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During the COVID-19 pandemic, governments have attempted
to control infections within their territories by implementing
border controls and lockdowns. While large-scale quarantine
has been the most successful short-term policy, the enormous
costs exerted by lockdowns over long periods are
unsustainable. As such, developing more flexible policies that
limit transmission without requiring large-scale quarantine is an
urgent priority. Here, the dynamics of dismantled community
mobility structures within US society during the COVID-19
outbreak are analysed by applying the Louvain method
with modularity optimization to weekly datasets of mobile
device locations. Our networks are built based on individuals’
movements from February to May 2020. In a multi-scale
community detection process using the locations of confirmed
cases, natural break points from mobility patterns as well as
high risk areas for contagion are identified at three scales.
Deviations from administrative boundaries were observed in
detected communities, indicating that policies informed by
assumptions of disease containment within administrative
boundaries do not account for high risk patterns of movement
across and through these boundaries. We have designed a
multi-level quarantine process that takes these deviations into
account based on the heterogeneity in mobility patterns. For
communities with high numbers of confirmed cases, contact
tracing and associated quarantine policies informed by
underlying dismantled community mobility structures is of
increasing importance.
1. Introduction
The emergence and spread of the 2019 novel coronavirus (SARS-
CoV-2 or COVID-19) has caused a global health emergency. With
a high level of observed contagiousness [1] and an absence of
proven medical treatments, the situation is increasingly dire.
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Public health stakeholders race to find adequate methods for intervention as the outbreak spreads [2,3].

It is challenging to determine where the next outbreak will be and how to prevent or control it. Analysing
data about positive tests and locations of current patients plays a critical role in public health agencies
‘response’ [4]. After the first cases came to the US through international travels, COVID-19 spread
occurred rapidly through the population in patients both with or without symptoms at the time of
transmission. COVID-19 has an incubation period that typically extends to 14 days, with a median
time of 4–5 days [5].1 Movement of asymptomatic individuals increases the risk of disease
transmission in the public areas visited by them. So, it is important to define the geographical patches
based on actual mobility of individuals in order to implement preventative policies with greater
precision. In most cases, quarantine policies and data related to the COVID-19 outbreak are based on
arbitrary borders such as state or county boundary lines [6]. In the US, state governments are
responsible for the management and application of preventive policies inside their territories. For
example, state governments closed public areas (e.g. work places, universities, schools and shopping
centres), and asked people to wear masks. While state boundaries may serve constituents well in
meeting certain social needs of their communities (e.g. infrastructure, taxes), they are not the most
effective way to analyse data for anticipating disease outbreaks.

For the purposes of examining the spread of COVID-19 in the US,mobility patterns can be characterized
in three overarching concepts: short distance (e.g. grocery shopping, walking), medium distance (e.g. travel
for job or fun) and long distance (e.g. travel to other cities for vacation, visiting families). While short-
distance movements lead to the local spread of the virus, medium and large-distance movements
distribute the virus across larger scales to other cities and states. Travel can be thought of as occurring in
‘bubbles’ of progressively larger geographical scales. National travel bubbles include the collective
movement of individuals travelling long distances from one region of the country to another. This type
of mobility pattern was quickly identified as risky and attempts to limit it within the country were put in
place. For example, at the very beginning of the North American outbreak in March 2020, a group of
university students from around the country gathered on Florida beaches for uninhibited socialization
during spring vacation, also known as ‘Spring Break’. During this gathering, local transmission of
COVID-19 was detected and the disease subsequently spread to other regions of the country long
distances away from the original outbreak [7]. Soon after, most universities closed and airline travel was
reduced. However, problematic bubbles of travel also form in local areas with close proximity due to
more routine activities where there are more frequent and consistent mobility patterns. Local bubbles are
prevalent in places such as the Northeast Megalopolis [8,9], where there are numerous cities and
communities that all continuously connect to one another. In this region, many individuals live in one
city/state (e.g. Philadelphia), work in another (New York City) and vacation in another (New Jersey
coast). While these regions are separated by multiple administrative boundaries, they could still be
considered to be in the same bubble.

