinical task and workflow analysis,29,37–42 time-motion

study of physicians’ work in EHRs,29,38–41,43 user-user interaction

structure analysis,29,38–41 and privacy audits.44,45 More importantly,

this data source has the potential to reflect clinicians’ assessment

and insights into a patients’ clinical status in the decision-making

process. For example, frequent scanning of medical device barcodes

may indicate that the patient requires a significant amount of atten-

tion and, thus, is not ready for discharge. Similarly, a high frequency

in nurse monitoring activities may indicate that the patient’s status

is uncertain. Though there is certainly a correlation in the informa-

tion documented in the EHR and the audit logs, we hypothesized

that the latter can provide new signals informing patients’ discharge

status. This hypothesis stems from the fact that EHR audit logs asso-

ciated with a patient may reflect the insights from all of the members

of their care team, which should intuitively provide a broader pic-

ture of patient care than previous discharge prediction models.

In this study, we incorporate user-EHR interactions, as docu-

mented in audit log data, to develop machine learning models for

discharge prediction. We focus on the next-day discharge task,

which can provide the capacity management team with sufficient re-

sponse time to plan and has proven to be a challenge for physi-

cians.12 We show that incorporating such data can significantly

improve the performance of discharge prediction over time. We

evaluate the prediction model in the general inpatient setting of Van-

derbilt University Medical Center (VUMC) and identify the most in-

fluential risk factors in prediction.

MATERIALS AND METHODS

Dataset and outcome definition
This study was conducted at VUMC, which is an 1162-bed teaching

hospital using the EPIC EHR system . We extracted all adult (�18

years old) inpatient visits in 2019. We included all visits with a dis-

charge of home or care facilities and ruled out visits for patients

with a stay shorter than 24 h or who died during hospitalization.

For patients with more than one inpatient, we retained the first one

to mitigate bias in our analysis. The resulting dataset contained data

on 26 283 patients with an average age of 52.9 (619.5) and a male

to female ratio of 45:55.

For each visit, we collected the following information from the

patient’s EHR: (1) demographics (in the form of age, gender, and

self-reported race), (2) historical diagnoses from 2005 up to admis-

sion, (3) admission diagnoses, (4) the time period of the visit, (5) cat-

egory of enrolled insurance program (in terms of public, private, or

uninsured), and (6) body mass index (BMI) and heart rate (HR)

readings during the visit. We mapped all historical ICD-9/10 diagno-

sis codes to Phenome-wide association study codes (Phecodes),

which aggregate billing codes into clinically meaningful phenotypes

to reduce sparsity in the data.46 We used the clinical classifications

software categorizations of admission diagnoses as a proxy for the

reason for a visit. Table 1 summarizes the characteristics of the final

dataset.

We extracted timestamped user-EHR interactions for each visit

from the EHR audit logs. There were 819 distinct user-EHR interac-

tion types, which fall into 4 high-level event groups: (1) view (eg, an

EHR user accessed a treatment plan), (2) modify (eg, a resident

added new content into a progress note), (3) export (eg, an operating

room report was printed by a nurse), and (4) system (eg, an e-consult

message was sent). Although there are no widely adopted standards

for defining the types (regarding the semantics, granularity, and ag-

gregation levels) of user-EHR interactions in EHR systems, such

types are typically based on commonly understood categories of

EHR tasks.27 Determining an interaction type usually involves (1)

the specific function of the EHR system that is utilized and (2) the

role of the EHR user (eg, physician or nurse) who performs this

function. The second aspect is explicitly communicated when there

is a binding between a specific role and an EHR function (eg,

“Patient notes loaded for review by clinicians”). Researchers and

EHR vendors (eg, Epic28 and Cerner47) have created lower-level

common event categories, such as chart review imaging, laborato-
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ries, medications, notes, messaging, order entry, billing and coding,

and inbox (refilling medications). In this study, we used the Epic

user-EHR interaction categories (fine-grained level) in the prediction

model. Note that the extracted use-EHR interactions do not include

the identities of healthcare workers or patients in their definitions.

The primary outcome of this study is 24-h discharge status (ie,

whether each patient would be discharged within 24 h). We followed

the prediction setting in Ref.17 and chose 2:00 PM as the prediction

time point, a time that can (1) help mitigate the overcrowding typi-

cally seen in the late afternoon and evening and (2) reasonably inform

planning for new admissions in the following day.16

Model development
To train and evaluate next-day discharge prediction models, we par-

titioned each visit on a daily basis and built an instance for each

day—except for the last day. Each instance contains information up

to 2:00 PM on the prediction day. This produced 133 398 instances.

