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ABSTRACT

The athlete’s goal is to optimize their performance. Towards this end, nutrition has been used to improve the health of athletes’ brains, bones,
muscles, and cardiovascular system. However, recent research suggests that the gut and its resident microbiota may also play a role in athlete health
and performance. Therefore, athletes should consider dietary strategies in the context of their potential effects on the gut microbiota, including
the impact of sports-centric dietary strategies (e.g., protein supplements, carbohydrate loading) on the gut microbiota as well as the effects of gut-
centric dietary strategies (e.g., probiotics, prebiotics) on performance. This review provides an overview of the interaction between diet, exercise, and
the gut microbiota, focusing on dietary strategies that may impact both the gut microbiota and athletic performance. Current evidence suggests
that the gut microbiota could, in theory, contribute to the effects of dietary intake on athletic performance by influencing microbial metabolite
production, gastrointestinal physiology, and immune modulation. Common dietary strategies such as high protein and simple carbohydrate intake,
low fiber intake, and food avoidance may adversely impact the gut microbiota and, in turn, performance. Conversely, intake of adequate dietary
fiber, a variety of protein sources, and emphasis on unsaturated fats, especially omega-3 (ɷ-3) fatty acids, in addition to consumption of prebiotics,
probiotics, and synbiotics, have shown promising results in optimizing athlete health and performance. Ultimately, while this is an emerging and
promising area of research, more studies are needed that incorporate, control, and manipulate all 3 of these elements (i.e., diet, exercise, and gut
microbiome) to provide recommendations for athletes on how to “fuel their microbes.” Adv Nutr 2021;12:2190–2215.

Statement of Significance: This review provides a comprehensive evaluation of the current evidence for the effects of diet, as it pertains
to athletic performance, on the gut microbiota, and the potential for the gut microbiota to impact athletic performance as a result of diet-
induced modifications.

Keywords: microbiome, athletic performance, gastrointestinal health, protein, carbohydrates, prebiotics, probiotics

Introduction
The human body integrates thousands of biochemical
processes to manifest the various aspects of its metabolic
phenotype. The athlete’s goal is to optimize this complex
system to enhance performance. Nutrition has long been
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used as a tool by athletes to feed their brains, bones, muscles,
and cardiovascular system to foster peak performance (1).
However, recent scientific advances suggest that nutrition
may also influence athletic performance via the gut and
the trillions of microorganisms that inhabit this ecosystem
(Text Box 1) (2–4). Importantly, diet affects the microbial
community within the gut (5–7). As a result, the gut
microbiota mediates and modulates many of the effects of
diet and nutrition and health, such as the risk of chronic
diseases including obesity, type 2 diabetes, and cardiovas-
cular disease (8, 9). However, athletes are interested not
only in preventing disease but also in optimizing health and
performance.
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Text Box 1.
Definitions

Gut microbiota: the collection of microorganisms,
including bacteria, archaea, fungi, and viruses, in the
gut.

Gut microbiome: the collection of genetic infor-
mation contained within the microbiota that provides
information about what microorganisms are present as
well as the functional capacity of the ecosystem.

Physical activity: any body movement produced by
skeletal muscles that results in energy expenditure.

Exercise: a subcategory of physical activity that en-
compasses planned, structure, and repetitive movement
and has as a final or an intermediate objective the
improvement in or maintenance of physical fitness.

References: 3, 4.

Given the gut microbiota’s potential to influence ath-
letic performance and its responsiveness to diet, “fueling
your microbes” should be seen as a strategy for athletes
attempting to optimize performance. Therefore, this report

aims to provide a comprehensive review of research on 1)
common dietary strategies utilized by athletes and their
effects on the gut microbiota and 2) dietary strategies
utilized to improve gastrointestinal health and effects on
athletic performance (Figure 1). This review summarizes
clinical research investigating connections between the gut
microbiota/microbiome and exercise since 2008. However,
research on the gut microbiota/microbiome or exercise
from any time was included when necessary to provide
context, including mechanisms of action. This review aims
to synthesize nutrition, exercise, and gut microbiota research
to highlight what is known, gaps in the literature, and future
directions for research to optimize the interaction between
diet, sports, and the gut microbiota for health and athletic
performance.

The Effects of Diet and Sport on the Gut
Microbiome
Diet affects the gut microbiota composition and fluctuations
(7, 10) over both short (5) and long (6) time frames.
In addition to well-studied nutrients like fiber (11), the
effects of specific foods (e.g., nuts, avocados) (12, 13) and

FIGURE 1 Fueling your microbes for athletic performance. Sport-centric and gut-centric dietary strategies both modulate the
composition and function of the gut microbiota, which may then mediate or modulate the effects of these dietary strategies on athletic
performance. Human digestive processes produce amino acids and fatty acids from ingested protein and fat, respectively, while
nondigestible carbohydrates make it down to the large intestine intact. These components as well as ingested supplements such as
probiotics then interact with the gut microbiota, which produces metabolites that influence local gastrointestinal barrier function as well
as systemic functions such as glycogen storage, fuel utilization, and muscle function that have the potential to affect athletic
performance. BCFA, branched-chain fatty acid; GI, gastrointestinal; FODMAP, fermentable oligo-, di-, monosaccharides and polyols.
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dietary patterns (e.g., Mediterranean diet pattern) (14) are
also recognized. Recent reviews have detailed how exercise
influences the gut microbiota, depending on the type,
intensity, and exercise duration (2, 10, 15–17). Indeed,
evidence suggests that exercise increases α-diversity and
microbial metabolites such as SCFAs (2). Effects of exercise
on individual taxa are variable but typically reveal increases
in commensal taxa such as Bifidobacterium, Lactobacilli,
and Akkermansia (2). The gut microbiota may also influ-
ence exercise performance by producing metabolites such
as SCFAs, which are utilized as fuel by colonocytes or
absorbed into systemic circulation (acetate, 36%; propionate,
9%; butyrate 2%) (18). In skeletal muscle, SCFAs can be
oxidized, incorporated into glucose via gluconeogenesis, or
increase the bioavailability of glucose, glycogen, and fatty
acids during exercise (2, 18–23). SCFAs also contribute to
increased blood flow, insulin sensitivity, skeletal muscle mass
preservation, and an oxidative phenotype (21). The multiple
mechanisms by which SCFAs influence athletic performance
via modulation of skeletal muscle function is an area of
growing research.

Population-based cohort studies have documented the
correlation between the gut microbiota and both physical
activity, particularly vigorous physical activity, and exercise
(24–27). It is important to distinguish between “physical
activity” and “exercise” (3) when considering the interaction
between sport and the gut microbiota (Text Box 1). When
assessing the effect of sport on the gut microbiota or the
role of the gut microbiota in athlete health and performance,
exercise is the more accurate classification. However, exercise
has different modes and varying degrees of intensity, which
may differentially impact the gut microbiota (23, 28–32).
For instance, cardiorespiratory exercise induced immediate
changes in the gut microbiota composition, while resistance
exercise had no effect (23). This may be due to differences in
the metabolic pathways involved in and activated by different
exercise modalities (23).

Additionally, factors such as dietary intake, colonic transit
time, training status, shared training environment, health
or disease status, age, or gender may present confounding
factors in assessing the bidirectional relation between sport
and the gut microbiota (2, 33–35). Recent reviews have
discussed dietary intake (2, 15) and supplements (17) on the
gut microbiota of athletes. Numerous cross-sectional studies
have reported the relation between exercise, athletes’ habitual
diets, and the gut microbiota (36). Additional studies have
investigated the impact of dietary and exercise interventions
on the gut microbiota in rodents or in sedentary or otherwise
unhealthy human populations (2). Importantly, there is
research on the effects of combined exercise and dietary
interventions in athletes (Table 1) (37–44).

The Effect of Sport on the Gut
In addition to affecting the gut microbiota, exercise also
impacts gastrointestinal physiology. Although exercise typ-
ically acts as a beneficial, or “hormetic,” stress, it can
become detrimental if increased duration and intensity are

not supported by adequate training, rest, nutrition, and
antioxidant status (17). Exercise activates the autonomic
nervous system, increasing circulating concentrations of cor-
tisol and catecholamines, epinephrine, and norepinephrine,
in peripheral tissues and the gastrointestinal tract (45).
This results in reduced blood flow to the gastrointestinal
tract, causing hypoxia, ATP depletion, and oxidative stress
(46). These effects damage the gut barrier, increasing in-
testinal permeability, endotoxemia, nutrient depletion, and
inflammation (46). The gastrointestinal tract responds to
stress activation by releasing neurotransmitters such as γ -
aminobutyric acid (GABA), neuropeptide Y, and dopamine,
which are associated with gastrointestinal disturbances (45).
These physiological effects are proportional to the intensity,
duration, and frequency of exercise (45, 46).

