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Abstract

The generation and control of neutron orbital angular momentum (OAM) states and spin 

correlated OAM (spin-orbit) states provides a powerful probe of materials with unique penetrating 

abilities and magnetic sensitivity. We describe techniques to prepare and characterize neutron spin-

orbit states, and provide a quantitative comparison to known procedures. The proposed detection 

method directly measures the correlations of spin state and transverse momentum, and overcomes 

the major challenges associated with neutrons, which are low flux and small spatial coherence 

length. Our preparation techniques, utilizing special geometries of magnetic fields, are based on 

coherent averaging and spatial control methods borrowed from nuclear magnetic resonance. The 

described procedures may be extended to other probes such as electrons and electromagnetic 

waves.
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1. Introduction

In addition to possessing spin angular momentum, beams of light [1], electrons [2–4], and 

neutrons [5, 6] can carry orbital angular momentum (OAM) parallel to their propagation 

axis. There have been many recent developments in preparation and detection of OAM 

waves [7, 8], and they have found numerous applications in microscopy, encoding and 

multiplexing of communications, quantum information processing, and the manipulation of 

matter [9–14].

In addition, it is possible to create ‘spin-orbit’ states in which the spin and orbital angular 

momentum are correlated. For light, the correlation is between OAM and the polarization 

degree of freedom (DOF) [15, 16], while for electrons and neutrons it is between OAM and 

the spin DOF [17, 18]. Optical spin-orbit beams have demonstrated a number of applications 

in high resolution optical imaging, high-bandwidth communication, optical metrology, and 

quantum cryptography [19–22].

In this paper we develop methods of producing neutron spin-orbit states using special 

geometries of magnetic fields. Hence we offer additional methods to tackle the challenges 

with neutron OAM [23]. Our techniques are based on coherent averaging and spatial control 

methods borrowed from nuclear magnetic resonance [24–27]. We then quantify and compare 

the practical methods for preparation and detection of neutron spin-orbit states. Lastly, 

we propose a method to characterize neutron spin-orbit states by measuring correlations 

between the spin direction and the momentum projected to a specific axis. This detection 

technique may be used to overcome the main challenges associated with low flux and the 

small spatial coherence of neutron beams.

2. OAM preparation with a spiral phase plate (SPP)

A direct way of generating OAM waves is to pass a Gaussian beam through an azimuthally 

varying potential gradient such as that of a SPP [28]. Here we examine a scenario in 

which a coherent neutron wavepacket is traveling on axis with the SPP. It is convenient 

to consider a neutron traveling along the z direction with momentum ћkz and with equal 

transverse spatial coherence lengths (σx = σy ≡ σ⊥), where σx,y = 1/(2Δkx,y) and Δkx,y are 

the spreads of the wavepacket’s transverse wavevectors). The transverse eigenstates can then 

be conveniently expressed in cylindrical coordinates (ρ, ϕ, z) as:

|n, ℓ , s〉 = Nξ ℓ e− ξ2
2 ℒn

ℓ (ξ2)eiℓϕ |s〉, (1)

where N is a normalization constant, ξ = ρ/σ⊥ is the rescaled radial coordinate, n ∈ {0, 

1, 2...} is the radial quantum number, ℓ ∈ {0, ±1, ±2...} is the azimuthal quantum number 

indicative of OAM, ℒn
ℓ ξ2  are the associated Laguerre polynomials, and s ∈ {↑, ↓ } 

describes the spin state. Applying the OAM operator Lz = − iℏ ∂
∂ϕ  to equation (1) verifies 

that this wavepacket carries an OAM of ℓћ parallel to its propagation axis.
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An SPP provides an azimuthal potential gradient which induces OAM relative to the SPP 

axis. The thickness profile of an SPP is given by h(ϕ) = h0 + hsϕ/(2π), where h0 is the 

base thickness and hs is the thickness of the step. In neutron optics [29], a wavepacket 

propagating on axis through an SPP acquires a spatially dependent phase α(ϕ) = −Nbcλh(ϕ) 
= α0 + qϕ, where Nbc is the coherent scattering length density of the SPP material, λ is 

the neutron de Broglie wavelength, q = −Nbcλ/(2π) is known as the topological charge or 

the winding number of the SPP [30], and α0 = −Nbcλh0 is the phase shift associated with 

the base thickness. The effect of the SPP on the neutron wavefront can be expressed as an 

operator:

USPP = eiα0eiqϕ . (2)

For example, consider an incoming neutron wavepacket with a definite value of OAM:

Ψin = nin, ℓin , s . (3)

When that wavepacket passes through an SPP with an integer value of topological charge q, 
its OAM is increased by qћ [18]:

ΨSPP = USPP Ψin = ∑
n = 0

∞
Cn, ℓin + q n, ℓin + q, s . (4)

The coefficients Cn, ℓin + q, are explicitly derived in [18]. Thus an SPP may be used to vary 

the azimuthal quantum number.