We then paired each instance with a binary label indicating the

discharge status by 2:00 PM of the next day. This led to a positive-

negative ratio of approximately 1:4.

We primarily relied upon the light gradient boosting machine

(LGBM) framework,48 a light implementation of gradient-boosted

ensembles of decision trees, to learn predictive models. In compari-

son to traditional classifiers (eg, logistic regression or support vector

machine), LGBM has outperformed in prediction tasks and provides

interpretable predictions.49,50 We developed multiple LGBM models

to investigate the impact of EHR audit log data to the performance

of next-day discharge prediction.

The complete set of features used in this study, as well as the in-

put strategy for each model, is shown in Figure 1. We incorporated

2 types of features in model development. Static (baseline) features,

whose values remain constant across a visit, include age (<20, 20–

Table 1. Summary of the dataset used in this study

Characteristic Distribution

Age at admission 35.2, 54.3, 68.6 52.9 6 19.5

Race

White 78.1% 20 536

Black 15.5% 4066

Asian 1.8% 473

American Indian or Alaska Native 0.17% 45

Others 4.42% 1163

Gender

Male 45.0% 11 838

Female 55.0% 14 445

Insurance type

Commercial 42.1% 11 074

Medicare/Medicaid 51.2% 13 460

None 6.7% 1749

User-EHR interactions

Total number of interactions before discharge 118, 215, 457 331.0 6 313.5

Number of unique interactions before discharge 32, 49, 82 59.5 6 38.7

Unique Phecodes before admission 7, 18, 39 30.0 6 35.6

Most frequent discharge units

Postpartum 12.6% 3324

Cardiac stepdown 6.4% 1675

Neuroscience 4.8% 1259

Transplant and surgery 4.6% 1212

Spine 3.9% 1016

Urology 3.8% 998

Medicine cardiac stepdown 3.7% 977

Surgical stepdown 3.7% 973

Length of stay (days) 2.3, 3.7, 6.0 5.6 6 6.4

Discharge time

8 PM—8 AM 2.5% 665

8 AM—2 PM 52.5% 13 796

2 PM—8 PM 45.0% 11 822

Discharge day of week

Monday 14.3% 3766

Tuesday 15.5% 4081

Wednesday 15.8% 4163

Thursday 15.6% 4108

Friday 18.0% 4728

Saturday 11.5% 3025

Sunday 9.2% 2412

Notes : a; b; and c represent the first quartile, median, and third quartile. x 6y represents the mean and 1 standard deviation. x% y represents that the per-

centage of y patients (in a given category) is x% among all patients.

EHR: electronic health record.
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29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, or �90), gender,

race (White, Black, Asian, Alaska and Native American, or Others),

insurance type (Medicaid/Medicare, commercial, or no insurance),

historical diagnoses, and diagnoses present at admission. By con-

trast, daily features, the values of which dynamically change during

a visit, include the nearest HR and BMI readings to the prediction

time point, user-EHR interactions, the number of days from admis-

sion, and day of week. Note that HR and BMI are represented as

the actual values and an indicator for missingness. Each instance is a

concatenation of static features and daily features.

We learned 5 types of models described below. To name these

models, we used “N,” “B,” and “C” to represent the numerical,

binary, and cumulative representation strategies of user-EHR inter-

actions, respectively.

• LGBM-N-INT: Each dimension of the user-EHR interaction do-

main indicates the numerical counts of the corresponding inter-

action type that occurred during the past 24 h.
• LGBM-B-INT: Binary indicators are used to represent the presence

(or absence) of user-EHR interaction types during the past 24 h.
• LGBM-C-INT: Instead of considering the user-EHR interactions

for only 24 h, this model uses the counts of each user-EHR inter-

action type accumulated from admission.
• LGBM-NO-INT: This model uses all features, except user-EHR

interactions.
• LGBM-ONLY-INT: This model takes only the numerical counts

of each user-EHR interaction type during the past 24 h.

The first 3 models are designed to investigate the impact of dif-

ferent representation strategies for user-EHR interaction data on the

prediction problem, while the latter 2 models investigate the impact

of user-EHR interaction more generally.

