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Abstract

Many high-dimensional hypothesis tests aim to globally examine marginal or low-dimensional 

features of a high-dimensional joint distribution, such as testing of mean vectors, covariance 

matrices and regression coefficients. This paper constructs a family of U-statistics as unbiased 

estimators of the ℓp-norms of those features. We show that under the null hypothesis, the 

U-statistics of different finite orders are asymptotically independent and normally distributed. 

Moreover, they are also asymptotically independent with the maximum-type test statistic, whose 

limiting distribution is an extreme value distribution. Based on the asymptotic independence 

property, we propose an adaptive testing procedure which combines p-values computed from the 

U-statistics of different orders. We further establish power analysis results and show that the 

proposed adaptive procedure maintains high power against various alternatives.
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1. Introduction.

Motivation.

Analysis of high-dimensional data, whose dimension p could be much larger than the 

sample size n, has emerged as an important and active research area (e.g., [19, 21, 23, 63]). 

In many large-scale inference problems, one is often interested in globally testing some 

overall patterns of low-dimensional features of the high-dimensional random observations. 
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One example is genome-wide association studies (GWAS), whose primary goal is to 

identify single nucleotide polymorphisms (SNPs) associated with certain complex diseases 

of interest. A popular approach in GWAS is to perform univariate tests, which examine each 

SNP one by one. This, however, may lead to low statistical power due to the weak effect size 

of each SNP [47] and the small statistical significance threshold (~ 10−8) chosen to control 

the multiple-comparison type I error [40]. Researchers therefore have proposed to globally 

test a genetic marker set with many SNPs [40, 64] in order to achieve higher statistical 

power and to better understand the underlying genetic mechanisms.

In this paper, we focus on a family of global testing problems in the high-dimensional 

setting, including testing of mean vectors, covariance matrices and regression coefficients 

in generalized linear models. These problems can be formulated as H0 :ℰ = 0, where 0 

is an all zero vector, ℰ = {el : l ∈ ℒ} is a parameter vector with ℒ being the index set, 

and el’s being the corresponding parameters of interest, for example, elements in mean 

vectors, covariance matrices or coefficients in generalized linear models. For the global 

testing problem H0 :ℰ = 0 versus HA :ℰ ≠ 0, two different types of methods are often used 

in the literature. One is sum-of-squares-type statistics. They are usually powerful against 

“dense” alternatives, where ℰ has a high proportion of nonzero elements with a large 

‖ℰ‖2 = ∑l ∈ ℒel
2 or its weighted variants. See examples in mean testing (e.g., [4, 11, 12, 

25, 26, 60, 62]) and covariance testing (e.g., [3, 13, 42, 45]). The other is maximum-type 

statistics. They are usually powerful against “sparse” alternatives, where ℰ has few nonzero 

elements with a large ‖ℰ‖∞ (e.g., [6, 8, 9, 27, 36, 46, 58]). More recently, [20, 70] 

also proposed to combine these two kinds of test statistics. However, for denser or only 

moderately dense alternatives, neither of these two types of statistics may be powerful, as 

will be further illustrated in this paper both theoretically and numerically. Importantly, in 

real applications, the underlying truth is usually unknown, which could be either sparse, 

dense or in-between. As global testing could be highly underpowered if an inappropriate 

testing method is used (e.g., [15]), it is desired in practice to have a testing procedure with 

high statistical power against a variety of alternatives.

A family of asymptotically independent U-statistics.

To address these issues, we propose a U-statistics framework and introduce its applications 

to adaptive high-dimensional testing. The U-statistics framework constructs unbiased and 

asymptotically independent estimators of ‖ℰ‖a
a ≔ ∑l ∈ ℒel

a for different (positive) integers 

a, where a = 2 corresponds to a sum-of-squares-type statistic, and an even integer a → ∞ 
yields a maximum-type statistic. The adaptive testing then combines the information from 

different ‖ℰ‖a
a’s, and our power analysis shows that it is powerful against a wide range of 

alternatives, from highly sparse, moderately sparse to dense, to highly dense.

