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BACKGROUND: Recent studies suggest that associations
of ceramides (Cer) and sphingomyelins (SM) with
health outcomes differ according to the fatty acid acyl-
ated to the sphingoid backbone. The purpose of this
study was to assess associations of Cer and SM species
with mortality.

METHODS: The study population included participants
from the Cardiovascular Health Study (CHS), a
community-based cohort of adults aged �65 years
who were followed from 1992–2015 (n¼ 4612).
Associations of plasma Cer and SM species carrying
long-chain (i.e., 16:0) and very-long-chain (i.e., 20:0,
22:0, 24:0) saturated fatty acids with mortality were
assessed using Cox proportional hazards models.

RESULTS: During a median follow-up of 10.2 years,
4099 deaths occurred. High concentrations of Cer and
SM carrying fatty acid 16:0 were each associated with
an increased risk of mortality. Conversely, high concen-
trations of several ceramide and sphingomyelin species
carrying longer fatty acids were each associated with a
decreased risk of mortality. The hazard ratios for total
mortality per 2-fold difference in each Cer and SM spe-
cies were: 1.89 (95% CI), 1.65–2.17 for Cer-16, 0.79
(95% CI, 0.70–0.88) for Cer-22, 0.74 (95% CI, 0.65–
0.84) for Cer-24, 2.51 (95% CI, 2.01–3.14) for
SM-16, 0.68 (95% CI, 0.58–0.79) for SM-20, 0.57
(95% CI, 0.49–0.67) for SM-22, and 0.66 (0.57–0.75)
for SM-24. We found no association of Cer-20 with
risk of death.

CONCLUSIONS: Associations of Cer and SM with the risk
of death differ according to the length of their acylated
saturated fatty acid. Future studies are needed to explore
mechanisms underlying these relationships.

Introduction

There is considerable interest in the impact of circulat-
ing sphingolipid species on health outcomes. In particu-
lar, it is becoming increasingly apparent that ceramides
and sphingomyelins with different saturated fatty acids
have divergent biological activities, and that the associa-
tions of ceramides and sphingomyelins with health out-
comes differ by the fatty acid acylated to the sphingoid
backbone. In humans, high concentrations of circulat-
ing Cer-16 have been shown to be associated with devel-
opment of cardiovascular diseases (CVD) and major
adverse cardiac events (MACE), including mortality,
among healthy individuals (1, 2), individuals at high
risk for CVD (3), and individuals with underlying CVD
(4–8). Whether circulating concentrations of ceramides
carrying longer-chain fatty acids (i.e., Cer-20, Cer-22,
and Cer-24) are associated with MACE is less clear;
some studies report that high circulating concentrations
of Cer-20, Cer-22, and Cer-24 are associated with an
increased risk of MACE (3), while other studies report a
decreased risk (2, 8), or no association (5, 6, 9). To our
knowledge, no published studies have assessed whether
sphingomyelins carrying long-chain (i.e., SM-16) or
very-long-chain saturated (i.e., SM-20, SM-22, SM-24)
fatty acids are associated with total or cause-specific
mortality.

So far, most studies that have examined associations
of ceramides with mortality have focused exclusively on
populations with prevalent CVD (4–6, 8, 9) or at high
risk of CVD (3), or they have only reported associations
of sphingolipid species with composite endpoints (i.e., a
combination of fatal and nonfatal cardiovascular-related
outcomes) (1, 3–5, 9)—making it challenging to tease
out the associations of circulating sphingolipids with
risk of death in the general population. Further, few
studies have assessed associations of sphingomyelin
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species with mortality. As sphingomyelins can generate
ceramides through sphingomyelinases (10), better un-
derstanding as to whether ceramide and sphingomyelin
species exhibit similar associations with risk of death
may provide insights into biological mechanisms that
may explain the impact of sphingolipids on health
outcomes.

To our knowledge, no published community-based
studies that have examined associations of ceramide
species with risk of death have focused exclusively on an
elderly population (1, 2). As biological function deterio-
rates with aging and senescence, it is unclear whether
findings from younger populations are generalizable to
the elderly, and more studies are needed to better under-
stand this relationship.

The purpose of this paper was to examine the asso-
ciations of 4 plasma ceramides and 4 sphingomyelin
species concentrations with the risk of mortality among
older adults who participated in the Cardiovascular
Health Study (CHS), a large community-based prospec-
tive cohort study.

