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ABSTRACT

The search for new antiobesogenic agents is increasing because of the current obesity pandemic. Capsaicin (Caps), an exogenous agonist of the
vanilloid receptor of transient potential type 1 (TRPV1), has shown promising results in the treatment of obesity. This scoping review aims to verify
the pathways mediating the effects of Caps in obesity and the different methods adopted to identify these pathways. The search was carried out
using data from the EMBASE, MEDLINE (PubMed), Web of Science, and SCOPUS databases. Studies considered eligible evaluated the mechanisms
of action of Caps in obesity models or cell types involved in obesity. Nine studies were included and 100% (n = 6) of the in vivo studies showed a
high risk of bias. Of the 9 studies, 66.6% (n = 6) administered Caps orally in the diet and 55.5% (n = 5) used a concentration of Caps of 0.01% in the
diet. In vitro, the most tested concentration was 1 μM (88.9%; n = 8). Capsazepine was the antagonist chosen by 66.6% (n = 6) of the studies. Seven
studies (77.8%) linked the antiobesogenic effects of Caps to TRPV1 activation and 3 (33.3%) indicated peroxisome proliferator-activated receptor
(PPAR) involvement as an upstream connection to TRPV1, rather than a direct metabolic target of Caps. The main secondary effects of Caps were
lower weight gain (33.3%; n = 3) or loss (22.2%; n = 2), greater improvement in lipid profile (33.3%; n = 3), lower white adipocyte adipogenesis
(33.3%; n = 3), browning process activation (44.4%; n = 4), and higher brown adipocyte activity (33.3%; n = 3) compared with those of the control
treatment. Some studies have shown that PPAR agonists modulate TRPV1 activity, and no study has evaluated the simultaneous antagonism of
these 2 receptors. Consequently, further studies are necessary to elucidate the role of each of these signaling molecules in the antiobesogenic
effects of Caps. Adv Nutr 2021;12:2232–2243.

Statement of Significance: Some narrative reviews have addressed the antiobesity effects of capsaicin. However, no study has systematically
reviewed the literature on the mechanism and pathways of such antiobesogenic actions.
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Introduction
Obesity is a chronic metabolic disorder associated with
excessive adiposity (1–3). The global prevalence of obesity
is >13% of the adult population and ∼40 million children
<5 y of age were overweight or obese in 2018 (4). Currently,
overweight and obesity lead to more deaths than low weight
and undernutrition (3). Obesity is a multifactorial disease
that includes genetic, dietary, and environmental factors
(5). Obesity is associated with comorbidities (6), including
type 2 diabetes (7, 8), dyslipidemia (9), systemic arterial
hypertension (10, 11), other cardiovascular diseases (12, 13)
and cancer (14, 15). Moreover, obesity is associated with an

increase in deaths from all causes (16–18), mainly cancer and
cardiovascular diseases (19–21).

Therapeutic strategies for obesity are based on lifestyle
changes such as avoiding a sedentary lifestyle and adopting
balanced diets. Nonetheless, approaches that induce ther-
mogenesis and satiety or reduce food absorption could be
used as adjuvant tools in the treatment of obesity (22).
Thus, active compounds of natural products have been
tested (23–25), including 8-methyl-N-vanilil-6-nonenamide
[capsaicin (Caps)], the main capsaicinoid of Capsicum
peppers, which has shown positive antiobesogenic effects in
clinical, experimental, and cell lineage studies (26–28). Caps
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is an exogenous agonist of the transient receptor potential
cation channel subfamily V member 1 (TRPV1) that acts
on obesity by controlling the appetite (29, 30), increasing
fat oxidation, reducing adipogenesis (31–33), and inducing
thermogenesis (34–36). Moreover, Caps has also been related
to improvement in the intestinal microbiota profile and SCFA
production (37, 38).