To illustrate our idea, suppose z1, … , zn are n independent and identically distributed 

(i.i.d.) copies of a random vector z. We consider the setting where each parameter el 

has an unbiased kernel function estimator Kl(zi1, … , ziγl
), and γl is the smallest integer 

such that for any 1 ≤ i1 ≠ ⋯ ≠ iγl ≤ n, E[Kl(zi1, … , ziγl
)] = el. This includes many 

testing problems on moments of low orders, such as entries in mean vectors, covariance 
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matrices and score vectors of generalized linear models, which shall be discussed in 

detail. The family of U-statistics can be constructed generally as follows. For integers a 
≥ 1 and 1 ≤ i1 ≠ ⋯ ≠ iγl ≠ ⋯ ≠ i(a−1)×γl+1 ⋯ ≠ ia×γl ≤ n, since the z’s are i.i.d., we 

have E[Kl(zi1, …, ziγl)⋯Kl(zi(a − 1) × γl + 1, …, zia × γl)] = el
a. Therefore, we can construct an 

unbiased estimator of the parameters of augmented powers el
a with different a. Then ‖ℰ‖a

a

has an unbiased estimator

U(a) = ∑
l ∈ ℒ

(Pa × γl
n )−1 ∑

1 ≤ i1 ≠ ⋯ ≠ ia × γl ≤ n
∏

k = 1

a
Kl(zi(k − 1) × γl + 1, …, zik × γl), (1.1)

where Pk
n = n! ∕ (n − k)! denotes the number of k-permutations of n. We call a the order of 

the U-statistic U(a). If a > b, we say U(a) is of higher order than U(b) and vice versa.

This construction procedure can be applied to many testing problems. We give three 

common examples below for illustration and more detailed case studies will be discussed in 

Sections 2 and 4.

EXAMPLE 1. Consider one-sample mean testing of H0 : μ = 0, where ℰ = μ is the mean vector 

of a p-dimensional random vector x. Suppose x1, … , xn are n i.i.d. copies of x. For each i = 

1, … , n, j = 1, … , p, xi,j is a simple unbiased estimator of μj, then we can take the kernel 

function Kj(xi) = xi,j. Following (1.1), we know the U-statistic

U(a) = (Pan)−1 ∑
j = 1

p
∑

1 ≤ i1 ≠ ⋯ ≠ ia ≤ n
∏

k = 1

a
xik, j

is an unbiased estimator of ‖ℰ‖a
a = ‖μ‖a

a = ∑j = 1
p μja. Please see Section 4.1 for the two-

sample mean testing example and related theoretical properties.

EXAMPLE 2. Suppose x1, … , xn are n i.i.d. copies of a random vector x with mean vector μ 
= 0 and covariance matrix Σ = {σj1,j2}p×p. For covariance testing H0 : σj1,j2} = 0 for any 1 

≤ j1 ≠ j2 ≤ p, we have ℰ = {σl : l ∈ ℒ} with ℒ = {(j1, j2) :1 ≤ j1 ≠ j2 ≤ p}. Since xi,j1xi,j2 is a 

simple unbiased estimator of σj1,j2, then for each pair l = (j1, j2) ∈ ℒ, we can take the kernel 

function Kl(xi) = xi,j1xi,j2. Following (1.1), the U-statistic

U(a) = (Pan)−1 ∑
1 ≤ j1 ≠ j2 ≤ p

∑
1 ≤ i1 ≠ ⋯ ≠ ia ≤ n

∏
k = 1

a
(xik, j1xik, j2)

is an unbiased estimator of ‖ℰ‖a
a = ∑1 ≤ j1 ≠ j2 ≤ pσj1, j2

a . Please see Section 2 for one-

sample covariance testing with unknown μ, and Section 4.2 for two-sample covariance 

testing.
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EXAMPLE 3. Consider a response variable y and its covariates x ∈ ℝp following a generalized 

linear model: E(y∣x) = g−1(x⊤β), where g is the canonical link function and β ∈ ℝp are the 

regression coefficients. Suppose that (xi, yi), i = 1, … , n, are i.i.d. copies of (x, y). For 

testing H0 : β = β0, the score vectors (Si,j = (yi − μ0,i)xi,j : j = 1, … , p)⊤ are often used in 

the literature, where μ0, i = g−1(xi
⊺β0). Note that E(Si,j) = 0 under H0. Thus to test H0, we can 

take ℰ = {E(Si, j) : j = 1, …, p} and use the U-statistic

U(a) = (Pan)−1 ∑
j = 1

p
∑

1 ≤ i1 ≠ ⋯ ≠ ia ≤ n
∏

k = 1

a
Sik, j,

which is an unbiased estimator of ‖ℰ‖a
a = ∑j = 1

p {E(Si, j)}a. Please see Section 4.3.

Related literature.