In the next section we will describe methods to prepare states where the neutron OAM is 

correlated with a particular spin state. These techniques will therefore require the use of 

magnetic fields and magnetic materials.

3. Methods of generating spin-orbit states

3.1. Method 1: magnetic SPP

Neutrons are spin−1/2 particles, and therefore the spin provides a two-level DOF. A ‘spin-

orbit’ state is one in which spin and OAM are correlated. In this paper we specifically 

consider states where the two spin eigenstates are correlated with different OAM states:

ΨSO = 1
2 n , ℓ , + eiβ n , ℓ , , (5)

where ℓ↑ ≠ ℓ↓, and β is an arbitrary phase. This state may be prepared by taking an incoming 

beam in a coherent superposition of spin up and spin down states (for convenience we shall 

choose the z axis to be the spin quantization axis and that nin = ℓin = 0):
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|Ψin 〉 = 1
2 |0, 0〉( z + z 〉), (6)

and passing it through an SPP made out of a magnetic material. When such an SPP is 

magnetized along the spin quantization axis, its operator can be expressed as

UmSPP = ei Nbcλℎ(ϕ) + Nbmλℎ(ϕ)σz , (7)

where bc (bm) is the neutron coherent (magnetic) scattering length of the material [29], 

and σz is the Pauli spin operator. The coherent scattering length is material dependant and 

typical isotopes values vary from −5 to 10 fm [31]. The magnetic scattering length arises 

for magnetic materials, and it is directly related to the mean magnetization of the material. 

For such materials the magnetic scattering length is on the order of the coherent scattering 

length.

Consider an SPP which is fabricated from a material whose nuclear and magnetic scattering 

lengths are equal, bc = bm. Then the phase acquired by one spin state would be α↑(ϕ) = 

−N(bc – bm)λh(ϕ) = 0 and that of the other a α↓(ϕ) = −N(bc + bm)λh(ϕ) = β + qϕ, where 

now q = −Nbcλhs/π and b = −2Nbcλh0. Using this magnetic SPP, spin-orbit states may be 

generated in the form of:

ΨmSPP
q = UmSPP Ψin

= 1
2 0, 0, z + eiβ ∑

n = 0

∞
Cn, q n, q, z .

(8)

Various alloys can be engineered to have bc ~ bm, for instance a 50:50 Fe:Co alloy posses (bc 

− bm)/(bc + bm) = −0.047. Such materials are routinely used for neutron optics [32, 33]. For 

example, widely used neutron polarizers are composed of such materials, whereby incident 

neutrons with one spin state experience a high potential and are reflected, while the incident 

neutrons with the opposite spin state experience a near-zero penitential and pass through.

The action of a q = −1 magnetic SPP is shown in figure 1(a). For a convenient comparison 

with other methods of producing spin-orbit states we will set β = π/2 in equation (8). ΨmSPP
q

possesses maximal single particle entanglement between the spin DOF and the OAM DOF 

as there is an equal superposition of |ℓ↑, ↑z〉 and |ℓ↓, ↓z〉 [18].

3.2. Method 2: quadrupole magnetic field

Spin-orbit states can also be prepared with a quadrupole magnetic field, as described in [18]. 

In this case the OAM is induced via a Pancharatnam–Berry geometrical phase [35, 36]. The 

spin-orbit state is achieved by propagating a neutron wavepacket that is spin polarized along 

the z-direction,

Ψin = 0, 0, z , (9)

Sarenac et al. Page 4

New J Phys. Author manuscript; available in PMC 2021 December 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



through a quadrupole magnetic field B = K( − xx + yy), where K is the magnitude of the 

quadrupole magnetic field gradient. The Hamiltonian of a neutron inside a magnetic field 

can be written as H = σ ⋅ B γnℏ/2, where σ  is the vector of Pauli matrices (σx, σy,σz), and 