While low- to moderate-intensity exercise promotes
gastrointestinal motility and transit time, intense [>60%
maximal oxygen uptake (V̇ O2 max)] or prolonged (≥2 h)
exercise may have the opposite effect, as well as create acute
gastrointestinal disturbances (45, 47, 48). Regular exercise
promotes adaptations to maintain intestinal blood flow
and reduce inflammation, although recovery must also be
adequate (46). Gastrointestinal issues are common, partic-
ularly among endurance athletes, with 30–50% of athletes
experiencing gastrointestinal distress symptoms (48). These
symptoms may be caused by physiological, mechanical,
psychological, and nutritional factors, including reduced
blood flow, increased gut permeability, increased produc-
tion of stress hormones and inflammatory cytokines, and
inadequate gastric emptying (45, 47, 48). However, outside
of endurance running, gastrointestinal symptoms are rarely
assessed (49). For instance, a study in soldiers participating
in a 4-d rigorous cross-country ski march revealed increased
intestinal permeability but did not report gastrointestinal
symptoms, making the implications on subjective experience
and the impact on exercise performance unclear (39).

The gut epithelium has a high turnover rate (3–5 d) and
requires large amounts of energy and nutrients (50). Athletes
training at high intensities for long periods without adequate
fueling are at risk for disturbances in gut integrity and func-
tion and gastrointestinal symptoms. In particular, inadequate
habitual carbohydrate intake increases the proinflammatory
stress response to prolonged, continuous strenuous exercise
(47, 51). However, research has primarily focused on the
effects of acute intake (before and during) on gastrointestinal
symptoms during exercise rather than habitual diet, although
an increasing number of athletes and researchers focus on
food-avoidance strategies, such as a low fermentable oligo-,
di-, monosaccharides and polyols (FODMAP) diet or gluten-
free diet, as discussed below (47, 48).

The increased oxidative stress and disturbances to the
gut barrier function that cause gastrointestinal symptoms
also influence the gut microbiota (22, 45). Translocation of
LPS, components of gram-negative bacteria resulting from
increased gut permeability, causes endotoxemia and triggers
proinflammatory cytokine secretion into the gastrointestinal
tract that may influence the gut microbiota and further
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exacerbate the condition (22). Conversely, the microbial
metabolites butyrate and propionate serve as energy sources
for colonocytes, reducing mucosal degradation, gastroin-
testinal permeability, and inflammatory cytokines (22, 45).
As alterations in microbial composition and diversity have
been associated with gastrointestinal distress prevalence in
athletes, the gut microbiota composition may be used as a
biomarker for metabolic and systemic stress after exercise
(22). For instance, a study investigating the acute effects of
an exercise bout on the serum and fecal metabolome and the
gut microbiota demonstrated that a single bout of exercise
upregulated metabolic pathways of skeletal muscle substrate
utilization and carbohydrate metabolites in serum, increased
fecal ammonia and amino acid metabolites, and increased
the abundance of Clostridia (52). Thus, acute changes in
microbial and metabolite profiles may provide information
regarding the effects of exercise on the gastrointestinal tract
and metabolism. Furthermore, gastrointestinal symptom as-
sessments could complement information on gut microbiota
composition when considering the impact of exercise on
the gut microbiota and the need for gut-centric dietary
strategies.

Dietary Strategies for Sport and the Gut
Diet is 1 tool that athletes use to optimize their fitness,
performance, and recovery (1). Dietary strategies for sport
seek to optimize training, performance, and recovery via
supplementation of specific nutrients (e.g., protein, car-
bohydrate loading, iron), restriction of energy or certain
food categories (e.g., low-FODMAP diet, gluten-free), and
adequate hydration; however, the effects of these dietary
strategies on the gut microbiota are not well understood
(17, 53, 54). Alternatively, increasing research indicates that
dietary strategies for improving gastrointestinal health (e.g.,
probiotics, prebiotics, and synbiotics) represent promising
opportunities to optimize the interaction between the gut
and sport, with the potential to enhance athletes’ health
and performance. The following sections discuss the effects
of dietary strategies on the gut microbiota and athletic
performance.

Protein
Protein is the main component of skeletal muscle. However,
specific amino acids differ in their uptake and catabolism
by the liver and skeletal muscle and their ability to regulate
the muscle protein synthetic response (55). Essential amino
acids, particularly branched-chain amino acids (BCAAs), are
crucial for muscle protein synthesis and result in a greater
muscle protein synthetic response than nonessential amino
acids (55, 56). Therefore, dietary protein influences protein
utilization and the anabolic response of skeletal muscle to
exercise (55).

Although recommendations vary, athletes may need
upwards of twice as much protein as the general popula-
tion (1.2–1.7 vs. 0.8 g · kg–1 · d–1) to maintain protein
synthesis, energy production, immune function, and gut
integrity as a result of exercise-induced stress (54). This is

true for endurance and resistance-trained athletes. Indeed,
endurance athletes may need to ingest a higher amount
of protein in the postexercise recovery period (∼0.5 vs.
∼0.3 g · kg–1 within 3–5 h of exercise), particularly if
endurance exercise is performed in a fasted state, as this
may increase myofilament proteolysis (57–59). Although
variable based on dietary and physiological factors such
as digestibility, quantity and composition of amino acids,
the food matrix, and presence of other nutrients (60, 61),
∼10% of protein is not digested and may undergo proteolytic
fermentation by bacterial proteases in the colon (62–64).

Concerning gut microbiota metabolism, amino acids
can be classified by their fermentation metabolites: sulfur-
containing amino acids, aromatic amino acids, and trypto-
phan (60). These metabolites include branched-chain fatty
acids and SCFAs, ammonia, sulfides, indolic, and phenolic
compounds (61, 64). While some of these metabolites (e.g.,
SCFAs and indole) may have beneficial effects like improving
gut integrity, other metabolites (e.g., ammonia and p-cresol)
decrease gut epithelium integrity (64, 65). Excess protein
intake may lead to levels of proteolytic metabolite production
that overwhelm the hosts’ ability to assimilate, transform, or
detoxify harmful metabolites (61), contributing to adverse
effects on intestinal barrier function, inflammation, and
colonic health (60, 61, 63–66).

Protein supplements, including BCAAs and taurine added
to energy drinks, are commonly used by athletes to enhance
the anabolic and adaptive effects of exercise on skeletal
muscle and improve recovery (67–69). Excess taurine leads
to elevated taurocholic acid (TCA), deoxycholic acid (DCA),
and hydrogen sulfide (H2S) concentrations, which are
associated with increased risk of colorectal cancer (70);
however, the effects of these supplements on the athletic gut
microbiota are unclear (17, 54). To our knowledge, there is
only one intervention study that has investigated the effects
of protein supplements on the gut microbiota in athletes
(37). In this study, male cross-country runners consumed
a protein supplement (10 g whey isolate and 10 g beef
hydrosylate) or a placebo (maltodextrin) for 10 wk. Protein
powder consumption was associated with a decrease in Lach-
nospiraceae, Roseburia, Blautia, Synergistales, Coprococcus,
Lactobacillales, Bacilli, and Bifidobacterium longum, as well as
a higher abundance of Bacteroidetes and lower abundance of
Firmicutes relative to the placebo. There were no differences
between groups at baseline or after the intervention in
α-diversity (Chao1, equitability, phylogenetic tree, number
of observed species, Shannon index, Simpson index), β-
diversity (unweighted UniFrac), or microbial metabolites
(i.e., SCFAs, ammonia). Thus, protein supplementation
influenced the abundance of specific taxa with limited
effects on the community’s diversity and function (i.e.,
metabolites).

Additional studies have investigated the effects of protein
supplementation or high-protein diets in sedentary adults
with overweight and obesity. McKenna et al. (71) investigated
the effects of moderate (0.8–1.0 g · kg–1 · d–1) and high (1.6–
1.8 g · kg–1 · d–1) beef protein consumption combined with
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resistance training in a cohort of healthy, overweight, middle-
aged adults. In this study, participants in the high-protein
group had decreased abundance of Veillonellaceae, Akker-
mansia, uncultured Eggerthellaceae, and Ruminococcaceae
UCG-010 following 1 wk of dietary habituation relative to
baseline (71). However, there were no differences between
the moderate- and high-protein groups in strength gains
in response to resistance training (71). Cronin et al. (72)
investigated the effect of whey protein supplementation
(24-g blend of whey concentrate, isolate, and hydrolysate)
in sedentary adults with overweight and obesity with or
without exercise on the gut microbiome and reported no
effects of the protein supplement or exercise on microbiota
composition or metabolic pathways. The lack of effect of the
supplement on gut microbial composition may have been
due to lack of dietary control or the relatively short duration
of the intervention (8 wk) compared with habitual exercise
and supplementation undertaken by athletes (65). However,
the authors did report a shift in the gut virome in the
protein-supplemented groups with and without exercise due
to virus particles present in the supplement and increases in
trimethylamine-N-oxide (TMAO) and phenylacetylglycine
(PAG) in the protein-supplemented group without exercise.