Given that it is challenging for the LGBM framework to embed

the temporal relationship in user-EHR interactions and historical di-

agnoses, we built a bidirectional RETAIN-based model,51 an ad-

vanced variation of a recurrent neural network, as an alternative

model. The architecture of this model is shown in Supplementary

Appendix Figure SA.1. In addition, we compared our best-perform-

ing model to a random forest-based discharge prediction tool devel-

oped by Barnes et al.17 We also compared the LGBM architecture to

the random forest by training another LGBM model, which uses the

same set of features as the random forest-based model.

Model training, evaluation, and calibration
We randomly split the inpatient visits into a training and validation

set (85%), a calibration set (5%), and a test set (10%). This process

was repeated 5 times to enhance the robustness of the investigation.

In each split, we performed 5-fold cross-validation and ensured that

the data for each patient appears in one set only. We used Youden’s

Index,52 which equally weights false positives and false negatives, to

determine the thresholds for positive or negative prediction. We use

standard performance evaluation measures, including the area under

the receiver operating characteristic (AUROC) curve, the area under

the precision-recall curve (AUPRC), accuracy, recall (sensitivity), spe-

cificity, positive predictive value (PPV), and negative predictive value.

To assess whether the performance improvement achieved through

EHR audit log data is statistically significant, we applied a 2-tailed

paired t test (n¼25). A grid search technique was applied to tune the

hyperparameters for the LGBM models (the details of which are pro-

vided in Supplementary Appendix SB). In addition to the overall per-

formance, we evaluated how the best model performs in different

subpopulations and scenarios, by varying age, length of stay at the

prediction point (ie, elapsed days since admission), and care unit.

Before evaluating models on the independent test set, we applied

isotonic regression53 on the calibration set to perform model calibra-

tion.54 Expected calibration error (ECE) was used to assess how

well a model was calibrated.53 To compute ECE, model predictions

(a surrogate probability of being positive) were sorted and then di-

vided into M bins with equal sizes. We then measured the weighted

absolute differences between models’ accuracy (ie, the ratio of cor-

rect predictions in a given bin) and confidence (ie, the average prob-

ability in a given bin) across all bins. Formally, ECE is defined as:

ECE ¼
XM

m¼1

jBmj
n
jaccðBmÞ � confðBmÞj;

where n and Bm denote the total number of predictions and the set

of predictions with confidence belonging to the mth bin, respec-

tively. To visualize the 2 quantities in each bin, we drew reliability

curves49 by setting M ¼ 20.

Influential risk factors
In addition to assessing prediction performance, we investigated the

prediction interpretability. We calculated the SHapley Additive

Figure 1. Input feature space for the LGBM models. Each number in the gray row (bottom) indicates the number of values associated with a feature type (eg, there

are 9 age groups of equal width). LGBM: light gradient boosting machine.
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exPlanations (SHAP) values for each feature55 in the best-

performing model. Specifically, we measured the mean SHAP and

the standard deviation for each feature in all data splits. We then

identified influential risk factors by ranking features based on their

SHAP values.

RESULTS

Overall performance
Figure 2 depicts the performance for all prediction models. There

are 2 notable findings regarding the representation strategies of

user-EHR interactions and the impact of these data to the next-day

discharge prediction. First, LGBM-N-INT achieved the highest

AUROC (mean ¼ 0.921, 95% confidence interval [CI]: 0.919–

0.923), corresponding to an AUPRC of 0.820 (95% CI: 0.818–

0.823). By outperforming LGBM-B-INT (P value: 6.20�10�17)

and LGBM-C-INT (P value: 3.01�10�18), it appears that the num-

ber of user-EHR interactions in the past 24 h is more informative

than its binary representation (ie, any interaction or not) or the cu-

mulative number of interactions since a patient’s admission. Second,

when the model is composed solely of user-EHR interactions (ie,

LGBM-ONLY-INT), it can achieve a very high AUROC of 0.890

(95% CI: 0.888–0.892), which is slightly lower than LGBM-B-INT.