γn is the neutron gyromagnetic ratio [37]. The time that a neutron traveling along the z axis 

spends inside the magnetic field is τ = d/vz, where d is the length of the quadrupole magnet 

and vz is the neutron velocity. By defining OAM raising and lowering operators l ± = e±iϕ

and spin operators σ± = σx ± iσy /2,the quadrupole operator can be expressed as

UQ ρc = e−i πρ
2ρc

−cos(ϕ)σx + sin(ϕ)σy

= cos πρ
2ρc

1 + i sin πρ
2ρc

l +σ+ + l −σ− ,
(10)

where we have re-parametrized the quadrupole operator using the characteristic radial 

distance ρc at which the spin undergoes a π rotation after passing through the quadrupole,

ρc = πvz
γnKd . (11)

The state after the quadrupole can be expanded in the basis functions of equation (1) as

ΨQ = UQ Ψin

= e−ξ2/2

πσ⊥
2 cos πρ

2ρc z + ie−iϕsin πρ
2ρc z

= ∑
n = 0

∞
Cn, 0, zz n, 0, z + iCn, − 1, z n, − 1, z ,

(12)

where the coefficients Cn,,ℓ,s are explicitly derived in [18]. There it was also shown that 

to maximize the single particle entanglement between the spin and OAM the quadrupole 

magnet should be of such strength and length as to produce a spin flip over 1.82 times the 

coherence length of the wavepacket, that is ρc = 1.82σ⊥.

The action of the quadrupole magnet is shown in figure 1(b). It can be observed that the 

intensity profile of the spin state which is correlated to the OAM is now a ring shape.

3.3. Method 3: BB1 sequence

After a neutron wavepacket passes through a quadrupole magnetic field, the maximally 

entangled spin-orbit state, given by ΨmSPP
q = − 1  (see equation (8)), occurs for ρ = ρc/2. 

However, the range of maximal entanglement can be increased by using a sequential chain 

of appropriately oriented quadrupole magnets. We will see that this results in the ability 

to increase the width of the ideal ring filter without significantly affecting the amount 

of spin-orbit entanglement, boosting post-selection performance. To begin, notice that the 

situation with a single quadrupole magnet resembles a standard over/under-rotation pulse 

error in spin physics [27]: with a fixed azimuthal coordinate ϕ, as the radial coordinate 
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deviates from the ideal value ρ = ρc/2, the spin undergoes a rotation about the ϕ axis with a 

rotation angle greater or less than π/2. The amount of such over/under-rotation is fixed for a 

given value of ρ.

To increase robustness to these errors we consider the broad-band1 (BB1) composite 

pulse [38] which can be implemented by sequential quadrupoles with different strengths 

and orientations. This particular composite sequence is considered because of its robust 

performance while using only four quadrupole magnets. It is important to note that applying 

the quadrupole operator repeatedly N times does not take the orbital quantum numbers 

outside the ℓ = 0, ±1 values. That is, UQ ρc
N Ψin = UQ ρc/N Ψin , where the quadrupole 

operator UQ ρc  was defined in equation (10). However, the standard magnetic quadrupole 

can be rotated by an angle δ about the z axis. In this case its interaction is described by 

the modified operator, UQ ρc, δ = e−i δ
2σzUQ ρc ei δ

2σz, and the BB1 sequence results in the 

output state

ΨBB1 = UQ
ρc
2 , δ1 UQ

ρc
4 , δ2

UQ
ρc
2 , δ1 UQ ρc, 0 Ψin ,

(13)

where δ 1 = cos−1(−1/8) and δ 2 = 3δ 1. These angles were tuned to eliminate 1st and 2nd 

order over/under-rotation errors [38].

To quantitatively compare ∣ΨBB1〉 with ∣ΨQ〉 we can look at their overlap with the 

maximally entangled spin orbit state ΨmSPP
q = − 1  of equation (8). The overlap between two 

states ∣Ψ1〉 and ∣Ψ2〉 is given by ∣〈Ψ1|Ψ2〉, and it is a measure of the closeness of two 

quantum states, with a value of unity for identical states. Figure 2 shows ΨmSPP
q = − 1 ∣ ΨBB1

and ΨmSPP
q = − 1 ∣ ΨQ  as a function of radius. It is clear that ∣ΨBB1〉 has a larger range of 

radii for which the spin and OAM are maximally entangled. This can also be observed in the 

intensity profile of 〈↓z∣ΨBB1〉 that is plotted in figure 1(c), where the inner dark region is 

smaller than that of figure 1(b).