For high-dimensional testing, some other adaptive testing procedures have recently been 

proposed in [52, 65, 67]. These works combine the p-values of a family of sum-of-powered 

statistics that are powerful against different ‖ℰ‖a
a’s. However, in these existing works, 

to evaluate the p-value of the adaptive test statistic, the joint asymptotic distribution of 

the statistics is difficult to obtain or calculate. Accordingly, computationally expensive 

resampling methods are often used in practice [40, 52, 69]. For some special cases such 

as testing means and the coefficients of generalized linear models, [67] and [65] derived 

the limiting distributions of the test statistics under the framework of a family of von 

Mises V-statistics. However, the constructed V-statistics are usually correlated and biased 

estimators of the target ‖ℰ‖a
a. It follows that in [67] and [65], numerical approximations 

are still needed to calculate the tail probabilities of the adaptive test statistics; see Remark 

4.1 and Section 4.3. In addition, these existing adaptive testing works mainly focus on the 

first-order moments, and their results do not directly apply to testing second-order moments, 

such as covariance matrices.

To overcome these issues, this paper considers the proposed family of unbiased U-statistics. 

There are some other recent works providing important results on high-dimensional U-

statistics (e.g., [14, 43, 72]). For instance, [72] considered testing the regression coefficients 

in linear models using the fourth-order U-statistic; [43] studied the limiting distributions 

of rank-based U-statistics; and [14] studied bootstrap approximation of the second-order 

U-statistics. However, these results do not directly apply to the high-order U-statistics 

considered in this paper.

Our contributions.

We establish the theoretical properties of the U-statistics in various high dimensional testing 

problems, including testing mean vectors, regression coefficients of generalized linear 

models, and covariance matrices. Our contributions are summarized as follows.

Under the null hypothesis, we show that the normalized U-statistics of different finite orders 

are jointly normally distributed. The result applies generally for any asymptotic regime 
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with n → ∞ and p → ∞. In addition, we prove that all the finite-order U-statistics are 

asymptotically independent with each other under the null hypothesis. Moreover, we prove 

that U-statistics of finite orders are also asymptotically independent of the maximum-type 

test statistic with a limiting extreme value distribution.

Under the alternative hypothesis, we further analyze the asymptotic power for U-statistics 

of different orders. We show that when ℰ has denser nonzero entries, U(a)’s of lower 

orders tend to be more powerful; and when ℰ has sparser nonzero entries, U(a)’s of higher 

orders tend to be more powerful. More interestingly, we show that in the boundary case 

of “moderate” sparsity levels, U(a) with a finite a > 2 gives the highest power among the 

family of U-statistics, clearly indicating the inadequacy of both the sum-of-squares- and the 

maximum-type statistics.

An important application of the independence property among U(a)’s is to construct 

adaptive testing procedures by combining the information of different U(a)’s, whose 

univariate distributions or p-values can be easily combined to form a joint distribution to 

calculate the p-value of an adaptive test statistic. Compared with other existing works (e.g., 

[65, 67]), numerical approximations of tail probabilities are no longer needed. As shown in 

the power analysis, an adaptive integration of information across different tests leads to a 

powerful testing procedure.

The rest of the paper is organized as follows. In Sections 2 and 3, we illustrate the 

framework by a covariance testing problem. Particularly, in Section 2.1, we study the 

U-statistics under null hypothesis; in Section 2.2, we analyze the power of the U-statistics; 

in Section 2.3, we develop an adaptive testing procedure. In Sections 3.1 and 3.2, we report 

simulations and a real dataset analysis. In Section 4, we study other high-dimensional testing 

problems, including testing means, regression coefficients, and two-sample covariances. In 

Section 5, we discuss several extensions of the proposed framework. We give proofs and 

other stimulations in Supplementary Material [28].

2. Motivating example: One-sample covariance testing.

The constructed family of U-statistics and adaptive testing procedure can be applied to 

various high-dimensional testing problems. In this section, we illustrate the framework with 

a motivating example of one-sample covariance testing. Analogous results for other high-

dimensional testing problems in Section 4 can be obtained following similar analyses. We 

showcase the study of one-sample covariance testing problem since this is more challenging 

than mean testing due to the two-way dependency structure and the one-sample problem can 

be used as the building block for more general cases.

Specifically, we focus on testing

H0 :σj1, j2 = 0 ∀ 1 ≤ j1 ≠ j2 ≤ p, (2.1)

where Σ = {σj1,j2 : 1 ≤ j1, j2 ≤ p} is the covariance matrix of a p-dimensional real-valued 

random vector x = (x1, … , xp)⊤ with E(x) = μ = (μ1, … , μp)⊤. The observed data include n 
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i.i.d. copies of x, denoted by x1, … , xn with xi = (xi,1, … , xi,p)⊤. In factor analysis, testing 

H0 in (2.1) can be used to examine whether Σ has any significant factor or not [1].