Although the effects of Caps on weight loss and adiposity
have already been established and published in the literature,
the pathways mediating these actions are still controversial.
Some studies have reported that Caps acts by activating
TRPV1 (39–41), which modulates fatty acid and glucose
metabolism and high-fat-diet (HFD)–induced metabolic
stress (42–46). These results suggest that TRPV1 activity may
attenuate obesity and its complications (41, 47). However,
the results of studies in TRPV1−/− mice are conflicting, with
some demonstrating protective (48, 49) or neutral (50) effects
against the development of obesity compared with wild-type
mice.

Nonetheless, some studies have shown a TRPV1-
independent effect of Caps related to its action as an agonist
of peroxisome proliferator-activated receptors (PPARs) (45,
51–54), especially PPARγ (31, 53–56). The role of PPARγ

in the transcriptional regulation of adipogenesis could
contribute to the antiobesity action of Caps. Indeed, Caps
was demonstrated to induce the expression of adiponectin
and reduce IL-6 and chemokine (C-C motif) ligand 2
(CCL2)/monocyte chemoattractant protein-1 (MCP1) (31,
53–56) in adipocytes of mice fed an HFD. These effects were
associated with the activation of PPARγ and inactivation of
NF-κB (51).

Although several narrative reviews have addressed the
antiobesity effects of Caps (57–59), there is no systematic
review and consensus in the literature regarding the mech-
anism and pathways of such actions. Systematic reviews
generally seek to answer different clinical questions regarding
the efficacy, adequacy, or viability of a specific intervention
(60). The main objective of this study was not to evaluate the
efficacy of Caps as an antiobesogenic agent but to provide
an overview of the evidence regarding the mechanisms
of action of this compound in obesity, and to clarify the
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nature and diversity of available evidence. Consequently,
we believed that conducting a scoping review rather than
a systematic review would be more appropriate. Thus, this
scoping review aims to verify Caps-mediated pathways
related to obesity and the different methods used for their
identification.

Methods
Protocol and checklist
This scoping review was performed to understand the
concepts underpinning a research area and explain work
definitions or theoretical limits of a topic. This review follows
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews (PRISMA-
ScR) (61) and the review protocol was registered in the Open
Science Framework (https://osf.io/8svn7/).

Databases and search strategy
The following databases were searched for relevant studies in
June 2019: EMBASE, MEDLINE (PubMed), Web of Science,
and SCOPUS. The search strategy included using terms
related to population, concept, and context according to the
Joanna Briggs Institute (62): obesity, Caps, and data diver-
gence regarding the mechanism of action (Supplemental
Table 1). To complement the electronic search, gray literature
was searched at the Digital Library of the Federal University
of Minas Gerais, Federal University of São Paulo, State
University of Campinas, the bank of theses and dissertations
from the Coordination for the Improvement of Higher
Education Personnel, and the Brazilian Digital Library of
Theses and Dissertations. In addition, further searches of
the British Journal of Pharmacology, Biophysical Journal, and
articles included in the last phase 3 of the scoping review
were conducted. To avoid missing any crucial publications,
we used sensitive search strategies in the search platforms and
contacted the authors of unavailable studies, as well as other
systematic reviews (63–66).

Selection of studies and eligibility criteria
Initially, the studies retrieved from the search platform
were unified on a single basis to exclude duplicates using
EndNote software, version 7x (Clarivate Analytics; https://
www.endnote.com). The unified database was implemented
in Rayyan, a web application developed for this stage of the
systematic review (identification, screening, eligibility, and
inclusion) (67). Next, 2 independent reviewers (DLA and
NAMN) evaluated the titles (phase 1), abstracts (phase 2),
and full texts (phase 3). Any disagreements were resolved by
reaching a consensus between the 2 reviewers or, if necessary,
a third reviewer (PHRFA) was involved.

Data collection and analysis
The characteristics of the various studies (year of publication,
type of study, experimental model, types of animals or
cell cultures used, Caps intervention time used in vivo,
Caps/antagonist concentration, identification of the Caps
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FIGURE 1 Overview of the flowchart of the selection of included studies.

pathway of action, among other variables) were extracted by
2 independent reviewers (DLA and NAMN). Any disagree-
ments were resolved by a consensus being reached between
the 2 reviewers or, if necessary, a third reviewer (PHRFA) was
involved. For this step, an online form prepared and tested on
the Google Forms platform was used.