However, by contrast, the model that focused solely on the more

traditional features and lacked user-EHR interactions (ie, LGBM-

NO-INT), led to an obvious decline on both AUROC (0.862) and

AUPRC (0.662). Such a phenomenon suggests that user-EHR inter-

actions in the past 24 h are driving the prediction performance. In

addition, RNN-BASED achieved a worse AUROC of 0.912 (95%

CI: 0.910–0.913) and a similar AUPRC of 0.820 (95% CI: 0.818–

0.822) comparing to LGBM-N-INT, indicating that the design of

capturing temporal relationships in user-EHR interaction sequences

might not improve the prediction performance.

Table 2 summarizes the results of all models on measures except

for AUROC and AUPRC. Notably, LGBM-N-INT successfully pre-

dicted 77.8% of the actual next-day discharges with an accuracy of

87.7%. We also observed 29.4% (46.8%) of the false positives corre-

sponded to a discharge within 30 (48) h from the prediction time

point. These 2 endpoints correspond to 8 PM of the next day and 2 PM

of the day after next day. Supplementary Appendix SC provides a de-

tailed analysis of the impact of length of stay on the prediction point.

In comparison to the random forest-based discharge prediction tool

based on Barnes et al,17 LGBM-N-INT demonstrates better-discrimi-

nating capability in terms of AUROC. Meanwhile, the random forest-

based model performs significantly worse than its LGBM variant. De-

tailed results are provided in Supplementary Appendix SD.

After calibrating model output (via isotonic regression), we

obtained sufficiently small ECE scores for all models, corresponding to

Figure 2. Next-day discharge prediction model performance. (A) Receiver operating characteristic curve. (B). Precision-recall curve.

Table 2. Performance indicators for next-day discharge prediction models

Model Accuracy Recall Specificity PPV NPV

LGBM-N-INT 0.877 (0.872–0.883) 0.778 (0.769–0.786) 0.901 (0.893–0.909) 0.654 (0.639–0.669) 0.944 (0.942–0.946)

LGBM-B-INT 0.868 (0.865–0.872) 0.778 (0.771–0.785) 0.890 (0.884–0.895) 0.628 (0.612–0.644) 0.944 (0.942–0.945)

RNN-BASED 0.868 (0.860–0.875) 0.763 (0.751–0.776) 0.893 (0.881–0.905) 0.637 (0.614–0.661) 0.940 (0.938–0.943)

LGBM-ONLY-INT 0.855 (0.847–0.864) 0.750 (0.737–0.763) 0.880 (0.868–0.893) 0.604 (0.563–0.646) 0.936 (0.934–0.939)

LGBM-C-INT 0.820 (0.812–0.828) 0.744 (0.734–0.753) 0.838 (0.827–0.849) 0.525 (0.490–0.561) 0.932 (0.930–0.934)

LGBM-NO-INT 0.805 (0.798–0.812) 0.727 (0.717–0.737) 0.823 (0.813–0.833) 0.498 (0.468–0.527) 0.926 (0.924–0.929)

Notes: The models are sorted by AUROC. x (a, b) represents mean value and 95% confidence interval. The highest score for each metric is in bold.

AUROC: area under the receiver operating characteristics; LGBM: light gradient boosting machine; NPV: negative predictive value; PPV: positive predictive

value.
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a neglectable gap between the predicted next-day discharge probabili-

ties and the actual proportion of discharges in each probability bin.

Supplementary Appendix SE provides detailed results for the model

calibrations. Figure 3 shows the reliability curves of LGBM-N-INT for

the pre- and postcalibration scenarios. The 2 curves are well aligned

with the ideal (diagonal) line, and it is clear that LGBM-N-INT is well-

calibrated even without the post hoc calibration, as indicated by an

ECE score of 0.014 (95% CI: 0.013–0.016) that is almost equivalent

to its postcalibrated score of 0.011 (95% CI: 0.009–0.012).

Evaluations on patient subpopulations
We applied LGBM-N-INT to different subpopulations with varying

age, prediction day, and care area, and evaluated its performance ac-

cordingly.

Age

The AUROC and AUPRC of LGBM-N-INT are not uniformly distrib-

uted across all age groups. Figure 4A and B shows that patients in age

the 40–50 age group have the highest AUROC (0.930) and AUPRC

(0.839) with a recall of 0.795 (Figure 4C) and a precision (or PPV) of

0.688 (Figure 4D). From the perspective of variability from mean val-

ues, both AUROC and AUPRC demonstrate a larger standard devia-

tion on patients younger than 20 years old. This may be explained by

the small size of this group (accounting for 1.53% of the total number

of patients). In addition, the average AUROC and AUPRC in this age

group were the lowest (0.879 and 0.764) among all age groups.