The recent availability of large-scale human activity datasets has greatly improved our ability to
study social systems [10–12]. Geo-located data sources enable direct observation of social interactions
and collective behaviours with unprecedented detail. It is a well-established fact that aside from
population heterogeneity, heterogeneity in movements at various distance scales has a large impact on
the diffusion of infectious diseases [13]. Reductions in long-distance travel in the US due to
lockdowns also showed a heterogeneous pattern at the county level [14]. Some mobility categories like
transit and routine activities decreased in April 2020, which indicates a large negative per cent change
during the first weeks of national lockdowns, and shows that people spent more time in residential
areas [15]. On the other hand, some studies have shown that social isolation and hygiene had more
impact on the reduction of positive active cases than lockdowns [16]. Networks of human mobility
[17–19] have revealed the existence of geo-located communities or patches that exist at multiple scales
from town to city, state and national scales [20,21]. People in these patches have similar movement
patterns and, in a self-organized manner, mostly do not cross the borders of their communities. While
the borders of mobility patterns of some patches follow administrative borders, the mobility patterns
of other patches show a strong deviation from administrative geography [22].

Borders of patches are subject to vary during global events such as the COVID-19 pandemic. In this
work, we study the dynamics of the modular structure of individual movements within the US in order
to quantify effectiveness of policies that seek to lower transmission by reducing the amount of social
movement and distance of travel within the population. We use anonymized cellphone data collected
by SafeGraph company from February to May 2020 to build mobility networks based on the
1COVID-19 cases in states of the us. https://www.worldometers.info/coronavirus/country/us/.
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movement of mobile device users between census block groups (CBGs). SafeGraph data have been

widely used in detecting mobility patterns during the current pandemic. By applying the Louvain
method as a community detection algorithm, fragmentation patterns of the networks are extracted.
Patches represent the areas in which residents spend the most time. Applying the algorithm at
multiple scales reveals the multi-scale modular structure of society and the features of that structure
during the pandemic. We carefully study the properties and statistics of these patches and their
dynamics in the presence of lockdown restrictions using the location of COVID-19 cases to define the
risk of disease diffusion in mobility patches. Fusion of mobility and disease vectors has the potential
to optimize future public health policies by restricting movements to and from infected patches,
potentially reducing or eliminating the need for large-scale lockdowns.
rnal/rsos
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2. Material and methods
2.1. Data
Mobility datasets: In March 2020, technology companies that gather geo-located information on
individuals started to share anonymized mobility data to help researchers stop the spread of COVID-
19. Here, we used the aggregated mobility datasets of the US by SafeGraph company to construct
mobility networks from where individuals go. SafeGraph provides cellphone data and, for security of
the users, anonymizes the data and aggregates them in CBGs. Each file describes individual CBGs
and lists links with weights (number of links) to other CBGs that occurred on a specific day. First, we
separate all these relationships and describe them as individual objects. Each relationship has a
source, target, date and weight of interaction. Daily dataframes are combined into weekly dataframes;
they are grouped and their relationships are summed. Each CBG in each relationship is augmented
with central points derived from CBG polygons. See figure 1 for a summary of data statistics. We
performed the analysis for weeks 23–29 February, 1–7 March, 8–14 March, 15–21 March, 22–28 March,
29 March–4 April, 5–11 April, 19–25 April, 26 April–2 May and 24–30 May.

COVID-19 datasets: We use daily confirmed cases time-series data from Johns Hopkins University
COVID-19 Data Repository. This dataset provides cumulative counts of confirmed cases at county
level for the US. By adding the number of active confirmed COVID-19 cases to the map, we define
risk exposure for the communities.

2.2. Methods
To extractmobility fragmentation patterns, we first buildmobility networks representing the connectivity of
areas based on the movement of individuals. Applying a community detection algorithm shows us which
geographical areas in the mobility networks are highly connected at multiple scales from mega-
communities, to communities and sub-communities. To quantify changes in the network structures, we
measure distributions of degree (number of movements from/to each CBG) and movement distances in
communities.

Mobility network: In the mobility network, nodes represent a lattice with cells overlaid on a map of
the US. Cells are CBGs used by SafeGraph and are the nodes in the mobility network. Edges represent the
movement of an individual from one CBG (node) to another one. Edge’s weight represents the number of
people who travel between the two CBGs. This network aggregates the heterogeneities of human
mobilities in a large-scale representation of social collective behaviours [23].