The included studies were submitted to a descriptive syn-
thesis, which involved summarizing the data collected from
the included studies. The studies were grouped according to
the method design type, along with outcome measures and
publication characteristics. Tables and figures were used to
represent the results of the included studies. The program
used to create the drawings was Adobe Illustrator CC,
version 2014.0.0 (Adobe; http://www.adobe.com/products/
illustrator.html).

The risk-of-bias (RoB) tool for animal intervention
studies [SYstematic Review Center for Laboratory Animal
Experimentation’s (SYRCLE’s) RoB tool] was used to assess
the bias of the studies included in the scoping review
(68). SYRCLE’s RoB tool contains 10 entries, which are
related to selection, performance, detection, attrition, and
reporting biases, as well as other biases. However, according
to SYRCLE’s RoB tool guidelines, entry 9 (reporting bias)
was not used, as most animal studies did not have a previous

research protocol specifying the experimental design and
statistical analysis.

In addition, only the secondary outcomes of the included
studies were evaluated, because they were the only ones
that used animals (in vivo). After the analysis, 1 of the
following bias classifications was designated for each type
of bias analyzed: low risk, high risk, or unclear risk of bias.
Two authors (DLA and NAMN) independently assessed the
RoB of the studies and any disagreements were resolved by a
consensus being reached between them or, where necessary,
a third reviewer (PHRFA) was involved. Similar to other
previously published scoping reviews (69, 70), this study
strictly followed the recommendations of PRISMA-ScR (61)
and the Joanna Briggs Institute (62).

Results
Search
The search platforms returned 5501 reports (Figure 1), and
after removing duplicates and reading titles and abstracts
(phase 1 and phase 2), 31 reports were selected for the
full reading (phase 3). Most full-text reports were excluded
because they did not present the appropriate study design
(Supplemental Table 2). The complementary search did
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not identify any other publications. Finally, 9 studies were
included (71–79).

General characteristics of included studies
Among the included studies, 77.8% (n = 7) were published
in the last 4 y (2015–2019) (72–77, 79), 88.9% (n = 8)
had public funding for their execution (71–74, 76–79), and
33.3% (n = 3) were performed in the United States (73, 74,
79). Experimental designs using in vivo and in vitro models
were adopted by 77.8% of studies (n = 7) (71–75, 78, 79)
(Table 1).

Risk of bias
The analysis showed that 100% (n = 6) of the studies in
vivo evaluated (71–74, 78, 79) had a high RoB, as shown
in Figure 2. All studies (100%, n = 6) (71–74, 78, 79)
showed a high RoB in sequence generation (selection bias),
and although all the authors reported that the allocation
sequences were randomly generated, none described the
random component used. In addition, 83.3% (n = 5) (71–
74, 79) also showed a high RoB for the balanced distribution
of relevant baseline characteristics (sex, age, and weight)
between groups (selection bias), and 100% (n = 6) (71–
74, 78, 79) showed a high RoB for housing randomization
(performance bias).

An unclear RoB was found with some domains: concealed
allocation (selection bias; 100%, n = 6) (71–74, 78, 79);
blinding of investigators, caregivers, or both (performance
bias; 83.3%, n = 5) (71, 72, 74, 78, 79); random outcome
assessment (detection bias; 100%, n = 6) (71–74, 78, 79); and
blinding of outcome assessor (detection bias; 100%, n = 6)
(71–74, 78, 79). With regard to other sources of bias, 50%
(n = 3) of the studies showed an unclear RoB (71, 78, 79),
whereas the remaining 50% (n = 3) (72–74) revealed a high
RoB. It is noteworthy that 83.3% (n = 5) (71–74, 78) of the 6
studies evaluated demonstrated a low RoB for the incomplete
outcome data domain (attrition bias). The full details for
determining the bias risk can be found in Supplemental
Table 3.

Characterization of “in vivo” models
Among the 7 studies that performed in vivo experiments
(71–75, 78, 79), 71.4% (n = 5) used TRPV1−/− C57Bl/6 mice
to investigate the involvement of the TRPV1 pathway in the
Caps-mediated effects (71–74, 79) (Table 1). In 85.7% of them
(n = 6), obesity was induced using an HFD (71–74,78, 79).