Global testing of covariance structure plays an important role in many statistical analysis 

and applications; see a review in [7]. Conventional tests include the likelihood ratio test, 

John’s test and Nagao’s test, etc. [1, 50]. These methods, however, often fail in the high-

dimensional setting when both n, p → ∞. To address this issue, new procedures have been 

recently proposed (e.g., [3, 8, 13, 36-38, 41, 42, 45, 46, 53, 57-59]). However, these methods 

might suffer from loss of power when the sparsity level of the alternative covariance matrix 

varies. In the following subsections, we introduce the general U-statistics framework, study 

their asymptotic properties and develop a powerful adaptive testing procedure.

We introduce some notation. For two series of numbers 

un,p, vn,p that depend on n, p: un,p = o(vn,p) denotes 

lim supn, p ∞ ∣ un, p ∕ vn, p ∣ = 0; un, p = O(vn, p) denotes lim supn, p ∞ ∣ un, p ∕ vn, p ∣ < ∞; 

un,p = Θ(vn,p) denotes 0 < lim infn, p ∞ ∣ un, p ∕ vn, p ∣ ≤ lim supn, p ∞ ∣ un, p ∕ vn, p ∣ < ∞; 

un,p ≃ vn,p denotes limn, p ∞un, p ∕ vn, p = 1. Moreover, 
P

 and 
D

 represent the convergence 

in probability and distribution, respectively. For p-dimensional random vector x with mean μ 
and ∀j1, … , jt ∈ {1, … , p}, we write the central moment as

Πj1, …, jt = E (xj1 − μj1)⋯(xjt − μjt) . (2.2)

2.1. Asymptotically independent U-statistics.

For testing (2.1), the set of parameters that we are interested in is 

ℰ = {σj1, j2 :1 ≤ j1 ≠ j2 ≤ p}. Following the previous analysis of (1.1), since σj1,j2 has a 

simple unbiased estimator xi1,j1xi1,j2 − xi1,j1xi2,j2 with 1 ≤ i1 ≠ i2 ≤ n, then for integers a ≥ 1, 

an unbiased U-statistic of ‖ℰ‖a
a = ∑1 ≤ j1 ≠ j2 ≤ pσj1, j2

a  is

U(a) = (P2a
n )−1 ∑

1 ≤ j1 ≠ j2 ≤ p
∑

1 ≤ i1 ≠ ⋯ ≠ i2a ≤ n
∏

k = 1

a
(xi2k − 1, j1xi2k − 1, j2 − xi2k − 1, j1xi2k, j2) .

This is equivalent to

U(a) = ∑
1 ≤ j1 ≠ j2 ≤ p

∑
c = 0

a
( − 1)c a

c
1

Pa + c
n ∑

1 ≤ i1 ≠ ⋯ ≠ ia + c ≤ n

∏
k = 1

a − c
(xik, j1xik, j2) ∏

s = a − c + 1

a
xis, j1 ∏

t = a + 1

a + c
xit, j2 .

(2.3)

REMARK 2.1. The U-statistics can be constructed by another method equivalently. Given 1 ≤ 

j1 ≠ j2 ≤ p, define φj1,j2 = σj1,j2 + μj1μj2. Then
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∑
1 ≤ j1 ≠ j2 ≤ p

σj1, j2
a = ∑

1 ≤ j1 ≠ j2 ≤ p
∑

c = 0

a a
c φj1, j2

a − c × ( − μj1μj2)c, (2.4)

which is a polynomial function of the moments μj and φj1,j2. Since μj and φj1,j2 have 

unbiased estimators xi,j and xi,j1xi,j2 respectively, then for 1 ≤ i1 ≠ ⋯ ≠ ia+c ≤ n, 

E(∏k = 1
a − c xik, j1xik, j2∏s = a − c + 1

a xis, j1∏t = a + 1
a + c xit, j2) = φj1, j2

a − cμj1
c μj2

c . Given this and (2.4), 

the U-statistics (2.3) can be obtained.

REMARK 2.2. The summed term with c = 0 in (2.3) is

U(a) ≔ (Pa
n)−1 ∑

1 ≤ i1 ≠ ⋯ ≠ ia ≤ n
∑

1 ≤ j1 ≠ j2 ≤ p
∏

k = 1

a
(xik, j1xik, j2), (2.5)

which has the same form as the simplified U-statistic for mean zero observations in Example 

2, and is shown to be the leading term of (2.3) in proof.

We next introduce some nice properties of the U-statistics (2.3). The first one is the 

following location invariant property.

PROPOSITION 2.1. U(a) constructed as in (2.3) is location invariant; that is, for any vector 

Δ ∈ ℝp, the U-statistic constructed based on the transformed data {xi + Δ : i = 1, … , n} is 
still U(a).