3.4. Spin-orbit states with higher order OAM

The quadrupole magnetic field method described above takes a spin-polarized input state 

with ℓ↑ = ℓ↓= 0 and outputs a spin-orbit state with ℓ↑ = 0 and ℓ↓ = ±1.Wenow consider 

situations where the spin-orbit correlations involve higher order OAM values. With spin-

orbit states generated via the magnetic SPP, this is a trivial matter of using a |q| > 1. For 

quadrupole magnetic fields the following sequence of j pulses may be used:
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ΨQ
j 〉 = (UQ ρc e−iπ

2 σx z 〉〈 ↓z |)
j
UQ ρc 0, 0, z

= e−ξ2/2

πσ⊥
2 [cos πρ

2ρc
sinj πρ

2ρc
−j, z

+i sinj + 1 πρ
2ρc

−(j + 1), z ],

(14)

where |↓z〉 〈↓z| is the projection operator for a spin-down state. The j = 0 case corresponds to 

the spin-orbit state produced via a quadrupole magnetic field as described in equation (12). 

For j > 1, both |↑z〉 and |↓z〉 are correlated to higher order OAM values, and the intensity 

profiles of 〈 z ∣ ΨQ
j 〉 and 〈 ↓z ∣ ΨQ

j 〉 are both ring shapes.

4. Intrinsic and extrinsic OAM

Heretofore, we have discussed neutron wavepackets for which the propagation axis 

coincides with the SPP or quadrupole axis. In this case, the SPP/quadrupole axis defines the 

OAM quantization axis. However, neutron beams are typically an incoherent superposition 

of neutron wavepackets, where the neutron beam diameter is between 10−1 and 10−4 m, 

and the transverse coherence length of the neutron wavepackets, σ⊥, is of the order of 

10−5–10−9m [39–41].

In studies of optical OAM a distinction is made between ‘extrinsic OAM’ and ‘intrinsic 

OAM’ [42, 43]. One can extend this distinction to the case of neutron beams. Extrinsic 

OAM is the orbital angular momentum centered about the SPP/quadrupole axis and it 

is given by the cross product of wavepacket’s position and its total linear momentum; 

intrinsic OAM, usually associated with helical wavefronts, is the orbital angular momentum 

represented by ℓ. The intrinsic OAM does not depend upon the position of the axis, provided 

that the axis is parallel to the propagation axis [44]. This is depicted on figure 3(a) which 

shows that a helical wavefront is induced only for the wavepacket whose propagation axis 

coincides with the SPP axis.

Consider a neutron wavepacket with nin = ℓin = 0 and which is centered on (ρ0, ϕ0):

Ψo = 1
πσ⊥

2 e−
ρ2 + ρ0

2 − 2ρρ0cos ϕ − ϕ0
2σ⊥

2 . (15)

After passing through an SPP which is centered at ρ = 0, the expectation value of OAM 

about the SPP axis is:

〈Lz〉 = ∫
0

∞
dρ∫

0

2π
dϕρ〈Ψo |USPP

†

−iℏ ∂
∂ϕ USPP Ψo = ℏq .

(16)
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Therefore all wavepackets in the output beam acquire a well defined mean OAM relative 

to the SPP axis. The width of the OAM distribution in this case is directly proportional to 

the momentum spread of the incoming wavepackets, 1/σ⊥. Such wavepackets are diffracted 

in the transverse direction, such that the induced external OAM relative to the SPP axis is 

independent of their location:

Lz = r × p = ρ0ℏk⊥ = ℏq, (17)

where k⊥= q/ρ0 is induced by the SPP (in figure 3(a) the diffraction direction is depicted 

with black arrows).

On the other hand, as shown in figure 3(b), the intrinsic OAM of a neutron wavepacket 

quickly vanishes as the the wavepacket’s propagation axis is displaced from the center of the 

SPP. The intrinsic OAM of the output beam has a Gaussian dependence to the displacement 

from the center of the SPP [45].

It is also possible to prepare a neutron lattice of spin-orbit states as described in the next 

section. In this case there is an array of OAM quantization axes and in each lattice cell 

there is a well defined OAM. However, the OAM of the total beam approaches zero as more 

lattice cells are included [46].

5. Lattices of spin-orbit states

For material studies there is a need for methods to generate lattices of neutron spin-

orbit states where the lattice constants are matched to the characteristic length scales of 

topological and chiral materials. We show how this may be achieved via a sequence of 

magnetic field gradients.