Caps intervention (in vivo)
Of the 7 studies that adopted in vivo models (71–75, 78,
79), in 71.4% (n = 5) Caps was added to the diet (orally
administered) (71–74, 79) (Table 1). In 71.4% (n = 5) of
the studies, the Caps concentration in the diet was 0.01%
(71–74, 79) (Table 2). Although 1 study (14.3%) used an in
vivo model (Table 1), the C57BL/6 mice were not treated
with Caps and were only used to obtain brown adipose tissue
(BAT) (75). TA
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Baboota et al. 2014  (78)  

Baskaran et al. 2016  (73) 
        

Baskaran et al. 2017 (79)             
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Krishnan et al. 2019 (74)                   

Zhang et al. 2007 (71) 
              

Classification of bias:     high risk;     low risk;     unclear risk.  

FIGURE 2 Bias risk assessment of studies included in the scoping review by the RoB tool for animal intervention studies: SYRCLE’s RoB
tool. RoB, risk-of-bias; SYRCLE, SYstematic Review Centre for Laboratory animal Experimentation.

Although the in vivo administration route was similar in
most studies, the intervention time varied among the studies.
Caps was administered for up to 12 wk in 22.2% of the
studies (n = 2) (71, 78), 16–20 wk in 33.3% (n = 3) (71, 72,
79), and 32–38 wk in 33.3% of studies (n = 3) (73, 74, 79)
(Table 1).

In vitro model characterization
Despite the importance of using TRPV1−/− mice to evaluate
the in vivo dependence of TRPV1 on the Caps-mediated
effects, all studies (100%, n = 9) included in the analysis used
in vitro models to investigate the signaling pathways involved
in the Caps action (71–79). The white adipocyte 3T3-L1 cell

TABLE 2 Capsaicin, antagonist, and agonist concentrations used in the in vivo and in vitro experiments of the included studies1

Caps concentration Antagonist
concentration, μMReference In vivo In vitro, μM Antagonist Other agonists

Baboota et al. (78) 2 mg/kg body weight 0.1, 0.5, 1, 10, 50,
and 100

Capsazepine 1, 10 and 20 Resiniferatoxin

Baskaran et al. (73) 0.01% in the diet 1 Capsazepine 10 —
Baskaran et al. (79) 0.003%, 0.01% and 0.03%

in the diet
1 Capsazepine 10 —

Chen et al. (72) 0.01% in the diet 1 Capsazepine 1 —
GSK0660 10

Fan et al. (77) — 25, 50, and 100 T0070907 10 Capsiate
SR59230A 10

Kida et al. (75) — 0.1, 1, and 10 5’-Iodoresiniferatoxin 200 —
Kida et al. (76) — 0.1, 1, 10, 30, and

100
5’-Iodoresiniferatoxin 1 —

Krishnan et al. (74) 0.01% in the diet 1 Capsazepine 10 Troglitazone
Zhang et al. (71) 0.01% in the diet 0.01, 0.1, and 1 Capsazepine 1 —
1The table describes the concentrations of Caps used in vivo and in vitro for each of the included studies, as well as which antagonists were used and their respective
concentrations. The last column also describes the use of other agonists. Caps, capsaicin.
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FIGURE 3 Capsaicin pathways of action found in the studies
reviewed from experiments conducted in vivo and in vitro. The
studies included in this scoping review were divided into 3 main
outcomes: TRPV1-dependent, TRPV1-independent, and PPARγ .
PPARγ , peroxisome proliferator-activated receptor γ ; TRPV1,
transient receptor potential vanilloid 1.

line was used in 55.5% (n = 5) of the studies (71, 72, 74, 77,
78), whereas the others (33.3%, n = 3) used murine primary
brown adipocytes (75, 76, 79) to evaluate the Caps signaling
pathways (Table 1).