Community detection algorithm: We analyse social fragmentation by applying a community detection
method to the mobility network. The term network fragmentation is often used to describe network
dismantling in the literature [24,25]. In community detection algorithms such as the Girvan–Newman
method [26], the term ‘social fragmentation’ is used to represent the modular structure of a social
network in the absence of links. Communities refer to the regions in which nodes are connected to each
other more than the rest of the network. Various community detection algorithms have been introduced
for different purposes, accuracy and computing time [27,28]. In general, community detection methods
can be categorized into two types: either agglomerative or divisive methods, which achieve optimization
with modularity-based approaches like the Louvain [29] or fast-greedy algorithms [30], node similarity-
based approaches like WalkTrap that uses a measure of distance based on a random walker [31],
compression-based approaches that maximize compactness while minimizing information loss like
InfoMod [32] and InfoMap [33] and others (see [27,28] for additional details and methods).
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Figure 1. Top panel represents the US COVID-19 timeline and infected cases in the first half of 2020. Bottom panels represent
summary of mobility network statistics during 10 weeks in February, March, April and May in 2020.
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In this work, we use the Louvain algorithm [34] which works well for large networks and is relatively
fast, and represents connected areas that deviate the most from a null model. The Louvain approach is an
agglomerative method that considers each node as a single community in the first step. In an iterative
process, nodes move to neighbouring communities and join them to maximize modularity [35].
In the next step, a network is built whose nodes are the communities in the previous step. The
process is repeated in order to find the optimized value for modularity. Modularity is defined as
M ¼ ð1=2mÞPij [Aij � ðkikj=2mÞ]d(gi,gj). Where, m represents the total number of links in the network,
Aij counts link weight between nodes i and j, and ki and kj are the sum of links to and from nodes i
and j. The second term in the equation indicates the expected number of links between the two nodes.
δ(gi, gj) is equal to 1 if there is a link between the communities of node i and j, otherwise it is
0. Modularity is a scalar value −1 <M < 1 that quantifies how distant the number of edges inside a
community is from those of a random distribution. Values closer to 1 represent better detected
communities. Due to the existence of multiple local minima in the Louvain algorithm, some variation
in the assignment of nodes may occur between algorithm runs [35,36]. To quantify the stability of
detected communities and identify areas in which communities overlap with each other, we generate
an ensemble of multiple realizations and analyse the borders of patches in all the realizations [20,21].

Each CBG corresponds to a polygon and belongs to a community. We merge and dissolve polygons
of CBGs that belong to the same community to represent communities as polygons. Rendering polygons
with the same colour allows us to better visualize the communities and their borders on a map.

We define inter-community distances by creating a network that consists of communities as nodes
and aggregate mobilities between them as links. Using this network structure we can further define
clusters of communities with stronger connections. These clusters describe higher level aggregate
behaviour enabling policy decisions about travel restrictions at the larger scale. We preserve colour
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hues for mega-communities: purple hues were consistently assigned to northeastern states, blues to

southeastern, greys to midwest, pink–magentas to southern communities and yellow–brown to the
western communities. By applying the Louvain algorithm to the network inside communities, we
define sub-communities in high population areas that mostly represent cities and surrounding
metropolitan regions. Thus, our analysis shows three different scales of communities in the US.

Degree and distance distributions: We examined the distribution of the number of nodes versus degree
(number of in and out links to the nodes) and number of links versus the length of the links using a
survival function. If the degree of nodes/length of links per node/link is in range A = 1, 2, 3,… , Amax,
the survival function counts the frequency of nodes/links that have more than A degrees/lengths,
S(A) ¼ SAmax

i¼1 ni. In this work, we plot the distributions for each community separately with colours that
match with the colour of communities in the shown week, see figure 1. Note that the mobility
networks are directed and weighted, meaning that the links have a direction showing the origin and
destination and the links may be repeated several times. In general, the shape of the distribution varies
depending on inherent traits of the system and may change over time [37,38].