A lattice of optical spin-orbit states can be produced using sets of specially arranged 

birefringent prism pairs denoted as ‘LOV prism pairs’. This procedure was demonstrated 

for the polarization DOF of electromagnetic waves in [34]. Here, we consider the spin DOF 

of matter-waves.

The method to produce lattices of spin-orbit states is motivated by applying the Suzuki–

Trotter expansion to equation (10):

ei π
2ρc

xox − yσy = lim
N ∞

ei π
2ρcN xσxe−i π

2ρcN yσy
N

. (18)

We can see that N set of perpendicular linear magnetic gradients approximates the 

quadrupole operator. Choosing that the operators be independent of N, we define the linear 

magnetic gradient operator as

Uϕg, ϕm = e−i π
2ρc

xcosϕg + ysinϕg σxcosϕm + σysinϕm , (19)
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where ϕg (ϕm) indicates the gradient (magnetic field) direction in the x–y plane. For 

spin−1/2 particles one way to approximate the magnetic linear gradient operators is with 

magnetic prisms as shown in figure 1(d). These are matter-wave analogous of the LOV 

prism pairs introduced in [34]. The general LOV operator can be expressed as:

ULOV
N = (UϕgϕmUϕg ± π

2 , ϕm ± π
2

)N, (20)

and the corresponding beams with lattices of spin-orbit states are given by:

ΨLOV
N = (Uϕg, ϕmUϕg ± π

2 , ϕm ± π
2

)N Ψin . (21)

This process is shown in figure 1(d) for (Uπ, 0U π
2 , π

2
)2 and ∣Ψin〉 = |↑z〉, where the output 

beam is a lattice of spin-orbit states with ℓ↑ = 0 and ℓ↓ = −1. The orientations of the gradient 

operators give us the possibility of producing lattices of spin-orbit states with positive and 

negative values of OAM. For example, (U0, 0U π
2 , π

2
)2 applied to an incoming state of ∣Ψin〉 = 

|↑z〉 produces an output beam with a lattice of spin orbit states with ℓ↑ = 0 and ℓ↓ = 1. Note 

that this particular gradient sequence approximates the action of a monopole magnetic field 

geometry. Furthermore, we can obtain lattices of spin-orbit states with higher order OAM 

values by substituting the LOV operator, ULOV
N , in place of the quadrupole operators, UQ ρc , 

in equation (14).

Due to the periodic nature of the linear gradient operators, the spin-orbit states in these 

beams form a two-dimensional array with a lattice constant of

a = 2πvz
γn B tan(θ) , (22)

where |B| is the magnitude of the magnetic field and θ is the inclination angle of the LOV 

prism pairs. In figure 1(d) the phase and intensity profiles of the polarization state which is 

correlated with the OAM illustrate the lattice structure. The number of well defined intensity 

rings in a lattice cell is equal to N/2, where N is the number of LOV prism pairs. Therefore, 

N provides control over the mean radial quantum number n in the lattice cells [34].

6. Polarization geometries of spin-orbit states

Following the nomenclature of polarization correlated OAM states [47, 48], we classify 

neutron spin-orbit states according to their spin orientation profile. There are four categories 

of spin-orbit states with radially independent spin orientations as shown in figures 4(a)–(d). 

They are:

a. ‘cylindrically polarized states’ where the spin orientation is given by 

P = cos(β)ρ + sin(β)ϕ, where β is an arbitrary phase;
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b. ‘azimuthally polarized states’ which are a subset of cylindrically polarized states 

where P = ± ϕ;

c. ‘radially polarized states’ which are a subset of cylindrically polarized states 

where P = ± r ; and

d. ‘hybrid polarization states’ where P = sin(2ϕ + β)r + cos(2ϕ + β)ϕ, where β is an 

arbitrary phase.

The simplest method to generate any of those four states is to pass an appropriate input 

state into the magnetic SPP of q = ±1, as the four categories arise when Δℓ = ℓ↑ − ℓ↓= 

±1. The optical spin-orbit states with analogous polarization orientation geometries are not 

characterized by Δℓ = ± 1. This difference comes from the fact that on the Poincare sphere 

that describes optical polarization, any two antipodal points refer to orthogonal polarization 

directions; while on the Bloch sphere that describes the spin−1/2 state, any two antipodal 

points refer to anti-parallel spin directions.