The following proposition verifies that the constructed U-statistics are unbiased estimators 

of ‖ℰ‖a
a = ∑1 ≤ j1 ≠ j2 ≤ pσj1, j2

a .

PROPOSITION 2.2. For any integer a, E[U(a)] = ∑1 ≤ j1 ≠ j2 ≤ pσj1, j2
a . Under H0 in (2.1), 

E[U(a)] = 0.

We next study the limiting properties of the constructed U-statistics under H0 given the 

following assumptions on the random vector x = (x1, … , xp)⊤.

CONDITION 2.1 (Moment assumption). limp ∞max1 ≤ j ≤ p E(xj − μj)8 < ∞ and 

limp ∞min1 ≤ j ≤ p E(xj − μj)2 > 0.

CONDITION 2.2 (Dependence assumption). For a sequence of random variables z 

= {zj : j ≥ 1} and integers a < b, let Za
b be the σ-algebra generated by 

{zj : j ∈ {a, … , b}}. For each s ≥ 1, define the α-mixing coefficient 

αz(s) = supt ≥ 1{ ∣ P(A ∩ B) − P(A)P(B) ∣ :A ∈ Z1
t , B ∈ Zt + s

∞ }. We assume that under H0, x 

is α-mixing with αx(s) ≤ Mδs, where δ ∈ (0, 1) and M > 0 are some constants.

CONDITION 2.2* (Alternative dependence assumption to Condition 2.2). Following the 
notation in (2.2), we assume that under H0, for any j1, j2, j3 ∈ {1, … , p}, Πj1,j2,j3 = 0; 
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for any j1, j2, j3, j4 ∈ {1, … , p}, Πj1,j2,j3,j4 = κ1(σj1,j2σj3,j4 + σj1,j3σj2,j4 + σj1,j4σj2,j3) for 
some constant κ1 < ∞; and for t = 6, 8, and any j1, … , jt ∈ {1, …, p}, Πj1,…,jt = 0 when at 
least one of these indexes appears odd times in {j1, …, jt}.

Condition 2.1 assumes that the eighth marginal moments of x are uniformly bounded from 

above and the second moments are uniformly bounded from below, which are true for 

most light-tailed distributions. Condition 2.2 assumes weak dependence among different 

xj’s under H0, since the uncorrelatedness of xj’s under H0 may not imply the independence 

of them, especially when xj’s are non-Gaussian. Under H0, Condition 2.2 automatically 

holds when x is Gaussian or m-dependent. The mixing-type weak dependence is similarly 

considered in previous works such as [5, 11, 67] and also commonly assumed in time 

series and spatial statistics [24, 55]. Moreover, the variables in our motivating genome-

wide association studies have a local dependence structure, with their associations often 

decreasing to zero as the corresponding physical distances on a chromosome increase. We 

note that it suffices to have Condition 2.2 hold up to a permutation of the variables.

Alternatively, we can substitute Condition 2.2 with Condition 2.2*. Condition 2.2* specifies 

some higher-order moments of x and is satisfied when x follows an elliptical distribution 

with finite eighth moments and covariance Σ (see [1, 22, 50, 51]). Conditions 2.2* and 

2.2 become equivalent when x follows a multivariate Gaussian distribution. The fourth 

moment condition is also assumed in other high-dimensional research [6]. In this work, the 

eighth moment condition is needed to establish the asymptotic joint distribution of different 

U-statistics.

The following theorem specifies the asymptotic variances of the finite order U-statistics and 

their joint limiting distribution. Since the U-statistics are degenerate under H0, an analysis 

different from the asymptotic theory on nondegenerate U-statistics (e.g., [32]) is needed in 

the proof.

THEOREM 2.1. Under H0 in (2.1) and Conditions 2.1 and 2.2 (or 2.2*), for U(a)’s defined in 
(2.3) and any distinct finite (and positive) integers {a1, … , am}, as n, p → ∞,

U(a1)
σ (a1) , …, U(am)

σ (am)
⊺ D N(0, Im), (2.6)

where

σ2(a) ≔ var[U(a)] ≃ a!
Pa

n ∑
1 ≤ j1 ≠ j2 ≤ p; 1 ≤ j3 ≠ j4 ≤ p

(Πj1, j2, j3, j4)a, (2.7)

with Πj1,j2,j3,j4 defined in (2.2). Note that σ2(a) = Θ(p2n−a).

Theorem 2.1 shows that after normalization, the finite-order U-statistics have a joint 

normal limiting distribution with an identity covariance matrix, which implies that they 

are asymptotically independent as n, p → ∞. The nice independence property makes it easy 

to combine these U-statistics and apply our proposed adaptive testing later. Moreover, the 

conclusion holds on general asymptotic regime for n, p → ∞, without any constraint on the 
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relationship between n and p. We will also see in Section 4 that similar results hold generally 

for some other testing problems.