Materials and Methods

DESIGN AND POPULATION

The CHS is a prospective cohort study of CVD and its
risk factors among older adults (�65 years) from 4 com-
munities in the USA (Forsyth County, NC; Sacramento
County, CA; Washington County, MD; Allegheny
County, PA). Details on the design of the study are
described in detail elsewhere (11). In brief, noninstitu-
tionalized adults aged �65 years from each participating
community were randomly selected and recruited to the
study using Medicare beneficiary lists. In total, 5201
participants enrolled in the study in 1989–1990, and
687 participants (predominantly black) enrolled in
1992–1993. Written informed consent was obtained for
all study participants.

Plasma ceramide and sphingomyelin species were
measured for 4026 participants using plasma specimens
from the 1994–1995 clinic visit and 586 participants
(without available plasma specimens from the 1994–
1995 clinic visit) using specimens from the 1992–1993
clinic visit. All 4612 participants with available sphingo-
lipid data were included in this report.

DATA COLLECTION

Participants underwent study examinations once per
year for the first 10 years of the study and then com-
pleted telephone surveys twice a year thereafter. Each
study examination included a standardized interview to
assess education, medical history, current medication
use, smoking status, alcohol use, physical activity
(usual walking habits, gait speed, and distance walked),

activities of daily living (i.e., ability to perform routine
self-care tasks, such as eating, bathing, toileting), and
self-reported health status; a physical exam to assess
weight, waist circumference, height, and blood pressure
using standardized methods (11, 12); and a complete
laboratory work-up (11, 12). Blood samples were col-
lected after a 12-hour overnight fast and stored at
�70 �C.

SPHINGOLIPID MEASUREMENT

Ceramide and sphingomyelin species were measured
using fasting EDTA-plasma samples collected in
1992–1993 or 1994–1995 and stored at �70 �C until
extraction. This hypothesis-driven analysis focuses on 8
species of interest: 4 ceramide species (i.e., Cer-16, Cer-
20, Cer-22, and a composite concentration of Cer-24
computed as the sum of the concentrations of 2 species
of ceramides with 24:0 having the distinct “d181” and
“d182” sphingoid backbones) and 4 sphingomyelin spe-
cies (i.e., SM-16, SM-20, SM-22, SM-24). The detailed
methodology and quality control procedures for the
sphingolipid measurement have been reported previ-
ously (13, 14). Plasma lipids were extracted and sphin-
golipids quantified by liquid chromatography-tandem
mass spectrometry at the University of Washington
(Seattle, WA). Concentrations of ceramide and sphingo-
myelin species (expressed as mmol/L) were quantified as
previously described using a single point calibrator
added to each batch in 5 replicates. Coefficients of
variation over 52 batches from an independent QC pool
of EDTA plasma run in duplicate in each batch were
<20% for the 8 sphingolipids of interest.

MORTALITY ASSESSMENT

Deaths were adjudicated by a centralized CHS events
committee based on information from medical records,
laboratory/diagnostic reports, death certificates, and/or
interviews with next of kin. Details of CHS methods for
surveillance and disease classification have been reported
in detail previously (11, 15). We were most interested
in the relationship of each sphingolipid with total
mortality (primary analyses). In secondary analyses, we
assessed the relationship of each sphingolipid with CVD
mortality and non-CVD mortality. In exploratory analy-
ses, we further subclassified CVD mortality as deaths
from coronary heart disease (CHD), and non-CVD
mortality as deaths from cancer, dementia, infections, or
respiratory diseases; these subclassifications were mutu-
ally exclusive.

STATISTICAL ANALYSES

Sphingolipid species concentrations were log (base 2)
transformed due to skewness. Cox proportional hazards
regression was used to examine the associations of levels
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of each circulating sphingolipid species with total and
cause-specific mortality with entry at the time of the
sphingolipid measurement and time-at-risk until death
or the latest adjudicated date of follow-up (i.e., time
scale is from time of sphingolipid measurement).
Observed associations were quantified using hazard ra-
tios (HRs) for death per 2-fold difference in sphingoli-
pid species concentration. A Bonferroni correction was
used to adjust for multiple comparisons; the significance
threshold of 0.006 (0.05/8 sphingolipid species) was
used. Schoenfeld residuals were reviewed to evaluate the
proportional hazards assumption for each sphingolipid
of interest (16).