Caps intervention (in vitro)
Most in vitro studies (88.9%, n = 8) used a Caps concen-
tration of 1 μM (71–76, 78, 79), and 44.4% (n = 4) used
>1 concentration (75–78) or tested other components in
addition to Caps (33.3%, n = 3) (74, 77, 78) (Table 2).
Antagonists were used in 100% (n = 9) of the studies (71–79)
and, particularly, capsazepine, a classic TRPV1 antagonist,
which was used in 66.7% of studies (n = 6) (71–74, 78, 79)
and at a concentration of 10 μM in 44.4% of studies (n = 4)
(73, 74, 78, 79) (Table 2).

Action pathways
All studies (100%, n = 9) investigated the involvement of the
TRPV1 ion channel in the Caps-mediated effects (71–79).
Among these studies, 6 (66.7%, n = 6) found a TRPV1-
dependent action (71–74, 78, 79), whereas 44.4% (n = 4) of
the reviewed studies reported that the effects of Caps were
mediated by the activation of alternative signaling pathways
(74–78). One study (11.1%, n = 1) evaluating low and high
concentrations of Caps found concentration-dependent
TRPV1-dependent and TRPV1-independent effects
(78) (Figure 3).

Almost all studies investigated the action of Caps on 2
metabolic axes related to obesity: 1) fat storage in white
adipose tissue (WAT) (adipogenesis and lipogenesis) was
investigated in 3 studies (33.3%, n = 3) (71, 72, 78) and
2) thermogenesis induction directly in brown adipocytes
(33.3%, n = 3) (75, 76, 79) or indirectly in white adipocyte
browning (44.4%, n = 4) (73, 74, 77, 78). All 3 studies (100%,
n = 3) that evaluated the action of Caps in adipogenesis
found a TRPV1-dependent action when cells were exposed to
a low concentration (71, 72, 78). One of those studies (33.3%)
demonstrated that, at higher concentrations, Caps stimulated
adipogenesis in a TRPV1-independent manner (78).

Among the 4 studies that examined Caps-induced brown-
ing (73, 74, 77, 78), 75% (n = 3) demonstrated its dependence
on TRPV1 activity (73, 74, 78), whereas 1 study (25%)
found a PPARγ -related action (77). Considering only the 3
studies exploring brown adipocyte activity (75, 76, 79), 66.7%
(n = 2) found TRPV1-independent (75, 76) Caps activity,
whereas 33.3% (n = 1) found TRPV1-dependent activity (79)
(Supplemental Table 4).

Secondary effects
The main in vivo effects of Caps found in the reviewed
studies were a lower weight gain (33.3%, n = 3) (71–73) or
loss (22.2%, n = 2) (74, 79); a reduction in triglyceridemia,
cholesterolemia (33.3%, n = 3) (71–73), and fasting glycemia
(11.1%, n = 1) (79); and higher expression of thermogenic
genes or browning inducers (33.3%, n = 3) compared with
that induced by control treatments (73–75) (Figure 4).
In the in vitro studies, 55.5% (n = 5) observed reduced
adipogenesis, increased lipolysis, and/or lower intracellular
lipid content in white adipocytes (71, 73, 74, 78, 79). In brown
adipocytes, 2 studies (22.2%) found increased adipogenesis,
as well as a higher expression of adipogenic genes (75, 76)
(Figure 4).

Discussion
Although the assessment of the bias risk of included studies
is less common in scoping reviews than it is in other reviews,
we opted to use this tool because some of the studies reviewed
here investigated, in addition to the Caps action pathway,
its efficacy as an antiobesogenic agent in animal models of
obesity. All evaluated studies presented a high RoB. This
was an expected result, because previous research suggests
that animal studies show a certain commitment in internal
validity, which is related to methodological biases (80–82).
In addition, it should be noted that many entries in SYRCLE’s
RoB tool were determined to exhibit an unclear risk of bias,
as a consequence of the dearth of more accurate information
on the methodological parameters adopted.