REMARK 2.3. Theorem 2.1 discusses the U-statistics of finite orders, that is, the a values do 

not grow with n, p. When {x1, … , xp} are independent, Theorem 2.1 can be extended when 

a = O(1) min{logϵ n, logϵ p} for some ϵ > 0. On the other hand, we will show in Section 2.2 

that it is usually enough to include U(a)’s of finite a. Therefore, we do not pursue the general 

case when a grows with n, p in this work.

In the following, we further discuss the maximum-type test statistic U(∞), which 

corresponds to the ℓ∞-norm of the parameter vector ℰ = {el : l ∈ ℒ}, that is, 

‖ℰ‖∞ = maxl ∈ ℒ ∣ el ∣. In the existing literature, there is already some corresponding 

established work [8, 36] on the test statistic:

Mn
∗ ≔ max

1 ≤ j1 ≠ j2 ≤ p
∣ σj1, j2 ∕ σj1, j1σj2, j2 ∣ , (2.8)

where (σj1, j2)p × p = ∑i = 1
n (xi − x̄)(xi − x̄)⊺ ∕ n and x̄ = ∑i = 1

n xi ∕ n. We will take U(∞) = Mn
∗

below. The limiting distribution of U(∞) was first studied in [36] and extended by [8, 46, 

58]. Next, we restate the result in [8], which gives the limiting distribution of (2.8) under the 

following condition.

CONDITION 2.3. Consider the random vector x = (x1, … , xp)⊤ with mean vector μ = (μ1, … , 

μp)⊤ and covariance matrix Σ = dia(σ1,1,… , σp,p). (xj − μj) ∕ σj, j are i.i.d. for j = 1, … , p. 

Furthermore, Eet0( ∣ x1 − μ1 ∣ ∕ σ1, 1)ς < ∞ for some 0 < ς ≤ 2 and t0 > 0.

THEOREM 2.2 (Cai and Jiang [8], Theorem 2). Assume Condition 2.3 and log p = 

o(nβ), where β = ς/(4 + ς). Then P(n × U(∞)2 + ϖp ≤ u) G(u) = e−(1 ∕ 8π)e−u ∕ 2
, where 

ϖp = − 4 log p + log log p and G(u) is an extreme value distribution of type I.

Theorems 2.1 and 2.2 give the limiting distributions of U(a) of finite orders and U(∞)
respectively; it is of interest to examine their joint distribution. The following theorem 

shows that although U(∞) has limiting distribution different from U(a), a < ∞, they are still 

asymptotically independent.

THEOREM 2.3. Assume that Condition 2.1 is satisfied, Condition 2.3 holds for ς = 2, and log p 
= o(n1/7). For finite integers {a1, … , am}, under H0, U(a1), …, U(am) and U(∞) are mutually 

asymptotically independent. Specifically, ∀z1, … , zm, y ∈ ℝ, as n, p → ∞,

P nU(∞)2 + ϖp ≥ y,
U(a1)
σ (a1) ≤ z1, …,

U(am)
σ (am) ≤ zm

−P(nU(∞)2 + ϖp ≥ y) × ∏
r = 1

m
P

U(ar)
σ (ar) ≤ zr 0 .
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Theorem 2.1 suggests that all the finite-order U-statistics are asymptotically independent 

with each other. Given this, Theorem 2.3 further shows that the maximum-type test statistic 

U(∞) is also asymptotically mutually independent with those finite-order U-statistics. The 

conclusion shares similarity with some classical results on the asymptotic independence 

between the sum-of-squares-type and maximum-type statistics. Specifically, for random 

variables w1,… , wn, [30, 33] proved the asymptotic independence between ∑i = 1
n wi2 and 

maxi=1,…,n ∣wi∣ for weakly dependent observations. The similar independence properties 

were extensively studied in literature (e.g., [31, 34, 44, 48, 54, 67]). However, there are 

several differences between existing literature and the results in this paper. First, we discuss 

a family of U-statistics U(a)’s, which takes different a values, and U(2) here corresponding 

to the sum-of-squares-type statistic is only a special case of general U(a). Furthermore, 

we have shown not only the asymptotic independence between U(a) and U(∞), but also 

the asymptotic independence among U(a)’s of finite a values. Second, the constructed 

U(a)’s are unbiased estimators, which are different from the sum-of-squares statistics usually 

examined in the literature. Moreover, the x’s are allowed to be dependent and the theoretical 

development in the covariance testing involves a two-way dependence structure, which 

requires different proof techniques from the existing studies.