We consider a spin-orbit state for which one orbital quantum number is zero and the other 

±1. When ℓ↑ = 0 the hybrid polarized states of figure 4(d) possess {ℓ↑ = 0, ℓ↓ = −1}, and the 

cylindrically polarized states possess {ℓ↑ = 0, ℓ↓ = 1}. All of the states with given {ℓ↑, ℓ↓} 

differ by a phase on the spin DOF. This phase can be directly varied by an external magnetic 

field along the spin quantization axis, Bz. For ℓ↓ = 0 the hybrid polarized states possess {ℓ↑ = 

1, ℓ↓ = 0} while the cylindrically polarized states possess {ℓ↑ = −1, ℓ↓ = 0}. Hence a π spin 

rotation around σ⊥ can be used to transform a state with hybrid polarization geometry into a 

state with cylindrical polarization geometry (and vice versa), but not to change Δℓ.

The preparation techniques shown in figure 1 can also produce spin-orbit states with radially 

dependent spin orientations. The main three categories are shown in figure 4: (e) quadrupole 

spin-orbit state; and two skyrmion-like states: (f) hedgehog and (g) spiral. The described 

rules for radially independent spin-orbit states also apply to these radially dependent spin-

orbit states. The quadrupole spin-orbit state is described by equation (12), while a lattice of 

any of these three categories of states can be obtained via an appropriate LOV prism pair 

combination.

7. Characterization of spin-orbit states

Generally speaking, determining a neutron beam’s OAM is relatively difficult due to the 

low flux and small spatial coherence length. One possible method is to prepare the OAM 

beam in one arm of an interferometer, which will yield an output beam that is a coherent 

superposition of the OAM beam and a reference beam carrying no OAM [5]. The 2D 

intensity profile of the output beam will possess a helical structure whose order of rotational 

symmetry quantifies the induced OAM. In principle, it would also be possible to verify 

the OAM of a neutron beam by transferring the OAM from the beam to an absorbing 

object or particle, which would then rotate around the OAM axis as a result. This would be 

analogous to the optical experiments [11–13], though the available low neutron fluxes make 

this experiment unpractical.
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The spin-orbit states described by equation (5) are characterized by two parameters of 

interest: Δℓ = ℓ↑ − ℓ↓ and the phase factor β. Here we describe two robust and relatively simple 

methods to determine those parameters. However, it is important to keep in mind that β will 

be varied by the background quantization magnetic field Bz.

7.1. Mapping the 2D intensity profile after spin mixing

The two paths of a Mach–Zehnder interferometer are isomorphic to a two-level quantum 

system such as the spin–1/2 DOF. Therefore after a mixing in the spin DOF, the spin 

dependent 2D intensity profiles will possess a helical structure which quantifies the 

induced OAM. For simplicity consider the spin-orbit state ΨmSPP
q  (equation (4)). The 

two-dimensional intensity, post-selected on a particular spin direction |s〉, is given by

I(x, y) = s ∣ ΨmSPP
q 2 . (23)

Without spin mixing, i.e. post-selecting on |↑z〉 or |↓z〉, the resulting 2D intensity profile is a 

Gaussian in both cases, which does not reveal any OAM structure.

To determine the induced OAM on the |↓z〉 component we would need to post-select on 

a perpendicular spin direction. The 2D intensity profiles projected onto |↑z〉, given by 

x ∣ ΨmSPP
q 2

, are shown in figure 5(a)) for magnetic SPPs with q = 1, 2, 3. These are 

identical to the expected profiles obtained via the interferometric measurement described 

above.

The order of rotational symmetry of the 2D intensity profiles is equal to |Δℓ| = |ℓ↑ − ℓ↓| = |q|. 

Applying a spin rotation along σz before the spin mixing effectively rotates the resulting 2D 

intensity profile. The direction of rotation determines the sign of q. The initial azimuthal 

offset determines β at the detector.

7.2. Mapping the 2D momentum distribution after spin mixing

Another method to characterize spin-orbit states is to measure their 2D momentum 

distribution. The 2D momentum distribution, post-selected on a particular spin direction 

|s〉, is given by

P kx, ky = ℱ s ∣ ΨmSPP
q 2, (24)

where ℱ  is the Fourier transform. If we apply spin filters along the spin eigenbasis of 

ΨmSPP
q , i.e. along |↑z〉 or |↓z〉, then the 2D momentum distribution of z ∣ ΨmSPP

q  would 

be a Gaussian profile indicative of the prepared incoming state carrying no OAM, and that of 

z ∣ ΨmSPP
q  would be a ring shape. However, the ring-shaped momentum distribution does 

not uniquely define an OAM beam; for example, it is possible to have a radially diverging 

beam which has a ring-shaped 2D momentum distribution.
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If we post-select on a perpendicular spin axis then the spin-orbit coupling breaks the 

symmetry of the 2D momentum distribution profile as shown in figure 5(b). Therefore we 

propose a method to characterize the spin orbit states by mapping out their 2D momentum 

distribution after spin filtering along a perpendicular spin axis.