TMAO, produced from carnitine, choline, and phos-
phatidylcholine, is metabolized by the gut microbiota to
trimethylamine (TMA), which is then converted to TMAO in
the liver (14). TMAO and PAG are associated with increased
risk of cardiovascular disease and adverse outcomes in
cardiovascular disease patients (73, 74) and are elevated in
athletes versus sedentary controls, potentially resulting from
increased protein intake (75). In contrast, the addition of
exercise decreases TMAO (72). The associations between
TMAO and disease may be confounded by or dependent
on kidney function, the gut microbiota, and the flavin-
containing monooxygenase 3 (FMO3) genotype (4, 76–
78). Fish is rich in preformed TMAO and has the greatest
impact on circulating TMAO concentrations; however, fish
intake is associated with decreased risk of cardiovascular
disease (76, 77). Additionally, habitual intake of red meat,
containing the TMAO precursor carnitine, and acute feeding
of phosphatidylcholine, the predominant form of choline
in foods such as eggs, are not associated with increased
circulating TMAO (76, 4, 78, 79). Ultimately, the connections
between TMAO, lifestyle factors (diet and exercise), and
disease are complex, and it is difficult to draw conclusions
based on the current state of the science.

Beaumont et al. (80) investigated the effects of a high-
protein diet (∼30% energy intake) using either casein or
soy (both providing 15% of energy intake) in overweight
individuals. They reported no shift in the gastrointestinal
microbiota, perhaps due to variability in the protein sources
consumed by participants outside of the supplements or
other aspects of dietary intake. However, this study reported
a shift in bacterial metabolism and metabolite profiles
toward products of amino acid degradation, including a
decrease in butyrate and increases in 2-methylbutyrate,
phenylacetylglutamine, and indoxyl sulfate.

The results of these protein-supplementation studies
indicate that, while protein supplements may impact the
gut microbiota composition, they have a greater impact on
microbial metabolites (81, 82). The decrease in butyrate,
a key SCFA, and increase in proteolytic metabolites could
be detrimental to gastrointestinal health. Therefore, protein
supplementation in athletes should be further assessed to
determine whether this population experiences the same
metabolic effects and whether these changes are associated
with increased gastrointestinal distress or inflammation and
performance.

Cross-sectional studies examining the relation between
dietary intake and the microbiota in athletes have reported
inconsistent results. For instance, Clarke et al. (83) reported
that protein intake was positively correlated with microbial
diversity, while Jang et al. (84) reported a negative association
between protein intake and microbial diversity. These con-
tradictory findings may be due to the athletes’ fiber intake,
as those in the study by Clarke et al. met recommended fiber
intake requirements, while those in the study by Jang et al.
did not (15). A follow-up study to Clarke et al. investigating
the metabolomic and metagenomic signatures of athletes
and sedentary controls reported an increase in microbial
genes related to amino acid biosynthesis and carbohydrate
metabolism, as well as an increase in amino acid metabolites
(e.g., TMAO and PAG) and SCFAs, suggesting that fiber
intake was sufficient to balance the increased protein intake
(75). Indeed, it has been suggested that the fiber, calorie, and
fat content of the diet may have significant impacts on the
effects of protein amount and type on the gut microbiota and
health (65, 85, 86).

Animal studies investigating the effects of different pro-
tein types, focusing primarily on the comparison between
animal- versus plant-based proteins, have reported differ-
ential effects such as a higher abundance of Lactobacilli
(∼5-fold) and the ratio of Firmicutes to Bacteroidetes and
lower butyrate (−1.4-fold), SCFA-producing bacteria (e.g.,
Bacteroides and Prevotella), LPS-binding protein (∼ −2-
fold), and transcription factor CD14 receptor (∼ −0.4-fold)
with meat versus nonmeat proteins (87–90). LPS-binding
protein binds to CD14 to mediate the activation of
macrophages to produce inflammatory cytokines, serving as
a proxy for inflammation (89). Thus, these results suggest that
soy, the plant-based protein used in these studies, elicited a
greater inflammatory response than animal proteins (88, 89).
Dairy proteins appear to have an intermediate effect between
meat and nonmeat proteins (88), although results may
differ between whey and casein components (91). However,
these studies of protein type have been conducted almost
exclusively in rodents, primarily use isolated protein sources,
and often use protein intakes above the recommended daily
guidelines. Effects of protein sources such as beef on the gut
microbiota have more consistent findings in animal models
than humans, in which limited to no impact of protein type
has been reported, highlighting the need for more studies in
humans (90). To our knowledge, only 1 study has investigated
the effects of different protein types on the gut microbiota
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in humans; however, this study also added a high– or low–
saturated fat component to the study design and reported
that saturated fat consumption masked the effects of protein
type (85). This again demonstrates the need to account for
the intake of other dietary components (e.g., fat) in addition
to protein.

Evidence suggests that the gut microbiota contributes to
protein absorption and utilization (92) as well as skeletal
muscle anabolism and functionality (gut–muscle axis) via
fuel availability and storage and modulation of inflammation
(19, 20, 93, 94). For example, probiotic supplementation
(Lactobacillus paracasei) enhanced the bioavailability of
plant proteins, elevating essential amino acid and BCAA
concentrations to comparable concentrations of animal pro-
teins (95). Additionally, when co-administered with protein,
the probiotic Bacillus coagulans (GBI-30,6086) decreased
epithelial cell inflammation, improved nutrient absorption,
and produced proteases that increase amino acid absorption
in humans (92). These effects may reduce muscle damage
and boost muscle recovery, thereby enhancing adaptation
and performance (92). Increasing the bioavailability and
absorption of dietary protein and increasing muscle protein
synthesis is 1 mechanism by which the gut microbiota may
influence muscle mass and function. These effects may be
partially regulated by SCFA production, affecting insulin
sensitivity, inflammation, and release of insulin-like growth
factor I (IGF-I) that modulate the balance between anabolic
and catabolic processes (93, 96). Therefore, the gut–muscle
axis may mediate the positive effects of exercise and diet on
muscle anabolism and play a role in the age-related decline
in muscle mass (i.e., sarcopenia) and disease-related muscle
wasting (19, 20, 93, 94, 96, 97). For instance, increased
abundances of Oscillospira and Ruminoccocus and decreased
abundances of Barnesiellaceae and Christenellaceae helped
accurately predict individuals with physical frailty and
sarcopenia (97). However, due to the small sample size,
it is unclear if differences in body composition, diet, and
physical activity contributed to these differences in muscle
function independently of the gut microbiota. However,
alterations in the gut microbiota have been associated with
phenomena including “anabolic resistance” that contribute
to the development of sarcopenia (96). Therefore, growing
research suggests that the gut microbiota plays a role in
muscle function and anabolism via modulation of protein
metabolism.

An additional area of interest is the effects of whole-food
protein versus protein supplements as whole foods have been
shown to have equal or superior ergogenic effects (1, 98–
100). For instance, ingestion of whole eggs versus egg whites
and whole milk versus fat-free milk result in greater amino
acid uptake and postexercise myofibrillar protein synthesis
(100, 101), suggesting that nonprotein components (e.g.,
lipids, carbohydrates, micronutrients, and other bioactive
compounds) contribute to the postexercise protein synthetic
response. The food matrix may also contribute to differential
effects of whole-food protein sources on the gut microbiota,
as the same quantity of protein in supplement form and

the change in the amino acid profile as a result of protein
isolation impact the protein digestion and absorption (60,
61, 98). For instance, purified proteins are digested more
efficiently than protein-rich foods consumed in a mixed
meal, which may decrease the amount of protein delivered to
the large intestine, although the amount of purified protein
ingested likely also influences colonic availability (60). It
is unclear to what extent these differences in digestibility
of protein types, and potential modulating effects of gut
transit time, affect the athlete gut microbiota, health, and
performance.

In summary, high-protein diets and protein supplements
appear to have limited effects on the gut microbiota compo-
sition but shift the metabolite profile to greater production of
proteolytic metabolites. This may lead to detrimental effects
on gastrointestinal health and exacerbate exercise stress–
induced symptoms of gastrointestinal distress in athletes,
which may impair training and performance. However,
these effects may be specific to the protein supplement
type and depend on concomitant carbohydrate or fiber
intake. Furthermore, the gut microbiota may also contribute
to muscle protein anabolism and function throughout the
lifespan via modulation of protein absorption and utilization.