REMARK 2.4. An alternative way to construct U(∞) is to standardize 

σj1, j2 by its variance var(σj1, j2). Specifically, following Cai et al. 

[6], we take var(σj1, j2) = n−1∑i = 1
n {(xi, j1 − x̄j1)(xi, j2 − x̄j2) − σj1, j2}2. Define 

Mn
† = max1 ≤ j1 ≠ j2 ≤ p ∣ σj1, j2 ∣ ∕ {var(σj1, j2)}1 ∕ 2 and we take U(∞) = Mn

†. Theoretically, 

we prove that Theorem 2.3 still holds with U(∞) = Mn
† in Supplementary Material [28], 

Section B.11. Numerically, we provide the simulations in Supplementary Material [28], 

Section C.2, which shows that Mn
∗ in (2.8) generally has higher power than Mn

†.

To apply hypothesis testing using the asymptotic results in Theorems 2.1 and 2.3, we need to 

estimate var{U(a)}. In particular, we propose the following moment estimator of (2.7):

Vu(a) = 2a!
(Pa

n)2 ∑
1 ≤ j1 ≠ j2 ≤ p

∑
1 ≤ i1 ≠ ⋯ ≠ ia ≤ n

∏
t = 1

a
(xit, j1 − x̄j1)2(xit, j2 − x̄j2)2 . (2.9)

The next result establishes the statistical consistency of Vu(a).

CONDITION 2.4. For integer a, limp ∞max1 ≤ j ≤ pE(xj − μj)8a < ∞.

THEOREM 2.4. Under H0 in (2.1), assume Conditions 2.1, 2.2 and 2.4 hold. Then 

Vu(a) ∕ var{U(a)} P 1.

Theorem 2.4 implies that the asymptotic results in Theorems 2.1 and 2.3 

still hold by replacing var{U(a)} with its estimator Vu(a). Specifically, under 

H0, [U(a1) ∕ Vu(a1), …, U(am) ∕ Vu(am)]⊺ D N(0, Im) under Conditions 2.1, 2.2 and 2.4. 
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Moreover, Theorem 2.3 implies that {U(a) ∕ Vu(a)}’s are asymptotically independent with 

U(∞).

2.2. Power analysis.

In this section, we analyze the asymptotic power of the U-statistics. The power of U(2)
has been studied in the literature. In particular, [10] studied the hypothesis testing of a high-

dimensional covariance matrix with H0 : Σ = Ip. The authors characterized the boundary that 

distinguishes the testable region from the nontestable region in terms of the Frobenius norm 

∥Σ − Ip∥F, and showed that the test statistic proposed by [10, 13], which corresponds to U(2)
in this paper, is rate optimal over their considered regime. However in practice, U(2) may be 

not powerful if the alternative covariance matrix is sparse with a small ∥Σ − Ip∥F. When the 

alternative covariance has different sparsity levels, it is of interest to further examine which 

U(a) achieves the best power performance among the constructed family of U-statistics.

To study the test power, we establish the limiting distributions of U(a)’s under the alternative 

hypothesis HA : Σ = ΣA, where the alternative covariance matrix ΣA = (σj1,j2)p×p is specified 

in the following Condition 2.5. Define JA = {(j1, j2) : σj1,j2 ≠ 0, 1 ≤ j1 ≠ j2 ≤ p}, which 

indicates the nonzero off-diagonal entries in ΣA. The cardinality of JA, denoted by ∣JA∣, then 

represents the sparsity level of ΣA.

CONDITION 2.5. Assume ∣JA∣ = o(p2) and for (j1, j2) ∈ JA, ∣σj1,j2∣ = Θ(ρ), where ρ = 

Σ(j1,j2)∈JA∣σj1,j2∣/∣JA∣.

Here ρ represents the average signal strength of ΣA. In our following power comparison of 

two U-statistics U(a) and U(b), we say U(a) is “better” than U(b), if, under the same test 

power, U(a) can detect a smaller average signal strength ρ (please see the specific definition 

in Criterion 1 on page 163). Condition 2.5 specifies a general family of “local” alternatives, 

which include banded covariance matrices, block covariance matrices and sparse covariance 

matrices whose nonzero entries are randomly located.