Three levels of adjustment were used to examine
associations of sphingolipids with risk of death. The first
model (minimally adjusted model) included age, sex,
race (black vs other), and enrollment site (Bowman
Grey, Davis, Hopkins, Pittsburg). The second model
(multivariate-adjusted model) additionally adjusted for
education (no high school, high school/vocational
school, college), smoking (yes/no), alcohol use (1 or
more drink/week: yes/no), physical activity (linear),
body mass index (BMI) (linear), low-density lipoprotein
(LDL) cholesterol (linear), high-density lipoprotein
(HDL) cholesterol (linear), triglycerides (linear,
log-transformed), systolic blood pressure (linear), use of
hypertension or lipid-lowering drugs (yes/no), self-
reported health status (excellent/very good/good vs fair/
poor), instrumental activities of daily living (2 or more
vs 0/1), prevalent CVD (yes/no), and prevalent diabetes
(yes/no). The third model (fully adjusted model) addi-
tionally adjusted for one of the other sphingolipid spe-
cies: analyses of Cer-20, Cer-22, or Cer-24 included
Cer-16; analyses of SM-20, SM-22, or SM-24 included
SM-16; analyses of Cer-16 included Cer-22; analyses of
SM-16 included SM-22. In sensitivity analyses, we fur-
ther adjusted for C-reactive protein concentrations
(linear) or prevalent heart failure (HF) (yes/no) to better
understand if inflammation influenced observed associa-
tions. As it is possible that dietary intake of foods and
nutrients known to impact circulating concentrations of
long-chain or very-long-chain saturated fatty acids may
also impact concentrations of specific sphingolipid spe-
cies (17–23), we ran a sensitivity analysis that further
adjusted for dietary intake of fruits and vegetables, total
meat, saturated fat, carbohydrates, and total calories.

All covariates were assessed at the time of the sphin-
golipid measurement. As we found departure from the
proportional hazards assumption for analyses of Cer-16,
Cer-22, and all sphingomyelin species of interest with
total mortality, we also conducted sensitivity analyses
stratified by 5-year increment of survival time.

We examined potential interactions of each sphin-
golipid of interest with age, sex, race (black or other),
BMI, and prevalent HF at the time of the sphingolipid

measure since these factors may modify the associations
of sphingolipids with risk of death. Likelihood ratio tests
were used to evaluate the statistical significance of the
multiplicative interaction term for each factor with each
sphingolipid of interest modeled using covariates for the
fully adjusted model (model 3) as described before.
A Bonferroni correction was used to adjust for multiple
interaction analyses; the significance threshold of 0.001
(0.05/40 based on 8 sphingolipids and 5 interactions)
was used.

Missing values of education (n¼ 10), smoking
(n¼ 50), alcohol consumption (n¼ 5), physical activity
(n¼ 52), instrumental activities of daily living (n¼ 17),
self-reported health status (n¼ 3), BMI (n¼ 8), LDL
(n¼ 280), HDL (n¼ 203), triglycerides (n¼ 194), hy-
pertension (n¼ 2) or lipid-lowering (n¼ 2) medication
use, systolic blood pressure (n¼ 3), and C-reactive pro-
tein (n¼ 255) were multiply imputed with chained
equations using information on age, sex, race, and prev-
alent diabetes. Twenty imputed datasets were generated
and model fitting results were pooled using standard
methods (24).

All statistical analyses were conducted using
STATA v.16.0 (Stata Corp, College Station, TX).

Results

The distributions (mean, range) of circulating concen-
trations of sphingolipids species are shown in Table 1.
Demographic and cardio-metabolic characteristics of
study participants in general [mean (SD)] and according
to quartile of sphingolipid species of interest are shown
in Fig. 1 and Fig. 1 in the online Data Supplement.
At baseline, the mean age of study participants was
77 6 5 years, 59% were female, 84% were white, and

Table 1. Concentrations (mM) of plasma sphingolipid
species carrying different saturated fatty acids.