In this method as well, the order of rotational symmetry of the 2D momentum profiles 

is equal to |Δℓ| = |ℓ↑ − ℓ↓| = |q|. Applying a spin rotation along σz before the spin mixing 

effectively rotates the resulting 2D momentum profile. The direction of rotation determines 

the sign of q. The initial azimuthal offset determines β at the detector.

Allowing a state to propagate into the far field, where the intensity profile is indicative of 

the momentum distribution profile, is not practical with the small neutron diffraction angles 

induced by the OAM. A more practical method is to use a diffracting crystal and obtain 

momentum projection curves which can then be used to reconstruct the 2D momentum 

distribution. A proposed experiment is shown in figure 6(a). A spin-orbit state is prepared 

by passing a coherent superposition of the two spin eigenstates through a magnetic SPP. 

The spin is then projected onto a perpendicular spin direction using a spin filter. A rotatable 

Bragg crystal enables a measurement of the momentum projected to the crystal plane 

direction. The two rotation angles ω and ζ effectively allow us to obtain the projections of 

the 2D momentum distribution along an arbitrary angle in the transverse plane, as shown in 

figure 6(b). A standard problem of medical imaging, obtaining the ‘backprojection image’ 

(2D momentum distribution) via the ‘sinogram’ (projection curves) is achieved with the 

inverse Radon transform [49]. Figure 6(b) shows the reconstructed image obtained via 36 

equally spaced projections. Note that because of the azimuthal symmetry of the spin-orbit 

state, rotating the spin filter of figure 6(a) by an angle ω and fixing the Bragg crystal 

orientation produces the same outcome as shown in figure 6(b).

These procedures work similarly if the spin-orbit state is created via any method depicted in 

figure 1. Note that other than the magnetic SPP, the other methods produce radial diffraction 

in addition to the azimuthal diffraction. However this does not change the described 

azimuthal asymmetry used to characterize the spin-orbit states. In fact, the asymmetry 

becomes even more pronounced. Therefore we proposed that an initial experiment be done 

with LOV prism pairs to maximize the use of the incoming beam flux and circumvent 

problems with small coherence lengths.

8. Conclusion

We have introduced and quantified new methods of preparing neutron spin-orbit states. 

This is a step towards general programming of the spin and quantum phase of neutron 

wavefronts, which addresses the fundamental limitations of neutron scattering and imaging 

techniques. For example, recent interest in complex topological and quantum materials [50, 

51] suggests a need for a tool with unique penetrating abilities and magnetic sensitivity. 

Analysis of material properties could be performed using a neutron spin-orbit lattice where 

the lattice constants are matched to the characteristic length scales of materials. The methods 

described here allow for the direct control of spin-orbit state parameters within a neutron 

beam. We have also proposed a method to characterize neutron spin-orbit states which 
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overcomes the main challenges associated with low neutron flux and the neutron’s small 

spatial coherence length.
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Figure 1. 
Four methods of producing neutron spin-orbit states. The phase and intensity profiles of the 

output states, post-selected on the spin state correlated to the OAM, are shown on the right. 

(a) An incoming neutron wavepacket in a coherent superposition of the two spin eigenstates 

passes through a magnetic SPP which is made out of a material with equal magnetic and 

nuclear scattering lengths, thereby inducing an azimuthally varying phase for only one 

spin state. (b) A spin-polarized neutron wavepacket passes through a quadrupole magnetic 

field which induces the spin-orbit state [18].After transversing the quadrupole field, the 

intensity profile of the spin state correlated to the OAM has a ring shape. (c) A sequence of 

quadrupoles with appropriate length and orientation acts as a BB1 pulse which increases the 

radii at which the spin and OAM are maximally entangled. (d) In analogy to the LOV prism 

pairs capable of generating lattices of optical spin-orbit states [34], a sequence of magnetic 

prisms can be used to approximate the quadrupole operator and produce a lattice of neutron 

spin-orbit states.
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Figure 2. 
Overlap, as a function of the radial coordinate ρ, between the maximally entangled spin-

orbit state ΨmSPP
q = − 1  and output states produced by the following methods: (red) the BB1 

sequence, |ΨBB1〉; (black) the quadrupole, |ΨQ〉; (blue) the N = 2 sets of LOV prism pairs,