If communities include a few nodes/links with large degrees/lengths and many nodes/links with a
few degrees/lengths, the distribution will be skewed. An extreme skewed distribution is the power-law
distribution, in which the frequency of events decreases as a power of size of the events [39].2 Power-law
distributions can be described by N(A)∼A−α, in which α quantifies how heavy-tailed the distribution is.
On a log–log plot, a power-law distribution appears linear, and its slope is equal to α. Power-law
behaviour is also termed ‘scale-free’ because it follows the same relationship at all scales [39].
0865
3. Results and discussion
In figure 1, we summarize COVID-19 activity in the US in the first half of 20203 as well as statistics of
weekly aggregated mobility data. The statistics count the number of relations, number of source and
target CBGs, sum of weights and the average weights of links in the networks. The first cases of
COVID-19 were announced in Wuhan, China, in December 2019, and confirmation of its
transmissibility put Wuhan on lockdown. Soon after, in January, additional early cases were identified
around the globe, and the US government declared a public health emergency. In February of 2020, a
surge in infections led to travel restrictions between countries. In figure 1, mobility data show that the
number of movements was high before the declaration of lockdowns in March. While the number of
CBGs that had movement from or to it, and the weight of movement was high, the average weight of
CGBs overall was low, representing a wider geographical distribution of movements in more CBGs.
At the beginning of March, the WHO declared COVID-19 as a pandemic. In the US, the Grand
Princess cruise ship arrived on the coast of California with 21 confirmed cases.4 On 19 March 2020,
California was the first state to issue shelter-in-place orders. Residents were asked to stay home except
for essential or emergency needs [40]. New York City was the second US location to experience a
severe outbreak and the city implemented hard lockdowns and quarantines. Soon after, state
governments like Illinois, New York, Ohio, West Virginia, Michigan, Oregon, Indiana and Minnesota
issued stay-at-home orders for all residents as the number of infections and deaths began to surge.
Schools were closed in Virginia, South Carolina, Ohio and Georgia. Lockdowns shuttered businesses,
colleges, restaurants and public events, while people donned masks and practised social distancing.
Our data show that while movements decreased, the averaged weight of CBG movements increased,
representing decreased long-distance travel and increased local movements. In April, school closures
extended to Indiana, Michigan and Missouri. Stay-at-home orders were then extended to additional
states such as Alabama and Missouri. While governments tried to control the outbreak, people in
some states such as Michigan, Ohio and Indiana protested against lockdowns. By mid-April, the
restrictions put in place by states decreased movement and helped to slow the pace of new infections.
In response to the perceived improvement, and under political pressure from protests and struggling
businesses, state governments began to roll back restrictions in successive phases of reopening, which
were declared by the federal government. These actions were both premature and harmful, and
2https://www.yalemedicine.org/news/covid-timeline, https://www.ajmc.com/view/a-timeline-of-covid19-developments-in-2020,
ttps://en.wikipedia.org/wiki/Timeline_of_the_COVID-19_pandemic_in_the_United_States_(2020)#March
3https://www.nytimes.com/2020/03/09/us/coronavirus-cruise-ship-oakland-grand-princess.html.
4https://www.nytimes.com/2020/03/19/us/California-stay-at-home-order-virus.html.
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increased the distribution and number of movements, which consequently caused the disease to surge
out of control throughout much of the nation.