Sphingolipid Mean Range

Cer-16 0.27 0.09–0.91

Cer-20 0.08 0.01–0.25

Cer-22 0.62 0.18–1.90

Cer-24 4.48 1.55–9.98

SM-16 125.2 48.9–227.1

SM-20 17.7 6.19–36.4

SM-22 26.6 9.60–63.2

SM-24 14.3 4.59–33.2

Abbreviations: Cer-16, Cer-20, Cer-22, and Cer-24: ceramides with palmitic,
arachidic, behenic, and lignoceric acid, respectively; SM-16, SM-20, SM-22-, and
SM-24: sphingomyelins with palmitic, arachidic, behenic, and lignoceric acid,
respectively.
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30% had prevalent CVD. Some baseline characteristics
of study participants were consistent across quartiles of
all sphingolipid species of interest, while others differed
across individual sphingolipid species. For instance,
participants with high concentrations of each species
(i.e., Cer-16, Cer-20, Cer-22, Cer-24, SM-16, SM-20,
SM-22, SM-24) had higher levels of systolic blood
pressure and LDL cholesterol, and were more likely to
report current smoking than participants with low circu-
lating concentrations of each sphingolipid species. On
the other hand, participants with higher circulating con-
centrations of ceramide species had lower HDL choles-
terol, while those with higher circulating concentrations
of sphingomyelin species had higher concentrations of
HDL cholesterol. Participants with high concentrations
of Cer-16 and Cer-20 were more likely to have preva-
lent CVD than participants with low concentrations of
those ceramides, while participants with high concentra-
tions of SM-20, SM-22, and SM-24 were less likely
to have prevalent CVD than participants with low
concentrations of those sphingomyelins. There were no

observed associations of Cer-22, Cer-24, or SM-16 with
prevalent CVD.

During a median follow-up time of 10.2 years (range
0–23 years), there were 4099 deaths. Higher
concentrations of circulating Cer-16 and SM-16 were
each associated with a higher risk of death after adjust-
ment for age, sex, self-reported race, geographic area,
education, smoking, alcohol use, BMI, activities of daily
living, HDL and LDL cholesterol, triglycerides, systolic
blood pressure, physical activity, use of hypertension or
lipid-lowering drugs, self-reported health status, prevalent
diabetes, CVD, and Cer-22 or SM-22, respectively
(Table 2, Fig. 2). In the other direction, higher concen-
trations of Cer-22, Cer-24, SM-20, SM-22, and SM-24
were each associated with a lower risk of mortality
(Table 2, Fig. 2). Cer-20 was not found to be associated
with risk of death. Associations appeared generally similar
when analyses were repeated using CVD or non-CVD
mortality as outcomes of interest (Table 2, Fig. 2).

In exploratory analyses, we assessed the relationship
of each sphingolipid of interest with subtypes of CVD

Fig. 1. Baseline characteristics of study participants according to quartiles of select ceramide and sphingomyelin species. The *
denotes variables only measured at the exam in 1992–1993. To convert HDL and LDL cholesterol concentrations to mmol/L
multiply by 0.0259. To convert triglycerides concentration to mmol/L, multiply by 0.0113. † indicates a significant inverse asso-
ciation and ‡ indicates a significant positive association based on a Bonferroni-corrected p-value of 0.05/20¼0.0025 (based on
20 baseline characteristics of interest).
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and non-CVD mortality, including deaths related to
CHD, cancer, dementia, infections, and respiratory
diseases. In the CHS, CHD and cancer were the most
common causes of death; CHD accounted for 23% of
deaths and cancer accounted for 19% of deaths.
Associations of the sphingolipids of interest with death
from CHD and cancer were similar to the findings
reported for total, CVD, and non-CVD morality, al-
though associations with Cer-22 and Cer-24 did not

reach statistical significance for deaths due to cancer
(Supplemental Table 1). Likewise, the HRs for deaths
from dementia, respiratory illness, and infections were
similar to those for total, CVD, and non-CVD mortal-
ity for most sphingolipids, although several associations
did not reach statistical significance, possibly due to lim-
ited power (Supplemental Table 2).

There were no statistically significant interactions
between the sphingolipid species and age, sex, race,

Table 2. Hazard ratios (95% CI) for associations of circulating ceramides and sphingomyelins carrying saturated fatty acids
with mortalitya.