The gray curve in Figure 4C shows the number of positive instan-

ces for each age group in a test set. Figure 4A and C illustrates that

for patients 40 years old and younger, there is a direct correlation

between group size and score for AUROC and AUPRC. However,

this relationship inverts for patients over 40 years old. This suggests

that the next-day discharge prediction for elderly patients is more

challenging than younger adults even with a larger number of

instances. It appears that this is because elderly patients, in general,

have a health condition that is more complex than younger adults,

leading to more uncertainty in management.

Prediction day

Figure 5 shows the model performance by varying day of making

predictions, where we aligned the admission day of all inpatients.

Predictions started from 2 PM on the second day of a visit. We

grouped together all instances corresponding to a stay longer than 1

week. The highest AUROC (0.931 in Figure 5A) and AUPRC (0.847

in Figure 5B) appear on different days. Nevertheless, both AUROC

and AUPRC achieved their lowest values (0.888 and 0.734) at day

2, which is likely due, in part, to an insufficient amount of informa-

tion available. The number of actual discharge events (equivalent to

the number of patients discharged before 2 PM of the next day)

changes significantly with day of making predictions (Figure 5C).

Specifically, the number of actual discharge events peaks at day 3

and decreases monotonically through day 6. However, despite the

quick decline in the number of actual discharges, the AUROC and

AUPRC remain relatively stable.

Care area

Inpatients, especially those with complex conditions, can be

moved and treated at more than one care units (or locations) while

in a hospital. For example, it is common for inpatients to begin

in the emergency department and then move to a specific unit of

care. It is also common for a patient to move from an intensive

care unit to an operating room. Given the complexity of binning

patients into care units, we show the performance breakdown

of LGBM-N-INT based on areas of VUMC that were finally visited

before discharge in Table 3. Here, a patient care area contains multi-

ple care units, which can be found in Supplementary Appendix

Table SAF.1.

The next-day discharge predictions for adult inpatients, whose

final care areas before discharge were Acute Care Medicine, Acute

Care Surgical or Women’s Health, demonstrate a higher AUPRC

than the overall AUPRC (0.820). Notably, predictions for patients

who were last at Adult Oncology show higher performance on both

metrics than average. Supplementary Appendix Table SAF.2 pro-

vides a more detailed presentation of these results.

Figure 3. Reliability curve for the LGBM-N-INT model on the test sets. LGBM: light gradient boosting machine.
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Figure 4. Influence of age on LGBM-N-INT next-day discharge prediction: (A) AUROC, (B) AUPRC, (C) Recall, and (D) PPV. AUPRC: area under the precision-recall

curve; AUROC: area under the receiver operating characteristics; LGBM: light gradient boosting machine; PPV: positive predictive value.

Figure 5. Influence of prediction day on LGBM-N-INT next-day discharge prediction: (A) AUROC, (B) AUPRC, (C) Recall, and (D) PPV. AUPRC: area under the preci-

sion-recall curve; AUROC: area under the receiver operating characteristics; LGBM: light gradient boosting machine; PPV: positive predictive value.
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Most influential factors
We performed a feature analysis on LGBM-N-INT since it was the

best-performing model. Figure 6A shows the 20 most influential factors

in terms of SHAP values. To indicate the category of each factor, we

use [INT], [LOS], [Historical Diagnosis], [Weekday], [Insurance], and

[Admission Diagnosis] as prefix to denote user-EHR interactions,

length of stay (in days) at prediction point, historical diagnoses before

admission, day of week, insurance types, and diagnoses on the day of

admission, respectively. Ten (or 50%) of these factors correspond to

user-EHR interactions with distinct semantics. In particular, the num-

ber of barcode scan events, Nurse’s station mode monitoring (which is

one of the EHR system monitoring functions, and the information rele-

vant to high-acuity patients, such as infection status and deterioration

scores, will be shown when this function is utilized) events, clinical

note view events, inpatient medication administration record access

events, and result review access events in the past 24 h are the top 5 fac-

tors. For each of them, the higher the value, the more this factor con-

tributes to a nondischarge prediction.