In figure 2, we compare the fragmentation pattern of themobility networks of theUS for 23–29 February
(panel a) and 5–11 April (panel b). Areas with the same colour belong to the same community and
communities with the same colour hue represent clusters of communities with stronger connections. The
US has five clusters in the following regions: west, north, northeast, southeast and south. Panels (c) and
(d ) show the degree distribution of the nodes, and panels (e) and ( f ) show the edges’ length distribution
for the communities in panels (a) and (b) (see electronic supplementary material for detail about the
distribution function). Linear behaviour of the distributions in log–log axes represents the power-law
nature of these distributions. National and local lockdowns in the US came into effect in March 2020 and
led to dramatic reductions in movements compared with mobility patterns in February. Figure 2 shows
that quarantine policies were effective at breaking up some of the connectivity between areas by
reducing the size of the communities, the degree of inward and outward movements and the number of
long-distance movements (which follow a power-law behaviour in range of degree of nodes/length of
links). The number of detected communities in the US increased from 46 to 62 between weeks of 23–29
February and 5–11 April. Many east coast communities, especially in the New York City metropolis and
the state of Florida split into smaller communities. According to panels (c) and (d ), degree of movements
for all CBGs in all communities from greater than 200 movements reduced to greater than 100
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movements. The highest degree of the CBGs in the communities reduced from 1500 > degree > 75 000 to
800 > degree > 7500. Movement frequencies from 106 > F > 107 decreased to 105> F > 4 × 106, and the
frequencies of CBG movements in all communities decreased distance due to lockdowns. For example,
Florida was connected to the northeastern US cluster of communities during 23–29 February. After
lockdowns were implemented in the northeast, connections became more localized and formed clusters
with proximate neighbouring states. See electronic supplementary material for more details and
community patterns in other weeks. In panels (g) and (h), we compare the deviations of the partitions in
the first community detection level on 23–29 February from other weeks using two measures of cluster
similarity: adjusted rank [41] and completeness5 scores. These measurements evaluate the similarity of
communities, with values ranging between 0 (no intersection) and 1 (perfect coherence). Our analysis
shows a decrease in scores from 0.91 to 0.76 for adjusted rank and 0.81 for completeness, representing
deviation from pre-existing community patterns following the implementation of lockdowns. We find
the largest deviation occurred in the first week of April, when most of the country was in hard
lockdown, and social distancing and mask-wearing behaviours were strongly encouraged.

Applying a community detection algorithm on the network of nodes inside each of the communities
reveals the sub-structure of the communities, exposing the mobility patterns with more detail. In
figure 3a,b, US mobility patterns during week 5–11 April are shown, with sub-communities separated
from each other with black lines. Yellow lines represent state borders in the upper panel and county
borders in the bottom panel. Although community borders align with administrative borders in some
areas, in most areas community borders deviate significantly from administrative borders, see values
less than 1 for adjusted rank and completeness scores, shown in panels (c) and (d ), as evidence of this
deviation. This indicates that policies informed by assumptions of disease containment within
administrative boundaries do not account for high risk patterns of movement across and through
these boundaries. Some states appear as a single community such as Michigan (MI), West Virginia
(WV) and Louisiana (LA). Meanwhile, while some others merge together and appear as a large
community, for example, the six-state region of New England (Maine (ME), Massachusetts (MA), New
Hampshire (NH), Vermont (VT), Rhode Island (RI) and Connecticut (CT)). The North and South
5https://www.oneidaindiannation.com.

https://www.oneidaindiannation.com
https://www.oneidaindiannation.com


<10

11–100

101–500

500–1000

100–5000

1000–5000

5000–10 000

5–11 Apr

communities during week 5–11 Apr

COVID-19 cases

counties

small communities

state borders

(a)

(b) (c) (d)

Figure 4. (a) COVID-19 cases on the map of mobility communities of the US on 5–11 April, shown by grey circles. (b) and (c) While
a community appears to be in bad situation, in higher resolution (sub-communities), some of the areas are in low risk and others in
high risk.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210865
8

states of Carolina (NC and SC), Nebraska (NE), Iowa (IA) and South Dakota (SD) are two other examples
of merged states. Some states split into small communities representing a dismantled mobility pattern
within those states, such as, California (CA), Texas (TX) and Florida (FL). More intelligent contact
tracing and quarantine programmes in suspected areas at the right time can dramatically slow the
acceleration of the pandemic to connected areas and reduce severe impacts. Thus, it would be better
to carefully define the borders of connected areas based on individuals’ movements and the scale that
policies are applicable and appropriate for. It is not enough to implement contact tracing that simply
traces the locations where a confirmed case has been. Rather, we also need to know the locations and
movements of persons who were in contact with the infected person.

Unfortunately, due to the delays in applying preventative policies across the US, many areas have seen a
large numberof cases. By tracking the location of recent active cases and adding themon top of themapof the
communities, we can define the risk exposure for the communities. In figure 4, grey circles show the risk
exposure of the communities by counting the number of active COVID-19 cases in communities and their
sub-communities. While doing the analysis in lower resolutions (larger communities) can provide an
aggregate view of the world situation, doing the analysis this way will mean the loss of many important
details and information. For example, a community may appear to be in a bad position when it comes to
COVID-19, but when we zoom into the sub-communities, we may see that there is high risk in a few
particular areas, and some areas may have none demonstrating they are safer places and have a better
potential to reopen earlier than higher risk areas. The higher the resolution we can provide, the better we
can define the local risk levels. Communities with a higher number of confirmed cases need more
extensive contact tracing and quarantine policies. Commutes from high to low risk communities can
increase the spread of the COVID-19 disease across the society.