Model 1 Model 2 Model 3

Total mortality

Cer-16 1.68 (1.52, 1.85) 1.61 (1.44, 1.80) 1.89 (1.65, 2.17)

Cer-20 1.18 (1.10, 1.27) 1.15 (1.06, 1.24) 0.98 (0.90, 1.07)

Cer-22 1.08 (1.00, 1.17) 1.05 (0.95, 1.15) 0.79 (0.70, 0.88)

Cer-24 1.03 (0.94, 1.13) 1.03 (0.92, 1.15) 0.74 (0.65, 0.84)

SM-16 1.36 (1.17, 1.59) 1.60 (1.34, 1.92) 2.51 (2.01, 3.14)

SM-20 0.76 (0.68, 0.85) 0.84 (0.73, 0.96) 0.68 (0.58, 0.79)

SM-22 0.76 (0.68, 0.84) 0.80 (0.71, 0.91) 0.57 (0.49, 0.67)

SM-24 0.77 (0.70, 0.84) 0.84 (0.75, 0.94) 0.66 (0.57, 0.75)

CVD mortality

Cer-16 1.65 (1.31, 2.07) 1.56 (1.22, 1.99) 2.20 (1.64, 2.96)

Cer-20 1.26 (1.08, 1.46) 1.17 (0.99, 1.38) 1.02 (0.85, 1.23)

Cer-22 1.01 (0.85, 1.20) 0.86 (0.71, 1.04) 0.60 (0.48, 0.76)

Cer-24 1.00 (0.81, 1.23) 0.86 (0.69, 1.08) 0.60 (0.46, 0.79)

SM-16 1.21 (0.87, 1.69) 1.33 (0.90, 1.98) 2.21 (1.38, 3.54)

SM-20 0.82 (0.64, 1.04) 0.82 (0.63, 1.08) 0.71 (0.52, 0.97)

SM-22 0.77 (0.61, 0.96) 0.71 (0.56, 0.91) 0.53 (0.40, 0.72)

SM-24 0.78 (0.64, 0.96) 0.78 (0.63, 0.97) 0.64 (0.50, 0.83)

Non-CVD mortality

Cer-16 1.59 (1.39, 1.80) 1.64 (1.42, 1.89) 1.84 (1.55, 2.17)

Cer-20 1.11 (1.02, 1.21) 1.14 (1.04, 1.26) 0.97 (0.87, 1.09)

Cer-22 1.04 (0.95, 1.15) 1.11 (0.98, 1.24) 0.84 (0.73, 0.97)

Cer-24 0.99 (0.88, 1.12) 1.08 (0.94, 1.24) 0.79 (0.67, 0.93)

SM-16 1.40 (1.15, 1.70) 1.68 (1.33, 2.11) 2.72 (2.07, 3.57)

SM-20 0.74 (0.64, 0.86) 0.84 (0.71, 0.99) 0.67 (0.56, 0.81)

SM-22 0.72 (0.63, 0.83) 0.79 (0.68, 0.92) 0.55 (0.46, 0.66)

SM-24 0.76 (0.67, 0.85) 0.82 (0.72, 0.94) 0.63 (0.54, 0.73)

aHazard ratios (95% CI) for mortality per 2-fold difference in sphingolipid species concentration.
Model 1 adjusted for age, sex, race, and enrollment site. Model 2 additionally adjusted for education, smoking, alcohol use, physical activity, BMI, LDL cholesterol, HDL choles-
terol, triglycerides, systolic blood pressure, use of hypertension medications, use of cholesterol-lowering medications, self-reported health status, activities of daily living, preva-
lent cardiovascular disease, and prevalent diabetes. Model 3 additionally adjusted for one of the other sphingolipid species: exposures Cer-20, Cer-22, and Cer-24 adjusted for
Cer-16; exposure Cer-16 adjusted for Cer-22; exposures SM-20, SM-22, and SM-24 adjusted for SM-16; exposure SM-16 adjusted for SM-22. Abbreviations: Cer-16, Cer-20,
Cer-22, Cer-24: ceramides with palmitic, arachidic, behenic, lignoceric acid respectively; CVD, cardiovascular diseases; SM-16, SM-20, SM-22-, SM-24: sphingomyelins with pal-
mitic, arachidic, behenic, lignoceric acid, respectively.