Fat
Intramuscular triglycerides and adipose tissue provide im-
portant fuel substrates for athletes during exercise (102,
103). Additionally, dietary fat modulates the gut microbiota
composition and subsequently impacts metabolic health
(104). The amount and type of dietary fat are important
aspects of dietary quality and are important considerations
for both athletic performance (102, 103, 105) and the health
of the gut microbiota (104, 106–108).

Dietary fat intake is variable based on sport modality,
training level, and body-composition goals (84, 102). Pre-
exercise meals or snacks are generally low in fat to facilitate
gastric emptying and minimize gastrointestinal distress
during exercise (109). Conversely, there is interest in high-
fat, low-carbohydrate ketogenic diets for athletes for perfor-
mance enhancement or weight control (110, 111). However,
while a high-fat, low-carbohydrate diet does enhance fat
oxidation, there is no evidence to support the notion that
it increases performance; instead, there is evidence that it
may decrease exercise performance at higher intensities (102,
103, 110, 112). Alternatively, supplementation of omega-
3 (ɷ-3) essential fatty acids may positively affect exercise
performance via improved endurance capacity, recovery,
and immune modulation (105). However, most studies
have been conducted in untrained, amateur populations,
and few focus on performance as an outcome, limiting
the ability to determine their ergogenic effects in athletes
(105).

Concerning the gut microbiota, research on fat intake has
primarily centered on the effects of a high-fat, particularly
high-saturated-fat, Western-style diet (104, 107, 113, 114).
These studies reveal that the Western-style dietary pattern
is associated with an increased Firmicutes to Bacteroidetes
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ratio and increased abundance of Proteobacteria, Mollicutes,
and Bilophila wadsworthia, as well as a decrease in Akker-
mansia muciniphila, Bifidobacterium spp., and butyrate-
producing taxa (62, 104, 113).

Additionally, a high-fat diet with concomitant restriction
of carbohydrates, as in a ketogenic diet, may have differential
effects on the gut microbiota and inflammation compared
with a high-fat diet without carbohydrate restriction due to
ketone body production (115). However, there are conflicting
results regarding the effects of the ketogenic diet on gut
microbiota composition, although evidence suggests that
the gut microbiota mediates some of the beneficial effects
of the ketogenic diet on neurological outcomes (116).
In men with overweight and obesity, consumption of a
ketogenic diet decreased Bifidobacterium and Lactobacilli
and increased Fusobacteria and Escherichia (115). To our
knowledge, only 1 study has investigated the effects of a
ketogenic diet, compared with either a high-carbohydrate
or periodized carbohydrate diet, on the gut microbiota of
athletes (elite race walkers). The authors reported an increase
in Bacteroides and Dorea and a reduction in Faecalibacterium,
a known butyrate producer (38). Additionally, the abun-
dance of Bacteroides and Dorea following the intervention
was negatively associated with fat oxidation and exercise
economy, respectively, suggesting a negative correlation of
these taxa with exercise performance (38). Furthermore,
recent reviews indicate that ketone supplementation does
not benefit athletic performance, cognition, or muscle re-
covery in athletes and may induce gastrointestinal symptoms
(117, 118).

In addition to the amount, the type of fat modulates
the gut microbiota and downstream inflammatory signaling,
which may have implications for athletic performance. While
acute inflammation in response to exercise is necessary for
the adaptive response and functional recovery of muscle,
chronic or excessive inflammation can lead to detrimental
effects such as reduced muscle strength and mass (93, 119).
Different types of fat are associated with varying effects on the
gut microbiota and consequential effects on inflammation
(107, 114, 120). Saturated fat intake is associated with
decreased microbiota diversity and richness in humans
and increased availability and transport of LPS, leading
to proinflammatory Toll-like receptor (TLR) activation in
preclinical models (107, 121). Monounsaturated fat intake
is also associated with decreased total bacterial numbers
in humans and increased LPS in preclinical models but
still leads to lower inflammation than saturated fat (121).
However, polyunsaturated fat has no effect on diversity
or richness in humans and increases the abundance of
Bifidobacterium, Lactobacilli, and Akkermansia muciniphila,
which are also increased by exercise (2, 107). ɷ-3 PU-
FAs increase SCFAs, improve gastrointestinal integrity and
inflammation, and potentially affect communication along
the gut–brain axis (108). Therefore, beneficial effects of
ɷ-3 fatty acids on the gut microbiota may mimic the
effects of exercise and contribute to health and performance
benefits by promoting an anti-inflammatory bacterial profile

and production of SCFAs. Conversely, the proinflammatory
effects of high saturated fat intake on the gut microbiota may
impair exercise-induced performance benefits on muscle
anabolism.

Bile acids may also mediate some of the disparate
effects of different dietary fats on lipid and carbohydrate
metabolism, energy expenditure, and inflammation via
the farnesoid X receptor (FXR) and G protein–coupled
membrane receptor 5 (TGR5) (106, 121–123). Interactions
of bile acids with these receptors also increase energy
expenditure in skeletal muscle and decrease muscle fat
deposition, suggesting that microbiota-mediated changes in
the bile acid pool may influence skeletal muscle function (94,
124). Increased intramuscular triglycerides (IMTGs) have
been reported in individuals with obesity and associated
with insulin resistance, although athletes exhibit similarly
high concentrations of IMTGs that can be used as fuel
during exercise (125). It is now thought that the association
with insulin resistance is due to increased intramuscu-
lar lipid metabolite concentrations, not IMTGs, and that
accumulation of these metabolites is prevented by high
IMTG turnover with exercise (125). Secondary bile acids
produced by the gut microbiota also interact with FXR
and TGR5 receptors and increase mitochondrial oxidative
phosphorylation and fatty acid β-oxidation, which may have
performance benefits such as better oxygen uptake, energy
availability, and fatigue resistance (126). It is unclear whether
bile acid modulation of IMTG content or mitochondrial
function influence exercise capacity in athletes and, if so,
how to optimize the concentration and composition of bile
acids and secondary bile acids via type and amount of fat
intake.

In summary, high fat, particularly high saturated fat,
intake is linked to a proinflammatory microbiota com-
position with a reduced capacity to produce SCFAs and
may induce gastrointestinal permeability, both of which
can adversely impact performance. Conversely, ɷ-3 fatty
acids may promote a beneficial microbiota profile, increased
SCFAs, and reduced gastrointestinal permeability. However,
current research on the ergogenic effects of ɷ-3 fatty acids is
inconclusive (127).

Carbohydrate and fiber
Highly digestible and readily absorbed carbohydrates are
of great interest for sport. However, nondigestible carbohy-
drates (i.e., fibers and resistant starches) are of greater interest
when considering the gut microbiota.

Carbohydrates function as one of the primary fuel
sources during exercise (128). Dietary recommendations
for athletes suggest high intakes of simple carbohydrates to
maintain glucose homeostasis and low fiber intake before
exercise to reduce gastrointestinal distress, also adding that
plant-based high-fiber diets may reduce energy availability
(17, 109). Ingestion of simple carbohydrates (e.g., glucose,
fructose, sucrose, dextrose) before and during exercise can
reduce fatigue, improve performance, and promote water
reabsorption and maintenance of euhydration (45, 129, 130).
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However, glucose and fructose load and the fructose-to-
glucose ratio affect gut microbial fermentation and gas-
trointestinal distress (131). Ingesting fructose and glucose
in equal quantities optimizes fructose absorption (132, 133)
and reduces microbial fermentation, potentially reducing
gastrointestinal distress symptoms. Lactose may also serve
as a good fuel source before, during, and after exercise for
increased performance and recovery while also potentially
promoting beneficial effects on the gut microbiota, such as
increases in Bifidobacteria and Lactobacilli (134).

Carbohydrate loading is also a common strategy used
by endurance athletes to maximize glycogen concentrations
before a competition (135). The goal of carbohydrate load-
ing is to maximize carbohydrate absorption and glycogen
storage. Thus, carbohydrates that will not be digested and
absorbed in the small intestine, like fiber and resistant starch,
are generally avoided. Interestingly, ingestion of potatoes
during cycling is as effective as carbohydrate gels to support
performance, despite having a much higher fiber content
(11.2 vs. 2.3 g) (136). However, gastrointestinal symptoms
(abdominal pain, bloating, and discomfort) were higher in
the potato group, limiting the use of such practices among
athletes.