ΨLOV
N = 2 ; (purple) the N = 1 sets of LOV prism pairs, ΨLOV

N = 1 . In each of these cases, ρc = 

1.82σ⊥. Each lattice cell of ΨLOV
N = 1  is shown to be a good approximation of |ΨQ〉, and the 

approximation is improved by reapplying the LOV operator. It is also shown that the |ΨBB1〉 
has a larger range of radii than |ΨQ〉 for which the spin and OAM are maximally entangled.
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Figure 3. 
(a) As the coherence length of the neutron wavepackets is much smaller than the beam 

diameter, we may differentiate between ‘extrinsic OAM’ calculated w.r.t. the SPP axis as 

the cross product of wavepacket’s position and its total linear momentum, and ‘intrinsic 

OAM’ which is associated with helical wavefronts [42, 43]. The black arrows on top of 

the wavepackets indicate the direction of the induced diffraction due to the SPP. (b) The 

probabilities of the n = 0, 1 and ℓ = 0, 1 states when a neutron wavepacket with no OAM 

nin = ℓin = 0 passes through an SPP with q = 1. The probabilities are calculated w.r.t. 
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the neutron’s propagation axis and they are plotted as a function of the rescaled distance 

from the center of the SPP, ρ0/σ⊥, where ρ0 is the distance between the SPP axis and the 

wavepacket’s propagation axis, and σ⊥ is the transverse coherence length of the wavepacket.
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Figure 4. 
The spin orientation (red arrows) of the spin-orbit states with a coupling between ℓ↑ = 

0 and ℓ↓ = ± 1, where the z axis points out of the page. In analogy to optical OAM 

terminology, we may classify four categories of spin-orbit states with radially independent 

spin orientations: (a) ‘cylindrically polarized states’ where the spin orientation is given 

by P = cos(β)r + sin(β)ϕ, where β is an arbitrary phase; (b) ‘azimuthally polarized states’ 

which are a subset of cylindrically polarized states where P = ± ϕ; (c) ‘radially polarized 

states’ which are a subset of cylindrically polarized states where P = ± r ; and (d) ‘hybrid 

polarization states’ where P = sin(2ϕ + β)r + cos(2ϕ + β)ϕ, where β is an arbitrary phase. 

Note that all of the states with a certain {ℓ↑, ℓ↓} differ by a phase on the spin DOF. The 

preparation techniques shown in figure 1 can also produce spin-orbit states with radially 

dependent spin orientations. The main three categories are: (e) quadrupole spin-orbit states 

as described by equation (12); (f) hedgehog skyrmion states; and (g) spiral skyrmion states. 

An array of any of these three states can be obtained via the appropriate LOV prism pair 

combination.
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Figure 5. 
The two parameters of spin-orbit states, β and Δℓ = ℓ↑ − ℓ↓ (see equation (5)), can be 

characterized by post-selecting on a perpendicular spin direction and obtaining: (a) the 2D 

intensity profile or (b) the 2D momentum distribution. The first two columns are for the 

state after a magnetic SPP with q = 1, the third column is for the state after a magnetic SPP 

with q = 2, and the last column is for the state after a magnetic SPP with q = 3. The order 

of rotational symmetry of the 2D intensity and momentum profiles is equal to |Δℓ| = |q| (as 

we set ℓ↓ = 0 for convenience). Applying a spin rotation along σz before the spin mixing 

effectively rotates the resulting 2D profiles. The direction of rotation determines the sign of 

q, and the initial azimuthal offset determines β at the detector.
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Figure 6. 
When post-selecting onto a perpendicular spin eigenbasis of a spin-orbit state the OAM 

manifests itself as an asymmetry in the 2D momentum distribution (see figure 5). (a) 

Proposed experiment to map out the 2D momentum distribution of a neutron spin-orbit 

state by measuring the momentum projections via a Bragg crystal. This allows for analysis 

of the beam’s OAM components by mapping out the momentum distribution. (b) We may 

assemble the momentum projections at each ω obtained by rotating the Bragg crystal around 

the crystal plane direction. The 2D momentum distribution is obtained from the projection 

curves via the inverse Radon transform. In the examples depicted we perform the inverse 

Radon transform on 36 equally spaced slices of ω ∈ [0°, 175°] and reconstruct the 2D 

momentum distribution.
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