1654 Clinical Chemistry 67:12 (2021)

https://academic.oup.com/clinchem/article-lookup/doi/10.1093/clinchem/hvab182#supplementary-data
https://academic.oup.com/clinchem/article-lookup/doi/10.1093/clinchem/hvab182#supplementary-data


BMI, or HF at baseline when assessing risk of total mor-
tality after correcting for multiple-testing (smallest P for
interaction¼ 0.004). Sensitivity analyses that further
adjusted for C-reactive protein concentrations, prevalent
HF, or dietary intake of fruits and vegetables, total
meat, saturated fat, carbohydrates, and total calories pro-
duced similar results (data not shown). Sensitivity analy-
ses stratified by survival time indicated that the
magnitude of associations of ceramides and sphingo-
myelins with mortality risk were strongest in the 5-year
period closest to the sphingolipid measurement, and
moved toward the null throughout the follow-up pe-
riod—with results not achieving statistical significance
in the strata of survival time 10 or more years post the
sphingolipid measurement (data not shown).

Discussion

In this large, community-based cohort study among
older adults, high concentrations of circulating ceram-
ides and sphingomyelins carrying fatty acids 16:0
(i.e., Cer-16 and SM-16) were each associated with an
increased risk of death. On the other hand, high

concentrations of circulating ceramides and sphingo-
myelins carrying longer-chain fatty acids (i.e., Cer-22,
Cer-24, SM-20, SM-22, SM-24) were each associated
with a decreased risk of death. These findings suggest
that relationships of circulating ceramides and sphingo-
myelins with risk of death differ by the length of the at-
tached acylated saturated fatty acid.

Mechanisms that may explain observed associations
are not fully understood. Ceramides and sphingo-
myelins are involved in multiple biological activities,
including apoptosis (25, 26), inflammation (27), athero-
sclerosis (28–30), immune response (31), oxidative
stress (27), mitochondrial dysfunction (32–36), and in-
sulin resistance (37, 38), and the observed associations
could be due to biological collectivity across multiple
pathways. Results from studies in worm and mouse
models suggest divergent associations of long-chain ver-
sus very-long-chain ceramides with apoptosis; Cer-16
induces apoptosis, while Cer-20 and Cer-22 protect
against apoptosis (25, 26). Studies in multiple cell types
(i.e., human fibroblasts, human leukemic cell lines) and
organisms (i.e., yeast, worms, flies, mice) also suggest
that sphingolipids are involved in regulating lifespan—
although published studies have primarily focused on
total sphingolipids rather than specific sphingolipid spe-
cies (31). In yeast and worms, global inhibition of de
novo sphingolipid synthesis by downregulating serine
palmitoyltransferase, a key enzyme in sphingolipid me-
tabolism, increased lifespan (7, 39). High concentra-
tions of several sphingolipid species, particularly Cer-16,
have been shown to stimulate chronic cellular senes-
cence in adipocytes, hepatocytes, and myoblasts, which
has unfavorable effects on cardio-metabolic and immune
function, and longevity (31). High concentrations total
plasma ceramides and sphingomyelin have also been
shown to be associated with atherosclerosis in humans
(28–30), with the likely mechanism being that over-
accumulation of lipids in nonadipose compartments
trigger ceramide synthesis and apoptosis (28).
Additionally, high concentrations of Cer-16 have been
shown to decrease T-cell proliferation and impair im-
mune response and risk of mortality in rodents (31).
High concentrations of total circulating ceramides have
also been shown to trigger the synthesis of amyloid b-
peptide in a human neuroglioma cell line—and amyloid
b-peptide may increase risk of Alzheimer’s disease and
subsequent mortality; inhibition of sphingomyelinases,
a hydrolase enzyme that is involved in sphingolipid me-
tabolism, has been shown to prevent Alzheimer’s disease
(31). Although these studies point to relationships of
circulating sphingolipid concentrations and longevity,
more work is needed to better understand the influences
of individual sphingolipid species on risk of death.