Athletes focused on maximizing glycogen storage may
ingest high amounts of carbohydrates but avoid nondigestible
carbohydrates (45, 137). Evidence suggests that a high-
carbohydrate, low-fiber dietary pattern has detrimental
effects on intestinal health and microbes, including altered
intestinal transit times, loss of bacterial diversity, and
reduced SCFA production (11, 138, 139). There is a positive
association between total dietary fiber per kilocalorie energy
and the abundance of Bifidobacterium (140). Furthermore,
adequate intake of nondigestible carbohydrates may also
negate the potentially adverse effects of microbial proteolytic
fermentation and its metabolites as nondigestible carbohy-
drates are preferentially metabolized by the gastrointestinal
microbiota (60, 64, 65). Indeed, bodybuilders with high pro-
tein and restricted dietary fiber intake had greater microbiota
similarity to sedentary controls (i.e., reduced α-diversity)
compared with bodybuilders with adequate fiber intake (40).
These microbiota characteristics may adversely affect long-
term health and induce short-term gastrointestinal distress
in athletes. This makes it even more important for athletes
consuming high-protein diets to ensure adequate intake
of nondigestible carbohydrates to prevent gastrointestinal
distress and inflammation (45). Since athletes typically have
increased energy intake relative to sedentary individuals (83),
fiber intake should be scaled appropriately. Ultimately, ath-
letes should strive for adequate fiber intake (14 g/1000 kcal)
to promote gastrointestinal health and athletic performance,
although avoidance directly before or after exercise may be
warranted due to the potential for gastrointestinal distress.

SCFAs are linked to muscle function and glycogen accre-
tion in skeletal muscle (19, 20). Therefore, reduced SCFAs
due to a low-fiber diet may affect exercise capacity and perfor-
mance. Studies in mice by Donatto et al. (141) (oat bran con-
taining β-glucan, 300 g/kg chow) and Okamoto et al. (142)

(hemicellulose and lignin, 14.6% neutral detergent fiber) re-
vealed that nondigestible carbohydrate supplementation with
exercise, either swimming or treadmill running, respectively,
increases muscle glycogen concentration, SCFA production,
and time to exhaustion while decreasing the postexercise
inflammatory response. While muscle glycogen content is
well correlated with endurance performance (143), the effect
of increased SCFA production and systemic availability (18)
on athletic performance in humans is unclear. Okamoto
et al. (142) reported that infusion with acetate improved
endurance exercise capacity in antibiotic-treated mice while
Scheiman et al. (144) reported increased performance with
propionate and Veillonella atypica, which converts lactate to
propionate, inoculation in mice. The mechanism(s) of these
ergogenic effects may involve increased glycogen or glucose
fuel availability (19), increased water reabsorption (145),
or direct utilization of metabolites (e.g., propionate) (144).
Fiber intake and SCFAs may also decrease gastrointestinal
permeability (146) and influence the immune response
and inflammation via interaction with the gut-associated
lymphoid tissue (GALT) (147). A study on the effects of
butyrylated high-amylose maize starch in healthy adult
cyclists increased butyrate and propionate concentrations,
increased Parabacteroides distasonis and Faecalibacterium
prausnitzii, and maintained IL-10 concentrations (an anti-
inflammatory cytokine) (148). Another study on the effects of
a low-dose (6 g/d), partially hydrolyzed guar gum fiber on the
gut microbiota and recovery in athletes revealed increased
Actinobacteria, decreased Bacteroidetes and Clostridium
cluster XI, fecal defecation characteristic improvements, and
reduced diarrhea (149), thus having a potential indirect effect
on performance.

Prebiotics
A prebiotic is “a substrate that is selectively utilized by
host microorganisms conferring a health benefit” (150).
While many fibers have prebiotic effects and are considered
candidate prebiotics (e.g., resistant starch; polydextrose;
β-glucans; pectin; soy-, xylo-, arabinoxylo-, and malto-
oligosaccharides) (150–152), only fructo-oligosaccharides
(present in artichokes, asparagus, bananas, chicory root, gar-
lic, onions, leeks, wheat) (11) and galacto-oligosaccharides
(derived from lactose) (153) are readily accepted as prebiotics
(150). The health benefits of prebiotics include gastroin-
testinal health (e.g., pathogen inhibition), mental health
(e.g., energy and cognition), and bone health (e.g., mineral
absorption), all of which play important roles in the health
and performance of athletes (150, 154).

While increasing prebiotic intake may decrease effective
carbohydrate intake and glycogen storage, it has been
postulated that microbial production of SCFAs from pre-
biotic fermentation may improve glycogen storage and
metabolism (19, 155). To our knowledge, no studies have
investigated the effects of prebiotic supplementation alone
on exercise performance in athletes (156) (Table 2) (141,
142, 157–161). However, a study in asthmatic adults with
hyperpnea-induced bronchoconstriction, a surrogate for
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exercise-induced bronchoconstriction, demonstrated that
galacto-oligosaccharide supplementation (5.5 g/d) improved
exercise-induced bronchoconstriction and reduced inflam-
mation (157). Another study investigated the effect of
exercise training in combination with inulin-propionate
ester (IPE) supplementation in women with overweight and
reported that IPE increased fat oxidation compared with a
placebo (158). However, IPE has distinct effects compared
with inulin alone on the gut microbiota and metabolome
(162), making it difficult to determine whether the observed
effects were due to inulin’s prebiotic capacity or the esterified
propionate.

Probiotics
Probiotic supplementation is a topic of interest among ath-
letes to increase health and performance (36, 156, 163–170).
Probiotics are “live microorganisms that, when administered
in adequate amounts, confer a health benefit on the host”
(171). Conventional probiotics include Bifidobacterium spp.
and Lactobacilli, although other bacteria investigated in
athletes include Bacillus spp., Enterococcus spp., Streptococcus
spp., Veillonella, or the yeast Saccharomyces boulardii, which
have been reviewed elsewhere (2, 36, 156, 163–170, 172).

Briefly, probiotics reduce infection, inflammation, muscle
soreness, and gastrointestinal permeability or distress. Thus
far, the most substantive evidence for probiotic benefits
is improvements in the incidence, duration, and severity
of upper respiratory tract infections (2, 163), which may
indirectly improve athletic performance (156). The studies
reporting improvement in respiratory symptoms include or-
ganisms from the Lactobacilli family (172, 173). L. salivarius,
may also reduce gastrointestinal permeability via increases
in butyrate-producing taxa Roseburia and Lachnospiraceae
and decreases in Verrumicrobia (44). While there is ev-
idence of shared mechanisms of probiotic functions, the
benefits of probiotics are often dependent on the strain
and dose of the probiotic (163, 164). The majority of
studies reporting positive effects on gastrointestinal barrier
function use multi-strain formulations (172). Probiotics may
attenuate the effects of intense exercise on gastrointestinal
distress and muscle soreness in athletes by improving
intestinal permeability and antioxidant status and reducing
inflammation (36, 156, 163, 171, 174, 175), potentially via
interaction with GALT (176). For example, a daily multi-
strain probiotic (Ultrabiotic 60TM, Bioceuticals, Australia
AustL# 259813) containing 10 different strains from the
genera Lactobacillus, Bifidobacterium, and Streptococcus and
SBFloractiv™ (Bioceuticals, Australia AustL# 285024) con-
taining the yeast Saccharomyces boulardii decreased muscle
soreness in elite rugby athletes (175). While there was no
main effect of treatment on inflammation, muscle soreness
was positively correlated with salivary C-reactive protein
(CRP) and negatively correlated with motivation and sleep
quantity and quality (175). A combination of L. rhamnosus
and L. paracasei increased plasma antioxidants and mitigated
the exercise-induced rise in reactive oxygen species (ROS)
while also increasing Lactobacillus in participants (42). Of

interest to athletes while traveling, Saccharomyces boulardii
and a combination of L. acidophilus and B. bifidum help
prevent traveler’s diarrhea (177).

Probiotics may also improve nutrient absorption and uti-
lization, glycogen storage, body composition, energy harvest,
hormone production, and cognition and mood via mecha-
nisms such as bioactive metabolite production (e.g., SCFAs,
neurotransmitters), modulation of gut pH, and alterations in
the gut microbiota activities (36, 92, 163, 164, 169, 178, 179).
For instance, L. plantarum increased endurance performance
in triathletes concurrent with an increase in fecal SCFAs
(41). A study in mice revealed that a bacterial strain isolated
from an Olympic weightlifting athlete [L. salivarius subsp.
salicinius (SA-03)] improved endurance performance and
muscle strength via increased hepatic and muscular glycogen
and decreased lactate, blood urea nitrogen, ammonia, and
creatine kinase after exercise (178). However, more studies
show ergogenic effects of multi-strain probiotics than single-
strain probiotics (163), suggesting that multiple strains may
act in a complementary way to provide performance benefits.
Probiotics may, therefore, benefit athletic performance via
both direct and indirect mechanisms, although the evidence
of ergogenic effects remains scarce (156, 163, 166).