By zooming into the map (for example northeast of the US on 5–11 April, figure 5a), interesting facts
are observable:



NEWNEWNEW NEWNEWWWNEWNEWNENEWEWNEWNEWEWWNENEWNEWNEEEWEWEWWWWWWWWNEWNENEEWWWNEWNEWW EW YORKYORYORKYORKYORKYORKYORKYORKYORKYORKYORKYORYORORKORKYORKYORKYORKKYYOYYOORKORKORKOYORKYORKYORKYORKYORKYORKYORKYORKYORKYORKYORKRKRKKKY KY KKKKKKKNEW YORK

communities during week 5–11 Apr

COVID-19 Cases
counties
small communities

(a)
(b)

(c)

(d)(f)

(e)(g)(h)

state borders

5–11 Apr

1

2

34

Figure 5. (a) Zoom into the northeast of the US on 5–11 April. Special examples of the map: (b) Areas with no mobility data,
Isolated communities like (c) universities and (d ) and (e) vacation spots, ( f ) sub-communities within other sub-communities, (g)
communities that cross state borders and (h) sub-communities in city areas.
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— Areas with no mobility data: There are some urban areas that do not share mobility data, like a
Native American community in New York state6, figure 5b.

— Isolated communities: Some parts of a community can be geographically disconnected from the rest
of the community. This, for example, occurs in university and vacation areas for larger cities.

o Universities: New York State is the home to many universities. These universities attract people
from different areas. The examples of Cornell University and SUNY Cortland, figure 5c, are
two Universities that are located in central New York State yet are isolated sub-communities
for New York City. This corresponds with a 2014 investigation,7 which estimated that 65% of
all students at Cornell from New York State came from that region of the state.

o Vacationers: There are vacation spots that individuals frommetropolitan regions of one communitygo
to yet are in the middle of different communities. These regions are known for their nice outdoor
spaces and somewhat close proximity to the city they are connected to. This phenomenon creates
isolated communities in the middle of other communities. Multiple reports have mentioned this
6https://ithacavoice.com/2014/11/percentage-cornell-students-come-downstate-ny/.
7https://www.nytimes.com/2020/03/25/nyregion/coronavirus-leaving-nyc-vacationhomes.html.

https://ithacavoice.com/2014/11/percentage-cornell-students-come-downstate-ny/
https://ithacavoice.com/2014/11/percentage-cornell-students-come-downstate-ny/
https://www.nytimes.com/2020/03/25/nyregion/coronavirus-leaving-nyc-vacationhomes.html
https://www.nytimes.com/2020/03/25/nyregion/coronavirus-leaving-nyc-vacationhomes.html
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patternoccurring.8,9 InNewYorkCity, theCatskillMountains are oneof these escapes, figure 5d,while

for Philadelphia the Poconos serve the same purpose, figure 5e.
— Sub-communities within other sub-communities: All around the US, there are some areas in which

people mostly interact with those immediately around them rather than their nearby urban areas.
University campuses are good examples of such sub-communities. As shown in figure 5f, within
the community of upstate/western New York there are specific sub-communities with connections
to university campuses. On the left side of the figure, the smaller shape south of Rochester is
Rochester Institute of Technology, while the right side of the figure has two smaller areas in
Syracuse, both associated with Syracuse University. These universities are large and attract many
students from the upstate/western New York region.

— Communities that cross state borders: Examples include the area of Philadelphia and southern New
Jersey, figure 5g. The light purple region highlights the Philadelphia community. This community is
multi-state and includes parts of northeastern Maryland, northern Delaware, southern New Jersey
and southeastern Pennsylvania. The southern part of the Jersey Shore is a popular travel
destination for people from Philadelphia, and the areas in Delaware and Maryland appear to be
extensions of the great Philadelphia area.