This is not a surprising finding. One study evaluating
the quality of research conducted in animals, including 271
studies, revealed that the description of experimental details
of the materials and methods used is rather weak (83). In
addition, Ioannidis (84) highlighted a series of initiatives
where researchers collaborated for the efficient execution of
systematic reviews and meta-analyses of animal studies, such
as the Collaborative Approach to Meta-Analysis and Review
of Animal Experimental Studies (CAMARADES), which
demonstrated that this type of research has low reliability
(84). These studies suggest that the low study reliability is
not because animal models are not appropriate for the study
of human diseases, but is likely because of quality deficits,
selective reports, and other biases related to basic research
(82, 85–88).

These results demonstrate that it is necessary to improve
the quality of experimental designs and to record essential
experimental details in animal studies. The Grading of Rec-
ommendations Assessment, Development, and Evaluation
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FIGURE 4 Main secondary capsaicin effects found in vivo and in vitro in the included studies. The in vivo findings were divided by tissue
or organ in which they were analyzed. All in vitro findings were grouped in a single box.

(GRADE) is an important tool for assessing the quality of
evidence in systematic reviews of randomized controlled tri-
als (RCTs) and cohort studies (prospective and retrospective)
that seek to analyze the efficacy, effectiveness, and safety
of a health technology (89–93). Wei et al. (94) adapted
the GRADE tool for animal studies (94). Considering this
scenario, we recommend the use of the CAMARADES
initiative in primary studies and the RoB and GRADE tools in
systematic reviews of efficacy analyses using animal models.
Thus, it is expected that the lack of reproducibility of results
frequently observed between animal models and clinical tests
can be partially minimized.

Studies suggest that TRPV1 activity is associated with
metabolic homeostasis (40, 95). The mechanisms may
include appetite control, improved pancreatic function,
thermogenesis, and lipogenesis regulation (40, 96). All these
factors are related to the development of obesity. However,
studies with TRPV−/− mice reported conflicting results of a
reduction (48), gain (41), or no effect (50, 97) on body weight.
In addition, some studies of different clinical conditions,
including obesity, have shown that the actions of Caps may
also be mediated through activation of receptors, such as
PPARs, independent of TRPV1 activity (31, 45, 51, 53, 56,
98–100).

The duration of Caps treatment varied considerably
among the studies, which hindered a definitive conclusion.
Kang et al. (45) induced obesity in C57BL/6 mice by feeding
them an HFD for 10 wk and then supplemented the diet
with Caps for another 10 wk. Caps-supplemented mice lost
weight in the initial 5 wk but subsequently regained weight.
Similarly, Lee et al. (101) induced obesity in C57BL/6 mice
by feeding them an HFD for 8 wk before initiating topical
treatment with Caps, which prevented body-weight gain
compared with the nonsupplemented controls. These data

reflect the lack of standardization of intervention time with
Caps, as revealed by the studies included in this review.
However, no adverse effects were observed in the in vivo
studies.

The use of different in vitro concentrations makes it
possible to verify the different Caps-induced effects. Lee et
al. (102) investigated the effect of different concentrations
of Caps (0.1, 1, and 10 μM) on lipid catabolism in 3T3-
L1 adipocytes and found that Caps exerts lipolytic action
by increasing triacylglycerol hydrolysis only at 10 μM.
Moreover, when analyzing the regulation of genes related to
lipid metabolism, the effects were found at 1 and 10 μM. The
studies included in this review used concentrations ranging
from 0.01 to 100 μM, which caused different effects (71–79).
The action of Caps in reducing white adipocyte adipogenesis
was observed at concentrations up to 1 μM (71, 72, 78). At
higher concentrations, the opposite effect was observed in
both white and brown adipocytes (75, 76, 78). The studies
included in this review support the idea that Caps modulates
adipogenesis and regulates genes related to lipid metabolism,
thereby reducing body adiposity (71–79).