Differences in strains and doses of probiotics and indi-
viduals’ baseline diet, immune status, and microbiota com-
position may contribute to variability in findings between
studies, making comparisons and conclusions difficult (2, 36,
40, 168). Most probiotic supplementation studies in athletes
do not assess the gut microbiota, making it difficult to
determine whether efficacy depends on baseline or changes
in the participants’ gut microbiota composition (2, 166).
Concurrent dietary intake, particularly intake of fiber and
prebiotic substrates, may also impact the probiotic effects
and should therefore be accounted for in analyses (180). This
is important as consumers should be aware that probiotic
supplementation alone may not have the intended effects if
not supported by a diet with adequate nutrition. Additionally,
probiotic supplementation studies in athletes typically have
small sample sizes (i.e., 10 to 30 participants) and often
include only or predominantly male participants (167), often
the case in sports and exercise research (181), but which
is problematic because there may be gender-specific effects
(43). For example, in West et al. (43), probiotic supplemen-
tation with Lactobacillus fermentum (PCC®, Probiomics Ltd,
Sydney, Australia) decreased gastrointestinal symptoms in
males but increased the incidence and duration of symptoms
in females.

There is increasing interest in the effect of live cultures in
fermented foods (171, 182), and their effects or association
with the gut microbiota (183). However, few studies have
investigated the effects of fermented foods, including yogurt,
kefir, sauerkraut, on exercise (184–187). Three studies using
kefir or fermented milk reported decreased exercise-induced
CRP or creatine phosphokinase and muscle soreness, indi-
cating a positive effect of these fermented foods on reducing
inflammation (185–187). One study in mice reported an
ergogenic effect of kefir on strength and endurance (184).
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Therefore, fermented foods containing live microorganisms
may confer beneficial effects on inflammation and exercise
performance.

Synbiotics
A synbiotic is “a mixture comprising live microorganisms
and substrate(s) selectively utilized by host microorganisms
that confers a health benefit on the host” (180). A synbiotic
may be a combination of a probiotic and a prebiotic (comple-
mentary synbiotic), although the individual components do
not necessarily need to meet the criteria for pro- and prebi-
otics as long as they act synergistically when co-administered
(synergistic synbiotic) (180). Thus, the prebiotic component
may enhance the functionality of the probiotic (synergistic
synbiotic), or the 2 components may provide independent
beneficial functions upon introduction to the gut and its
resident microbes (complementary synbiotic) (180). This
combination of microorganisms and selectively utilized
substrates (159–161) may have different effects than either
prebiotic or probiotic supplementation alone (Table 2).
However, to our knowledge, only 1 study has investigated
the synergistic and independent effects of these components
in physically active humans (159). West et al. (159) reported
that synbiotic supplementation (Lactobacillus paracasei 431,
Bifidobacterium animalis subsp.lactis BB-12, L. acidophilus
LA-5, L. rhamnosus LGG, raftiline, raftilose, lactoferrin,
immunoglobulins, acacia gum) was associated with a smaller
increase in serum IL-16 concentrations compared with
prebiotic (acacia gum) supplementation alone, but neither
synbiotic supplementation nor acacia gum alone influenced
SCFA concentrations, immunity, or gastrointestinal perme-
ability. Therefore, synbiotics may have different or additional
effects on athlete health and performance than prebiotic or
probiotic supplementation alone.

Micronutrients
Micronutrients contribute to immune function, inflamma-
tion, energy metabolism, and bone health, impacting athletic
performance (51, 188–190). Adequate intakes of iron, zinc
and vitamins A, E, C, B-6, and B-12 are essential for
proper immune function, which may be compromised under
conditions of heavy training and competition in athletes (51).
Furthermore, dietary requirements for some micronutrients
may be increased in athletes due to losses in sweat and urine
and increased oxidative stress (51, 188). Additionally, female
athletes are at higher risk of iron deficiency, compromising
health and performance (191).

Micronutrient deficiencies can also impact the gut mi-
crobiota (192). Lack of antioxidant micronutrients (e.g.,
vitamins C and E and selenium) decrease the abundance
of commensal gut bacteria while promoting an increase
in Escherichia coli (192). In animals under increased stress
conditions, an antioxidant blend of vitamin C, vitamin
E, polyphenols, lipoic acid, and microbial antioxidants
restored intestinal redox status, which was correlated with
increased Bifidobacterium and Lactobacilli and decreased

E. coli (193). However, excessive intake of some micronu-
trients may also increase infection susceptibility (51). For
example, excessive iron supplementation in infants increases
pathogenic microbes, including E. coli, and contributes
to intestinal inflammation (194, 195). Thus, micronutrient
supplementation under conditions of increased stress or
micronutrient deficiency may have microbiota-mediated
benefits on immunity and inflammation.

Calcium and vitamin D support bone health. Additionally,
vitamin D may impact skeletal muscle mass and strength
via regulation of calcium-dependent contraction, protein-
dependent skeletal muscle anabolism, mitochondrial func-
tion, and insulin sensitivity (196, 197). Increases in Bifi-
dobacterium, Lachnospiraceae, and Bacteroides in response to
fiber intake are positively correlated with increased calcium
absorption (195, 198). This may be due to SCFA production,
which increases calcium absorption by lowered colonic pH
or regulation of signaling pathways or gene expression (199).
Vitamin D intake also impacts the gut microbiota, although
variability in results precludes the ability to determine
the effect of supplementation on specific taxa (200). The
bidirectional relation between intake calcium and vitamin
D and the gut microbiota has important implications for
bone health (201) in athletes of all ages, whether for growth
or maintenance of bone density, to reduce the risk of
fractures.

Food avoidance
Gastrointestinal issues are common among athletes. To
alleviate symptoms, athletes may avoid or restrict certain
foods that trigger symptoms. Athletes may also adopt nu-
tritional strategies to increase gastric emptying and improve
absorption of water and nutrients, including avoidance of
high-FODMAP foods and gluten-containing foods (202).

FODMAP are nondigestible short-chain carbohydrates
that increase the osmotic load within the gastrointesti-
nal tract. Intestinal microbes can ferment these dietary
components to form gas, which results in bloating and
gastrointestinal distress in certain individuals (203). A recent
study investigating FODMAP intake in endurance athletes
reported high intake, both habitually and surrounding
exercise, contributing to gastrointestinal symptoms (204).
Preliminary results indicate that a low-FODMAP diet alle-
viates gastrointestinal symptoms in athletes (203, 205, 206).
However, FODMAP also act as fuel for the gut microbiota,
and their restriction may impact the composition and
function of the community (207).

It has been postulated that it is the reduction in FODMAP
foods on the gluten-free diet that may be affecting improve-
ment in gastrointestinal symptoms rather than gluten itself
(208–210). To our knowledge, only 1 study has investigated
the effects of a gluten-free diet in nonceliac endurance
athletes (211), which reported no effect of the gluten-
free diet on performance, gastrointestinal symptoms, well-
being, intestinal injury, or inflammatory markers relative to
a gluten-containing diet. However, this was a small study
(n = 13) with a short duration (7 d) and did not assess
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effects on the gut microbiota, limiting its ability to draw
conclusions on effects for the general athlete population
or assess potential long-term effects on health or the gut
microbiota.

Energy intake
Food avoidance may also be applied more generally to
energy restriction to achieve a particular physique or weight
for sport. This is prevalent among female athletes and
may result in inadequate energy availability, menstrual
dysfunction, and decreased bone mineral density termed the
“female athlete triad” (212). Energy deficiency contributes
to gastrointestinal distress in athletes (213). At the extreme,
anorexia decreases gut microbiota diversity and richness
and increases Methanobrevibacter smithii, Proteobacteria,
and the ratio of Bacteroidetes to Firmicutes (214). Anorexia
is also associated with an altered metabolomic profile,
including reduced SCFAs (215). These differences in the
microbiota and metabolomic profiles may contribute to
the clinical manifestations of inadequate energy availabil-
ity, including gastrointestinal symptoms and compromised
bone density (214). Prebiotic and probiotic supplementation
and SCFAs have shown promising effects in the main-
tenance of and improvement in bone density and bone
resorption, potentially via increased calcium absorption or
IGF-I (214, 216). Therefore, microbiota-targeted therapies
may complement dietary and psychiatric treatments for
athletes with inadequate energy intake and/or disordered
eating.