— Sub-communities in city areas: Racial and income differences, city infrastructure and transportation
can be reasons for community formation in city areas. In New York City, these communities are
shown by light green in figure 5h. Brooklyn and Queens have defined sub-communities that are
necessary to investigate. Sub-community 1 includes areas of Queens (Long Island City, Astoria,
Sunnyside, Woodside, Jackson Heights, Elmhurst, Corona). Sub-community 2 includes parts of
northern Brooklyn (Williamsburg, Greenpoint, Maspeth, Middle Village, Rego Park, Forest Hills,
Bushwick, Ridgewood, Glendale). Sub-community 3 includes central Brooklyn (Clinton Hill,
Bedford-Stuyvesant, Fort Greene, Prospect Heights, Crown Heights, Flatbush and Canarsie). Sub-
community 4 includes areas around Prospect Park (Park Slope, Greenwood Heights, Kensington,
Windsor Terrace, Prospect Lefferts Gardens). The public transportation that supports them is
different for each area (within Brooklyn division as well). The Prospect Park area of Brooklyn
is the most wealthy (sub-community 4, smallest subsection). The border between sub-community
4 and 3 on the map can basically be the wealth divide.10 The racial divide between sub-
community 3 and 4 can be striking on this map as well [42].

4. Conclusion
In conclusion,mobility patterns are one of the signs that not only reveal the effectiveness of lockdownpolicies,
but also define areas that are in high riskwith regard to the severity of COVID-19 exposure and need formore
restriction actions. Mobility networks represent patches that people mostly stay within. This is important
because they are also mostly in contact with individuals inside those patches. Lockdown and quarantine
policies should attempt to change the mobility patterns and adapt to and strengthen borders of the
patches. These policies should eliminate most of the long-distance movements and make them more
localized. Patches in the city areas are mostly smaller and in the suburban or rural areas, they become
larger. Quantifying movements from and to the patches and restricting commutes between low and high
risk patches can be used to control the spread of coronavirus across various areas and help policymakers
and governments to control the pandemic.

Our mobility and COVID case data have some limitations in the populations covered and
geographical resolutions. For the privacy and security of users, SafeGraph aggregates its cell phone
data into CBGs, and so these data cannot capture sub-CBG heterogeneity. Infected cases are further
aggregated to the county level. This mismatch between geographical aggregations of mobility and
infected cases creates some problems measuring risk of exposure in communities. To solve this, we
split the infected cases of the counties that crossed several mobility patches. While these aggregations
prohibit analysis at scales smaller than a certain resolution threshold, on larger scales these limitations
pose no problems to our analysis. Despite these limitations, mobility data and SafeGraph data, in
particular, have been used in many research projects during the recent SARS-CoV-2 pandemic [43–46].
8https://whyy.org/articles/corona-discount-as-rentals-advertise-seclusion-poconos-becomeper-capita-covid-leader/.
9http://storymaps.esri.com/stories/2016/wealth-divides/index.html.
10https://www.nytimes.com/interactive/2015/07/08/us/census-race-map.html.

https://whyy.org/articles/corona-discount-as-rentals-advertise-seclusion-poconos-becomeper-capita-covid-leader/
https://whyy.org/articles/corona-discount-as-rentals-advertise-seclusion-poconos-becomeper-capita-covid-leader/
http://storymaps.esri.com/stories/2016/wealth-divides/index.html
http://storymaps.esri.com/stories/2016/wealth-divides/index.html
https://www.nytimes.com/interactive/2015/07/08/us/census-race-map.html
https://www.nytimes.com/interactive/2015/07/08/us/census-race-map.html
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In future works, we plan to study the reasons behind the formations of mobility patches by analysing
demographic patterns of socio-economic and deprivation factors of society. We will also use these
mobility patterns to develop meta-population stochastic models to simulate the spread of the
COVID-19 virus in order to further study the effectiveness of lockdowns.

Data accessibility. Data and relevant code for this research work are stored in GitHub: https://github.com/obuchel/
network_paper and have been archived within the Zenodo repository: https://zenodo.org/badge/DOI/10.5281/
zenodo.5585265.svg (https://doi.org/10.5281/zenodo.5585265). Mobility data are collected by SafeGraph and
shared for free for scientific researches. Other Data are available online at: https://www.endcoronavirus.org/
mobility-maps.
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