Previous studies have shown that Caps and its nonpungent
analogs reduce the lipid content in murine white adipocytes
in a TRPV1-dependent manner (103, 104). In our review, all
studies evaluating the effect of Caps in reducing lipid storage
in white adipocytes found a TRPV1-dependent action (71,
72, 78) at concentrations up to 1 μM. Nonetheless, 1 study
showed that, at higher concentrations (50 and 100 μM), Caps
increased adipogenesis independently of TRPV1 activation
(78). Studies have shown that calcium ions are involved in
the prevention of adipogenesis (105–107), thus supporting
the results showing that a low Caps concentration reduces
adipogenesis because TRPV1 activation induces calcium
intracellular influx.
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With regard to the browning process, our review found
that most studies investigating the potential of Caps to induce
the browning phenotype showed a TRPV1-dependent action
(73, 74, 78). All of these studies demonstrated that the
calcium influx triggered by Caps activation of TRPV1 stim-
ulated the transcriptional activity of PPARγ , culminating
in browning induction. These results suggest that PPARγ

functions as a downstream target of Caps-triggered TRPV1
signaling. One study reported that the combined effect of
Caps and capsiate on the browning process was triggered by
PPARγ and β3-adrenergic receptors (77). Because PPARγ

may be activated via TRPV1 signaling, further studies
using cells with these receptors knocked out or TRPV1
antagonists are necessary to confirm that the effects of Caps
are independent of the TRPV1 pathway.

Among the 3 studies evaluating the action of Caps directly
in BAT, 2 studies suggested that the thermogenic stimulus
was associated with alternative pathways (75, 76). One
study demonstrated that these effects were associated with
increased intracellular calcium induction by endoplasmic
reticulum stress rather than TRPV1 activation (76). However,
a third study found a dependency on TRPV1 (79).

Different studies have demonstrated that capsaicinoids
and capsioids stimulate brown adipocyte activity or promote
browning (28, 34–36, 57, 108–110). Some studies have
shown thermogenic responses to the sympathetic nervous
system (SNS) activated through β-adrenergic signaling (111–
113). In addition, consistent evidence links the activation
of PPARγ to brown adipocyte thermogenesis and brown-
ing program induction (114–118). The ability of Caps to
stimulate thermogenesis may be related to 1 or even both
of those mechanisms, as demonstrated by the studies we
reviewed. Nonetheless, it is unclear whether the induction
of browning or brown cell activity by Caps is exclusively
dependent on upstream TRPV1 signaling or whether dif-
ferent metabolic targets of Caps (and TRPV1 independent)
are also involved. Studies suggest that Caps acts in various
pathological conditions independently of TRPV1 activation
(31, 53, 55).

Nevertheless, several studies have associated the effect
of Caps on the browning process and brown adipocytes
with TRPV1 activation (28, 35, 39, 40), which supports the
evidence presented by some studies reported in this review.
Data from studies published in the literature suggest that this
action is generally linked to stimulation of the TRPV1–SNS
axis via β-adrenergic signaling (119–121). Most of the studies
reviewed here associated the thermogenic ability of Caps
with the regulation of the transcriptional activity of PPARγ

via TRPV1 activation, which induces the expression of genes
related to the browning process (73, 74, 78) and adipogenesis
in brown adipocytes (79).

Some studies have suggested that cross-talk occurs be-
tween PPARγ and TRPV1 (122–124). Lieder et al. (123)
demonstrated that the modulation of TRPV1 activity by
an alkamide reduced the lipid accumulation in 3T3-L1
adipocytes by reducing PPARγ expression. Alsalem et al.
(122) showed that the dual PPARα/γ agonist tesaglitazar

caused analgesic effects via TRPV1 and subsequently desen-
sitized nociceptive cells. Moreover, Ambrosino et al. (124)
showed that different PPARα agonists stimulated TRPV1-
induced ionic currents. It should be noted that most studies
exploring the link between these receptors focused on
analgesia or lipid metabolism in white cells.

Thus, the studies included in this review are pioneers in
the investigation of these thermogenesis pathways. Nonethe-
less, further studies are required to better understand the
possible cross-talk between TRPV1 and PPARs in BAT
and WAT metabolism. Since PPAR agonists can stimulate
TRPV1 activity and consequently calcium influx, future
investigations are required to examine whether Caps acts on
adipose tissue exclusively via direct TRPV1 activation or if it
generates calcium currents by alternative mechanisms.