Our results show HRs that are strikingly similar in
magnitude for ceramides and sphingomyelins carrying

Fig. 2. Hazard ratios (95% CI) for associations of circulating
ceramides and sphingomyelins carrying saturated fatty
acids with mortality.
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the same fatty acid. This suggests that the length of the
acylated saturated fatty acid (i.e., 16:0 20:0, 22:0, and
24:0) attached to the ceramide or sphingomyelin may
be driving observed associations. Previous work has
shown that sphingomyelins can generate ceramides
through sphingomyelinases, and the type of saturated
fatty acid bound to sphingomyelin is maintained in the
ceramide throughout this process (10). In CHS, similar
associations of ceramides and sphingomyelins carrying
the same fatty acids were also observed for incident HF
and incident atrial fibrillation; high concentrations of
Cer-16 and SM-16 were associated with increased risks
of atrial fibrillation and HF (14, 40), while high concen-
trations of circulating Cer-20, Cer-22, Cer-24, SM-20,
SM-22, and SM-24 were associated with decreased risk
of atrial fibrillation, and Cer-22, SM-20, SM-22, and
SM-24 were associated with decreased risk of HF (14,
40). This supports the hypothesis that specific sphingo-
myelin species affect risk of cardiovascular-related mor-
bidity and mortality through biological processes in the
generated ceramide (14, 40).

Most of the previous studies that assessed the rela-
tionships of sphingolipid species with mortality in
humans focused primarily on populations with underly-
ing CVD (4–6, 8, 9) and/or used composite endpoints
that included not only death, but also major cardiovas-
cular events (3–6, 9). These studies consistently report
that Cer-16 is positively associated with cardiovascular-
related morbidity and mortality in individuals with un-
derlying cardiovascular diseases, while ceramides with
longer-chain fatty acids show no association with these
adverse outcomes in these populations. Three
community-based studies have assessed the relationship
of various sphingolipid species with risk of death (or a
composite end point that included death) in healthy
populations (1, 2, 40). In a large population-based study
that assessed the relationships of Cer-16 and Cer-24
with fatal major adverse cardiovascular events, high cir-
culating concentrations of Cer-16 (but Cer-24) were
positively associated with fatal MACE, but only among
participants who had experienced a previous cardiovas-
cular event. Among participants who did not experience
a cardiovascular event during follow-up, only the ratio
of Cer-18/Cer-24 (but no individual sphingolipid spe-
cies) was positively associated with fatal incident MACE
(1). In contrast, a separate study reported that high cir-
culating concentrations of Cer-16, Cer-22, and Cer-24
were each associated with an increased risk of a compos-
ite end point that included nonfatal acute myocardial
infarction, nonfatal stroke, or cardiovascular-related
death in a population of middle-aged or older adults at
high risk of CVD (3). Differences in findings from these
studies are difficult to explain but may reflect underlying
differences in the study populations. Alternatively, the
high correlation between ceramide species with lack of

mutual adjustment for the different species in published
studies may explain reported findings of similar associa-
tions across ceramide species.

To our knowledge, only one population-based
study that combined data from 2 major cohort studies
(i.e., Framingham Heart Study and the Study of Health
in Pomerania) examined associations of specific cer-
amide species with mortality (CVD and non-CVD mor-
tality) that was not part of a composite end point.
Results indicated that ceramides containing 16:0 were
associated with a 32% higher risk of total mortality (per
0.045 lg/mL increase in circulating concentrations),
while ceramides containing 24:0 were associated with a
21% lower risk of total mortality (per 0.65 lg/mL in-
crease in circulating concentrations); results were similar
for the outcomes CVD morality and non-CVD mortal-
ity (2). These findings are consistent with results
reported herein—and show different directions of asso-
ciations of Cer-16 and Cer-24 with total mortality,
CVD-related mortality, and non-CVD-related mortal-
ity. Our work extends these findings, indicating that cir-
culating sphingomyelins are also associated with risk of
mortality—with divergent associations of SM-16 versus
SM-20, SM-22, and SM-24.

Many published studies designed to assess associations
of ceramides with MACE or mortality focus largely on cer-
amide ratios (e.g., Cer-22/Cer-16, Cer-24/Cer-16) or cer-
amide risk scores as primary endpoints (2, 3, 5, 8, 9).
However, modeling ratios of ceramides is tied to the un-
derlying assumption that the magnitude of higher concen-
trations of the ceramides carrying the very-long-chain
saturated fatty acid (e.g., Cer-22 or Cer-24) is equivalent
to lower concentrations of Cer-16 on the ratio scale. Our
work expands these findings—and suggest independent
associations of specific ceramide and sphingomyelin species
with risk of mortality; high circulating concentrations of
Cer-16 and SM-16 are associated with an increased risk of
mortality, while high circulating concentrations of Cer-22,
Cer-24, SM-20, SM-22, and SM-24 are associated with a
decreased risk of mortality.