On the other side of the spectrum, many athletes have
increased energy intake relative to sedentary controls (83).
Much of this energy is utilized to support the energy demands
of exercise, muscle remodeling and repair, and the health of
the brain and immune system. However, greater quantities
of food intake result in greater amounts of substrates being
delivered to the large intestine due to the general efficiency of
digestion and absorption. Each day, ∼15% of carbohydrates,
10% of protein, and 7% of fat escape digestion and are
available for microbial fermentation (217). Maldigestion and
malabsorption of nutrients may also be exacerbated by
decreased blood flow and oxygen delivery (i.e., hypoxia) to
the gut during exercise, causing changes in absorption, gut
motility, and transit time (218). Intestinal hypoxia may also
alter the mucosal-associated gut microbiota composition and
disturb the balance of metabolic functions within this niche,
potentially compounding the effects of these changes in
gastrointestinal physiology on maldigestion and malabsorp-
tion. Increased caloric intake, independent of macronutrient
composition changes, increases Firmicutes and decreases
Bacteroidetes and microbiota diversity (219). Total calorie in-
take is positively correlated with the abundance of circulating
serum zonulin, a marker of gastrointestinal permeability, in a
large cohort of women, including athletes, anorexia nervosa
patients, and normal-weight, overweight, and individuals
with obesity (220). Zonulin was also negatively correlated
with Ruminococcaceae and Faecalibacterium, both of which
are butyrate-producing taxa, suggesting alterations in the gut

microbiota composition (220). There were no differences
in zonulin or gut microbiota composition detected between
athletes and nonathletes, but differences in dietary intakes
between the groups were not discussed, and therefore it
is unclear whether disparities in dietary intake, or lack
thereof, may have contributed to this homogeneity. Thus,
while higher energy intake may contribute to differences in
gastrointestinal function and the microbiota, athletes should
obtain adequate dietary intake to support increased energy
demands.

Hydration
Hydration status is crucial for athlete health and performance
and is supported by water and electrolyte transport across
the gastrointestinal barrier. There is limited information
on the effects of hydration status on the gut microbiota.
However, lubiprostone, a clinical agent that is used to
stimulate Cl– secretion and thus cause water and electrolyte
secretion in the gut, alters in the intestinal mucus layer
and increases Lactobacilli in mice (221, 222). Additionally,
dehydration can lead to constipation (223). Constipation has
been associated with decreased Bacteroides, Roseburia, and
Coprococcus and increased abundances of genes involved in
gas production (224). Furthermore, stool consistency and
transit time are linked to the diversity and composition
of the gut microbiota (225). Dehydration also increases
gastrointestinal distress symptoms (218), suggesting that
insufficient fluid replacement affects gut function and may
impact the gut microbiota.

The gut microbiota may also influence hydration status via
cellular transport of solutes through the gastrointestinal mu-
cosa (22). Hydration status biomarkers, including copeptin,
urine volume, and urine nitrogen concentration, are associ-
ated with substrate utilization and energy expenditure (226)
as well as long-term health outcomes such as metabolic
syndrome, diabetes, obesity, kidney disease, and heart disease
(227) and may therefore be useful measurements to assess
the relation of the gut microbiota with hydration and
health outcomes. These associations would help assess the
effects of the gut microbiota on hydration status, or vice
versa, and subsequent effects on substrate utilization and
gastrointestinal distress in athletes during competition, both
of which could potentially impact performance.

Additionally, carbohydrate, electrolyte, and energy bev-
erages are commonly used by endurance athletes (228)
but, to our knowledge, no studies have investigated the
effects of carbohydrate or concentrated sports drinks on the
gut microbiota (17). However, intake of both caloric and
low/noncaloric sweeteners and food emulsifiers commonly
contained in these beverages may have harmful, proinflam-
matory effects (229). Both sucralose and emulsifiers such
as carrageenan have been shown to trigger proinflamma-
tory responses, including upregulation of TNF-α as well
as increased gastrointestinal permeability in both humans
and animal models (146, 229). Ultimately, the effects of
low/noncaloric sweeteners on the gut microbiota of athletes
remain unclear (138, 230–233).
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Sport supplements
To support and enhance athletic performance, athletes fre-
quently consume nutritional supplements that may also have
additional, unintended, impacts on the gut microbiota (17).
Some of these, such as protein supplements, BCAAs, taurine,
ɷ-3 fatty acids, vitamin D, and probiotics, have already
been discussed. However, other commonly used supplements
include antioxidants, nitrates, sodium bicarbonate, creatine,
B-alanine, and caffeine (17, 234).

While some degree of exercise-induced oxidative
stress is necessary for muscle adaptation, excessive ROS
concentrations may compromise health, immunity, and
recovery (17). Polyphenols are plant-derived compounds
commonly used for their antioxidant properties to mitigate
excessive oxidative stress in athletes (235). However, the
bioavailability, absorption, and effects of polyphenols
often depend on their conversion by the gut microbiota
into more bioavailable, bioactive metabolites (236, 237).
Additionally, polyphenols exert prebiotic-like effects on the
gut microbiota composition by increasing the abundances of
commensal bacteria, including Bifidobacterium, Lactobacilli,
Akkermansia muciniphila, Faecalibacterium prausnitzii, and
Roseburia spp. (237). Therefore, in addition to direct effects
on reducing excess ROS, polyphenols may improve recovery
and performance via their effects on the gut microbiota and
the production of microbial metabolites.

Nitrates, mainly in the form of beetroot juice, improve
athletic performance via increased oxygen uptake efficiency
by skeletal muscle (238). Conversion of dietary nitrate to
nitrite may also influence the gut microbiota composition
via antimicrobial properties and modulation of intestinal
permeability (238). However, it is difficult to isolate the
role of nitrates from other compounds, such as polyphenols
provided by vegetable intake (238). Certain bacteria can also
utilize nitrate as a nutrient, which may increase bioavailabil-
ity in skeletal muscle and contribute to its ergogenic effect
(238).

Sodium bicarbonate is used to enhance buffering ca-
pacity, thus mitigating the increase in intracellular acidosis
during intense exercise (239). Bicarbonate-rich mineral wa-
ter consumption increases Christenellaceae, Bacteroidaceae,
and Erysipelotrichaceae and decreases Bifidobacteriaceae
(240). While higher abundance of Christenellaceae has
been reported in lean individuals relative to individuals
with obesity (241), it is unclear whether changes in the
gut microbiota resulting from sodium bicarbonate supple-
mentation may contribute to its ergogenic effects during
exercise.

Creatine increases the muscle phosphocreatine reservoir,
enhancing rapid ATP regeneration during high-intensity
exercise (234). To our knowledge, there are no studies of the
effects of creatine supplementation on the gut microbiota.
Higher doses of creatine (≥10g) increase gastrointestinal
distress and the risk of diarrhea (242). However, lower doses
of creatine do not affect gastrointestinal symptoms (242) and
research in mice suggests that glycine amidinotransferase
(GATM), the enzyme that catalyzes the rate-limiting step of

creatine biosynthesis, has a beneficial effect on gastrointesti-
nal barrier integrity (243).

B-alanine is the rate-limiting precursor for carnosine
synthesis, and supplementation is used to elevate muscle
carnosine concentration, providing a benefit for high-
intensity exercise (234). The effects of B-alanine supplemen-
tation on the gut microbiota or the effects of the gut micro-
biota on B-alanine supplementation efficacy have not been
investigated. However, certain bacteria, including Lacto-
bacilli and Streptococcus thermophilus, have functional genes
capable of B-alanine metabolism (244). Furthermore, animal
models using antibiotic treatment and stress induced changes
in microbial metabolism of B-alanine (245, 246). Therefore,
it is plausible that the gut microbiota may influence the
ergogenic effects of B-alanine supplementation.

Caffeine is widely used to reduce perceived effort, fatigue,
or pain during exercise (234). Caffeine can be consumed in
coffee, tea, energy drinks, pills, or foods. While some research
has shown modest effects of coffee on the gut microbiota,
such as increases in Bifidobacterium and Bacteroides (247,
248), coffee and tea contain complex mixtures of other
compounds, such as polyphenols and chlorogenic acid, that
may also impact the gut microbiota. A study in mice
investigated the effects of coffee or coffee components (i.e.,
caffeine or chlorogenic acid) on the gut microbiota and
demonstrated that caffeine increased butyrate and propionate
(249). However, chlorogenic acid induced greater increases
in acetate, propionate, and butyrate, while coffee had no
significant effect, although another study in rats revealed
an increase in SCFAs in response to coffee intake (250).
Therefore, it is difficult to determine the potential for the
gut microbiota and SCFAs to mediate the ergogenic effects
of caffeine or coffee intake.

Overall, there is evidence to suggest that supplements
commonly used by athletes may also affect the gut microbiota
and the production of metabolites such as SCFAs. The
implications of these changes in the gut microbiota on the
ergogenic effects of these supplements are unclear but could
involve mediation of effects via the gut–muscle axis.