In Figure 6B and C, we provide 2 examples to demonstrate the

correlation between the specific values of a given feature and the

corresponding SHAP values. We observed in Figure 6B that when

there are less than 16 barcode scan events in the past 24 h, this fac-

tor contributes positively to a next-day discharge prediction; how-

ever, it contributes to a prediction of nondischarge (ie, remain in

hospital) for the numbers greater than 23. The contribution of this

factor demonstrates a monotonically decreasing trend with the in-

crease of the number of barcode scans. From Figure 6C, we can see

that the presence of Nurse’s station mode monitoring access tends to

contribute to a nondischarge prediction. A dense record of these 2

events suggests that a patient might be in the midst of treatment or

has been unstable status during the past 24 h.

Table 3. Performance breakdown of LGBM-N-INT based on finally

visited care areas before discharge

Care area AUROC AUPRC

Overall 0.921 (0.919–0.923) 0.820 (0.818–0.823)

Cardiac stepdown 0.923 (0.920–0.925) 0.801 (0.796–0.806)

Acute care medicine 0.917 (0.915–0.920) 0.823 (0.819–0.826)

Acute care surgical 0.919 (0.915–0.923) 0.825 (0.821–0.829)

Critical care 0.922 (0.920–0.925) 0.802 (0.796–0.807)

Oncology 0.935 (0.932–0.938) 0.836 (0.831–0.842)

Women’s health 0.896 (0.887–0.904) 0.853 (0.846–0.859)

Notes: Values that are significantly higher than the overall performance

(shown in the first row) of LGBM-N-INT are highlighted in bold. x (a, b) rep-

resents mean value and 95% confidence interval.

AUPRC: area under the precision-recall curve; AUROC: area under the re-

ceiver operating characteristics; LGBM: light gradient boosting machine.

Figure 6. Feature importance in the next-day discharge prediction model. (A) Top risk factors indicated by SHAP values. The color of each bar indicates the Pear-

son correlation coefficient between SHAP values and values of the corresponding factor. (B–D) Violin plots of factor values against the corresponding SHAP val-

ues on 3 factors: [INT] Barcode scanned, [INT] Nurse’s station mode monitoring accessed, and [Admission Diagnosis]: Connective tissue disease. MAR:

medication administration record; SHAP: SHapley Additive exPlanations.
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The 2 user-EHR interaction features that are positively corre-

lated with their SHAP values are (1) visiting the order reconciliation

section and (2) viewing discharge instructions. Order reconciliation

is an important process in the EHR discharge navigator, which aims

to help physicians reconcile problems and medication list for dis-

charge. For example, physicians are supposed to indicate the set of

resolved and unresolved problems (for follow-ups after discharge)

and to determine whether to modify, prescribe, and stop prescribing

certain drugs for discharge. Viewing discharge instructions seems a

straightforward signal to discharge. We investigated the numbers of

actual discharges, predicted discharges, and their intersections con-

ditioned on the presence/absence of these 2 types of interactions in

the past 24 h (Supplementary Appendix Figure SG.1), respectively.

We found that only 16.6% of the instances with the presence of or-

der reconciliation section visits, and 16.3% of the instances with the

presence of discharge instruction views corresponded to a discharge

event in the next 24 h; by contrast, there are still 20.7% and 20.1%

of instances without the presence of the 2 user-EHR interactions

corresponding to a discharge event in the next 24 h, respectively.

In addition to the user-EHR interactions, several other features

also contribute to the prediction. The second most influential factor

is an admission diagnosis—connective tissue diseases. We observed

in Figure 6D that the presence of this diagnosis category contributes

to a nondischarge prediction. The absence of historical diagnosis

also tends to contribute to a nondischarge prediction. Specifically,

the presence of muscle symptoms gives an obvious positive impact

to discharges compared to other preadmission diagnoses. Sunday

and Saturday are also among the predictors of nondischarge predic-

tions of the next day.

DISCUSSION AND CONCLUSION

Efficient capacity management of hospitals, which sets the stage for

timely and appropriate patient care, demands the minimization of

uncertainty in patient flow, and, as a consequence, requires an accu-

rate estimation of discharges in real time. This study is designed to

provide hospital administrators an analysis tool to predict hospital-

wide discharges 1 day ahead. Our research is the first to incorporate

EHR audit logs (more precisely, user-EHR interactions) to predict

discharges. In this study, we verified that such data can substantially

contribute to the prediction of next-day discharges. Notably, our

findings indicate that the count of each type of user-EHR interaction

in the past 24 h appears to be the most effective representation for

such information.