Although there is a growing body of evidence that
suggests associations of sphingolipid species with health
outcomes, the utility of this information to inform clini-
cal care is in its infancy (41). However, a growing body
of literature suggests that sphingolipids may be modifi-
able through diet and drug therapies. In particular, in-
tervention studies suggest that consuming a healthy diet
high in fruits and vegetables, whole grains, low-fat dairy
products, lean meats, and vegetable oil reduced plasma
concentrations of Cer-22 and Cer-24:0 (42).
Consuming a healthy diet may also negate the negative
effects of ceramides on CVD risk (3). Other known
therapies include drug therapy; a 14 day regimen of
40 mg of simvastatin reduced ceramides (i.e., Cer-16,
Cer-18, Cer-20, and Cer-24) by approximately 25% in
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pre-/posttesting (43). Gastric bypass surgery among
individuals with obesity has also been shown to lower
concentrations of total circulating ceramides—and these
effects were sustained for 6 months postoperatively (44).
Although most of these studies are small (n< 50)—
results suggest that ceramides may be modifiable by
existing therapies. These studies also highlight the po-
tential utility for measuring ceramides in the clinical set-
ting in the future.

Although sphingolipids are not typically measured
in the clinical setting, recent studies suggest that a risk
score that includes ceramide and phosphatidylcholine
(PC) species (i.e., ratio of Cer 24:1/Cer 24:0; ratio of
Cer 18:0/PC 14:0/22:6; ratio of Cer 16:0/PC 16:0/
22:5, and PC 16:0/16:0 s) predict risk of death in
subjects with acute cardiac conditions (45, 46). Further,
although ceramides and PCs are derived from distinct
biosynthetic pathways (45, 47), combining ceramide
and PC ratios in a risk score increased prediction of fu-
ture cardiac events and death than using a risk score that
comprised ceramide species alone (45). These findings
demonstrate utility of assessing circulating ceramides
(and PCs) in identifying subjects at high risk of recur-
rent coronary events and/or death in populations with
underlying cardiac morbidity (45, 46).

This study has several strengths. CHS is a large cohort
study of CVD and its risk factors in a population of older
adults who reside in the USA. Assessing associations of cir-
culating sphingolipids and risk of death in a large elderly
population—a population with a high event rate—maxi-
mized study power. The sampling design, particularly the
random-sampling of eligible adults from Medicare eligibil-
ity lists, and the standardized data collection methods
utilized in the study reduced the likelihood of selection
and recall biases. Finally, the availability of detailed data on
a wide variety of demographic, behavioral, and health
factors collected at the in-person examinations optimized
the ability to control for potential confounders.

This study is not without limitations. Frozen samples
collected in 1992–1993 or 1994–1995 were used to mea-
sure ceramide and sphingomyelin species, and ceramides
and sphingomyelins carrying unsaturated acylated fatty
acids were not measured as part of the study. Although is
possible that long-term storage of samples may have
impacted sphingolipid concentrations, any alterations in
sphingolipid composition due to storage would be
expected to be nondifferential (i.e., bias toward null)
between those who die and those who do not during
follow-up. Several demographic, behavioral, and clinical
factors were assessed as potential confounders when exam-
ining the associations of the sphingolipids with mortality,
but we cannot rule out residual confounding by unmeas-
ured or imprecisely measured factors. Finally, as the CHS
participants were on average 77 years of age at the time of

sphingolipid measurement, it is unclear if the findings are
generalizable to younger populations.

In conclusion, these findings suggest that plasma
ceramides and sphingomyelins with different saturated
fatty acids have divergent biological activities, and that
the associations of ceramides and sphingomyelins with
risk of death differ by acylated saturated fatty acid length
in an older population. This work supports the need for
future studies to better understand whether behavioral
and drug therapies may affect specific species of plasma
ceramides and sphingomyelins.

Data sharing: The data that support the findings
of this study are part of the CHS. The CHS welcomes
collaboration, and to receive access to the data, inter-
ested investigators must submit a manuscript proposal
to be reviewed and approved by the CHS Presentations
and Publications Committee. Details can be found at:
https://chs-nhlbi.org.
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