Future Directions
There is currently a lack of research in humans on the inter-
action between the gut microbiota and exercise, particularly
in combination with a controlled diet, which is a significant
confounding factor. Researchers should implement validated
approaches to assess acute (Automated Self-Administered
24-hour [ASA-24] dietary recall) and habitual dietary intake
(Food-Frequency Questionnaire [FFQ]), which also allow for
the calculation of standardized values such as the Healthy
Eating Index (HEI). Dietary quality, commonly measured
using the HEI, is associated with better physical performance
(251), although it has been proposed that an Athlete Diet
Index targeted specifically at assessing dietary quality for
athletes may be more relevant (252). In terms of nutrient
intake, higher protein intake in athletes compared with
sedentary controls has been documented (83). However, an
emphasis on protein, carbohydrate, and fat intake differs by
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sport modality (84, 253), gender (254), and as a result of fluc-
tuations in training (255). Therefore, accurate measurement
of both nutrient content and diet quality will help separate the
effects of sport on the gut microbiota from other confounding
factors. Studies should also record fluid intake or measure
hydration biomarkers (e.g., copeptin) to determine whether
hydration status affects the gut microbiota or vice versa.
Additionally, the effects of diet and exercise on the gut micro-
biota are often transient and do not persist after completion
of the intervention (23, 256, 257). This suggests that long-
term lifestyle habits are necessary to induce stable shifts in
the gut microbiota. Alternatively, certain interventions or
interventions during critical development windows may have
more lasting effects on the gut microbiota, although this
requires further investigation.

Although animal models are useful because factors such
as diet can be stringently controlled and tissue samples are
available to study mechanisms, differences in gastrointesti-
nal physiology, microbiota compositions, effects of genetic
background in mice, coprophagy, housing conditions, and
feeding, as well as insufficient numbers of “donor micro-
biomes” in the case of human microbiota transplants in
rodents all limit the translation of rodent research (258, 259).
Future research should focus on using a tiered approach
in which human clinical trials are used to identify target
bacteria that may benefit athletic performance and animal
and in vitro studies are used to determine causality and
mechanisms. Human trials may then be used again to
determine whether supplementation with the identified
bacteria or implementation of dietary practices (e.g., pre-
biotics/nondigestible carbohydrates, ɷ-3 fatty acid supple-
ments, type/amount of protein intake) that enhance bacterial
abundance and/or functionality are beneficial for athletic
performance.

Clinical studies investigating the effects of high-protein
diets, whole-food protein sources, and protein supplements
in the context of a controlled diet are needed to determine
the impact of these dietary patterns and components on
the gut microbiota in athletes. Additionally, more research
is needed to clarify the effects of amounts and types of
dietary fat on the gut microbiota and subsequent microbiota-
mediated (e.g., via bile acids) effects on exercise performance.
This research should consider differences among athletes
practicing sports of different durations and intensities and
effects in female athletes, as fat oxidation during exercise is
higher in women versus men (260). Research is also needed
to establish the potential detrimental effects of a diet low in
nondigestible carbohydrates on the athletic gut microbiota
as well as the potential beneficial effects of different types,
doses, and timing of fiber intake and other candidate
prebiotics, in whole foods or as isolated supplements, on
athlete health and performance while addressing issues of
tolerability and gastrointestinal distress. To assess the role of
microbial metabolites, future studies should consider the use
of intrinsically labeled SCFAs to assess systemic availability
and their incorporation into biologically relevant molecules
(18). While some research suggests a potential ergogenic

effect of probiotic strains in athletes (2, 36, 156, 261),
confirmatory trials to replicate findings are rare. Therefore,
correlations of single strains or multi-strain formulations
with certain performance or health outcomes are primarily
based on a single study (172). More evidence is needed to
clarify the potential for ingestion of probiotics or fermented
foods to enhance athletic performance. Additionally, more
research is needed with larger and more diverse sample
populations to determine the specific strains or combinations
of strains that may induce specific, desired responses in
athletes and potential modification of effects by individual
factors, such as gender, as this has been reported to impact
gastrointestinal structure, function, and microbiota at rest
and during exercise (35). Similarly, response to prebiotics,
probiotics, and dietary strategies such as a low-FODMAP
or gluten-free diet may differ based on an individual’s
baseline microbiota composition (8, 262), indicating that
researchers must take a precision nutrition approach to
account for interindividual differences that may influence
the efficacy of avoidance of certain dietary components. This
may also be true of the microbial and ergogenic response
to dietary supplements, although more research is needed to
understand the interaction between sports supplements and
the gut microbiota.

It is increasingly recognized that the responses of an indi-
vidual’s gut microbiota to diet are personalized depending on
characteristics such as the presence or abundance of keystone
species (e.g., Ruminococcus bromii or Prevotella copri) (155,
263) or metabotypes (264). Interindividual variability in mi-
crobial responses then contributes to variability in metabolic
responses (e.g., glycemic response) and health outcomes
(e.g., weight loss) (7, 8). Therefore, dietary strategies require
a nuanced approach to optimize health via the gut micro-
biota. To capture this complexity, future research should
also integrate other “omics” data to determine potential
metabolites, genes, and epigenetic modifications that may
cause, contribute to, mediate, or modulate the effects of
diet and exercise on the gut microbiota (265–267). The use
of “omics” data coupled with machine-learning methods
has the potential to uncover novel associations between
the gut microbiota and its metabolites, diet, and athletic
performance, as well as predict personalized responses to
dietary strategies (16). The impacts of these findings include
the potential for enhanced performance in athletes and
improved health, particularly gastrointestinal and respiratory
health. Additionally, the research will lead to a greater
understanding of the interaction between the gut microbiota,
diet, and human health that may have implications and
applications that extend beyond the athletic population to
benefit the health of all.

Conclusions
To achieve optimum performance, athletes must fuel, train,
and utilize their entire supraorganism, including their gut
microbiota, by implementing gut-centric dietary strategies
(Text Box 2). There is a growing body of research on the
role of the gut microbiota in sport and performance. Current
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evidence suggests that the gut microbiota may contribute
to the effects of dietary intake on athletic performance
via production of metabolites (e.g., SCFAs, secondary bile
acids), influence on gastrointestinal physiology (e.g., nutrient
absorption, barrier integrity, motility, gas production), and
immune modulation (e.g., pathogen inhibition, GALT).
Common dietary strategies in athletes, such as high protein
and simple carbohydrate intake, low intake of nondigestible
carbohydrates, and food avoidance, may adversely impact
the gut microbiota and predispose athletes to gastrointestinal
distress and thus impair performance. Conversely, intake
of adequate dietary fiber, a variety of protein sources, and
emphasis on unsaturated fats, especially ɷ-3 fatty acids, as
well as supplementation with pre-, pro-, and synbiotics, have
shown promising results in optimizing the health of the
athlete and their gut microbiota with potential beneficial
effects on performance.

Text Box 2.
Summary

• Diet and exercise affect the composition and
function of the gut microbiome via substrate availability
and physiological changes to the gastrointestinal envi-
ronment.

• Sport-centric dietary strategies such as high pro-
tein, carbohydrate loading, and FODMAP restriction as
well as gut-centric dietary strategies such as pro-, pre-,
and synbiotics all represent opportunities to impact both
the gut microbiota and athletic performance.

• High-protein diets and use of protein supplements
show a greater effect on microbial metabolites than on
the gut microbiota composition. The gut microbiota
may contribute to muscle protein anabolism and func-
tion by modulating protein absorption and utilization.

• High-fat and saturated fat intake are associated
with a proinflammatory gut microbiota composition,
although ɷ-3 fatty acids promote SCFA production.
Effects of these changes on athletic performance is
inconclusive.

• Intake of highly digestible carbohydrates at the
expense of fiber has detrimental effects on the gut micro-
biota, whereas SCFAs produced by the gut microbiota
from dietary fiber are positively associated with muscle
function.

• Pro-, pre-, and synbiotics can alter the gut
microbiota and positively affect athletic performance
and recovery. Variability in strains, doses, and other
individual factors makes it difficult to identify the
ergogenic effects of these gut-centric dietary strategies.

• The gut microbiota influences the absorption
of certain micronutrients, including calcium, that are
important for aspects of athlete health and performance,
such as bone health.

• Short-term or pre-exercise avoidance of certain
foods or food groups, such as FODMAPs or gluten, may

be warranted for some individuals but the long-term
effects of these strategies on the athletic gut microbiota
and performance are unclear.

• Energy deficiency or excess both influence the
gut microbiota. The gut microbiota and microbiota-
based therapies may help alleviate detrimental effects of
both extremes including gastrointestinal symptoms and
compromised bone density.

• There is limited evidence on the effect of hydration
status or sports drinks on the gut microbiota, although
dehydration is associated with constipation and gas-
trointestinal symptoms that affect or indicate effects on
the gut microbiota.

• Sports supplements are used for their ergogenic
effects but their effects on the gut microbiota are unclear
and warrant further research.
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