EHR audit log data have been used to investigate time-motion

activities of EHR users with respect to EHR systems.28,29,38,41,43

Various studies have shown that they are useful for measuring the

amount of time a clinician spends in the EHR system,28,56 which

was relied upon to measure EHR-related workload, burden, and

burnout.30,32,33 In addition, EHR audit log data analysis can iden-

tify collaborative patterns between EHR users through user-EHR

interactions.57,58 Based on the aforementioned studies on EHR audit

log data, this study assumed time-motion activities of a collective of

users who comanage a patient could be leveraged to indicate the

patient’s discharge status. Notably, our research demonstrates that

the activities of a collective of EHR users are markers of a patient’s

discharge status.

EHR audit log data are indicative of the discharge status of an

inpatient in several ways. First, EHR audit logs communicate granu-

lar semantics that describe the complex healthcare workflow of an

inpatient, including signals regarding the stage the patient is in with

respect to hospital treatment and services. For example, the co-

occurrence of “Barcode scanned (eg, med device)” and “Nurse’s sta-

tion model monitoring accessed” within the past 24 h is more likely

a sign of active treatment of an unstable patient, such that patients

with this pattern may require a longer period hospitalization. Quan-

titatively, this pattern occurs in 38 241 daily instances of patients,

whereas only 8.7% correspond to a discharge event within the next

24 h. Second, the frequency of distinct user-EHR interaction types

provides additional signals for inferring a patient’s discharge status.

The discharge percentage decreases to 6.3% when requiring more

than 24 occurrences of “Barcode scanned (eg, medical device)” in

the past 24 h. Third, EHR audit logs can reflect the collective tempo-

ral insights of all roles (eg, physicians, nurses, laboratory staff, ser-

vice assistants) involved in the treatment of a patient.

The way that the discovered 2 user-EHR interactions—visiting

the order reconciliation section of the EHR system and viewing dis-

charge instructions—contribute to predictions creates a natural

question: do clinicians already know that a patient will be dis-

charged within 24 h? It was reported in a prospective study con-

ducted in a large academic medical center (Duke University Medical

Center with 950 beds) that the recall of inpatient general medicine

physicians’ prediction of the next-day hospital discharge can be as

low as 0.27 (morning), 0.55 (midday), and 0.67 (evening).12 It

implies that physicians might not precisely know whether their

patients would discharge in the next day. Furthermore, according to

our investigations at VUMC (Supplementary Appendix SF), the 2

types of user-EHR interactions are insufficient to make predictions.

In other words, the presence (or absence) of these 2 interactions do

not strongly associate with a next-day discharge. Rather, the dis-

charge predictions were made in this study by learning from compli-

cated signals generated from all care participants of a patient.

This study has several limitations that enable opportunities for

future investigations. First, we acknowledge that this study is based

on data from a single hospital system only. The generalizability of

the findings will need to be assessed in additional healthcare sys-

tems. This is, however, a nontrivial challenge because multiple EHR

systems are currently in use and EHR audit logs are not standardized

among hospitals, which suggests that each hospital can leverage our

framework to learn discharge prediction models relying on their

own user-EHR interaction data. This will also mitigate the bias of

our institution’s work patterns. Workgroups from the National Re-

search Network for Audit Log data are currently pushing EHR sys-

tems toward standardization (eg, common user-EHR interactions),

but consensus takes time.27,30 Second, this study relied on categories

of user-EHR interactions as defined by Epic, which are not specifi-

cally designed for outcome prediction. It is worthwhile to investigate

how different categorization criteria influence the representative

power of this data source. An optimized user-EHR interaction tax-

onomy may enhance the performance of the prediction model.

Third, this study focused on the raw sequence of user-EHR interac-

tions and did not relate them to the corresponding clinical tasks (a

higher level of concept categorizing user-EHR interactions) that

clinicians collaborated to finish on the timeline. Identifying this in-

formation can potentially remove noise from the raw interaction

data and provide a clearer interpretation for predictive models.

Fourth, we did not explicitly represent the role of health workers in

our models, which as a new dimension of EHR audit logs may en-

hance patient representation. Finally, in this study, we did not incor-

porate all data about patients in the prediction models (eg, we

neglected laboratory results and medications). We believe that add-

ing these features could further improve the prediction performance.
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