Inflammation of adipokines, dysregulation of lipids, and
glucose homeostasis are characteristics of obesity, contribut-
ing to the development or worsening of several metabolic
disorders (6, 125, 126). Caps has been shown to minimize
the effect of obesity in those disorders (37, 45) and improve
glucose homeostasis by reducing hyperglycemia (45, 101,
127–129). Among the studies included and reviewed in
this analysis, only 1 analyzed glucose homeostasis (79),
whereas others found lower serum triglyceride and choles-
terol concentrations associated with the dietary use of Caps,
minimizing complications related to excess body adiposity
(71–73). Moreover, all studies included in this review showed
a positive effect of Caps in controlling obesity through
lowering weight gain (71–73) or favoring weight loss (74, 79).

Although the results favored the intervention of Caps
in both the primary weight-loss outcome and the other
secondary outcomes, they presented a high RoB. However,
RCTs also demonstrated positive results, but they notably
commonly evaluated secondary outcomes such as appetite,
energy expenditure (EE), respiratory quotient (RQ), and
fat oxidation (30, 32, 130). We did not find any RCT
that effectively evaluated the effects of Caps on weight-loss
parameters. In an RCT meta-analysis exploring the effects
of Caps and capsiate on EE and RQ, Zsiborás et al. (27)
demonstrated that Caps effectively increased EE and reduced
RQ in individuals with a BMI (in kg/m2) >25 (27).

Although other reviews have reported positive effects (57,
109, 131), the clinical significance of these results cannot
be confirmed because, in addition to the lack of systematic
reviews demonstrating the effect of Caps directly on weight
loss, no RCT reviews have explored the RoB or the quality
of the evidence. Another limitation of the existing literature
is the lack of studies evaluating the potential sustainability of
the effects of Caps, considering that most had a short follow-
up period. Because obesity is a chronic disease, we considered
this to be a relevant deficiency. Finally, studies evaluating the
effectiveness and safety of Caps are necessary to validate their
effect in uncontrolled scenarios (real-world data).

Finally, although 9 studies were included in this review,
some were conducted by the same group of researchers.
Consequently, 2 studies (75, 76) used the same method
of evaluating the thermogenesis of BAT, and subsequently
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concluded that the underlying mechanism was TRPV1-
independent. A TRPV1-independent action of Caps was also
found in another study, from another group, although the
process was not evaluated in thermogenesis but rather in
adipogenesis (78). Other studies from the same research
group (73, 74, 79) investigated browning and found that the
effects of Caps were TRPV1-dependent. Although the effects
and observed outcomes were the same, the methods and
techniques used by the researchers were diverse. However,
another independent study that also evaluated the browning
process (77) reported an action of Caps that was mediated
via PPARγ . Other studies have reported the same outcome,
linking the action of Caps to TRPV1, but not by evaluating
the browning process (71, 72, 78). It is important to
emphasize that to reach a conclusion about the target of
the action of Caps under each evaluated condition, further
studies with experimental strategies that can be reproduced
by other groups are necessary to corroborate the existing
findings (84).

Limitations
The limitations of this scoping review include the lack of
standardization of the Caps intervention time in the in vivo
models, the scarcity of studies on human adipocyte culture,
and the lack of studies that simultaneously evaluated the
possible effects of antagonism or overexpression of PPARγ

and TRPV1 in the activity of Caps. Future studies are
necessary to fill these gaps and clarify the signaling pathways
involved in the action of Caps. Nevertheless, the present
scoping review included studies with diverse methods, which
allowed us to collate information from in vitro and in vivo
studies evaluating Caps under different conditions and, thus,
identified aspects to be improved in future studies.

Conclusions
Most of the studies reviewed related the obesity-reducing
activity of Caps to the activation of TRPV1 and had a high
RoB. Some studies showed PPARγ to be a downstream target
of the signaling cascade triggered by Caps-induced TRPV1
activation. Further studies would be necessary to evaluate
the effects of antagonism or overexpression of PPARs in the
presence or absence of TRPV1 activity. The complete analysis
of these pathways will contribute to the elucidation of the role
of these receptors in Caps-mediated antiobesogenic effects.
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