THEOREM 2.5. Suppose Conditions 2.1, 2.5 and A.1 (an analogous condition to Condition 

2.2* under HA) in Supplementary Material [28] hold. For U(a) in (2.3) and finite integers 
{a1, … , am}, if ρ = O(∣JA∣−1/atp1/atn−1/2) for t = 1, … , m, then as n, p → ∞,

U(a1) − E[U(a1)]
σ (a1) , …,

U(am) − E[U(am)]
σ (am)

⊺ D N(0, Im),

where for a ∈ {a1, … , am}, E[U(a)] = ∑(j1, j2) ∈ JAσj1, j2
a  and 

σ2(a) = var[U(a)] ≃ 2a!κ1
a × n−a∑1 ≤ j1 ≠ j2 ≤ pσj1, j1

a σj2, j2
a , which is of order Θ(p2n−a).

Theorem 2.5 shows that for a single U-statistic U(a) of finite order a,

P U(a)
var[U(a)] > z1 − α 1 − Φ z1 − α − E[U(a)]

var[U(a)] , (2.10)
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where z1−α is the upper α quantile of N(0, 1) and Φ(·) is the cumulative distribution function 

of N(0, 1). By Theorem 2.5, the asymptotic power of U(a) of the one-sided test depends on

E[U(a)]
var[U(a)] ≃

∑(j1, j2) ∈ JAσj1, j2
a

{2a!κ1
an−a∑1 ≤ j1 ≠ j2 ≤ p (σj1, j1σj2, j2)a}1 ∕ 2 , (2.11)

where (2.11) = Θ(∣JA∣ρap−1na/2). It follows that when E[U(a)] is of the same order of 

var[U(a)], that is, E[U(a)] = O(1) var[U(a)], the constraint of ρ in Theorem 2.5 is satisfied.

In the following power analysis, we will first compare U(a)’s of finite a and then compare 

them with U(∞). As we focus on studying the relationship between the sparsity level and 

power, we consider an ideal case where σj1,j2 = ρ > 0 for (j1, j2) ∈ JA and σj, j = v2 > 0 for j = 

1, … , p. Then

(2.11) ≃ ∣ JA ∣ ρa ∕ 2a!κ1
av2apn−a ∕ 2 . (2.12)

We next show how the order of the “best” U-statistics changes when the sparsity level ∣JA∣ 
varies. To be specific of the meaning of “best,” we compare the ρ values needed by different 

U-statistics to achieve the same asymptotic power. Particularly, we fix E[U(a)] ∕ var[U(a)], 
that is, (2.12) to be some constant M ∕ 2 for different a’s and the asymptotic power of each 

U(a) is (2.10) = 1 − Φ(z1 − α − M ∕ 2). Then by (2.12), the ρ value such that U(a) attains the 

power above is

ρa = κ1(a!)
1

2av2(Mp ∕ ∣ JA ∣ )
1
an− 1

2 . (2.13)

By the definition in (2.13), we compare the power of two U-statistics U(a) and U(b) with a ≠ 

b following the Criterion 1 below:

CRITERION 1. We say U(a) is “better” than U(b) if ρa < ρb.

Given values of n, p, ∣JA∣ and M, (2.13) is a function of a. Therefore, to find the “best” U(a), 
it suffices to find the order, denoted by a0, that gives the smallest ρa value in (2.13). We 

then have the following proposition discussing the optimality among the U-statistics of finite 

orders in (2.3).

PROPOSITION 2.3. Given n, p, ∣JA∣ and any constant M ∈ (0, +∞), we consider ρa in (2.13) as 
a function of integer a, then:

(i) when ∣JA∣ ≥ Mp, the minimum of ρa is achieved at a0 = 1;

(ii) when ∣JA∣ < Mp, the minimum of ρa is achieved at some a0, which increases as Mp/∣JA∣ 
increases.

By Proposition 2.3, the order a0 that attains the smallest value of ρa depends on the 

value of Mp/∣JA∣ and does not have a closed-form solution. We use numerical plots 
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to demonstrate the relationship between a0 and the sparsity level. Particularly, let ∣JA∣= 

p2(1–β), where β ∈ (0, 1) denotes the sparsity level. To have a better visualization, we use 

g(a) = log(ρan1 ∕ 2κ1
−1 ∕ 2v−2) = (1 ∕ 2a) log a! + a−1 log(Mp2β − 1) instead of ρa. We plot g(a) 

curves in Figure 1 for each β ∈ {0.1,…, 0.9} with M = 4 and p ∈ {100, 10000}. Other 

values of M and p are also taken, which give similar patterns to Figure 1 and are not 

presented.

Figure 1 shows that the a0 such that g(a) attains the smallest value increases when the 

sparsity level β increases. In particular, when the sparsity level β ≤ 0.3, that is, when ∣JA∣ 
is “very” large and then ΣA is “very” dense, g(a) has the smallest value at a0 = 1. This is 

consistent with the conclusion in Proposition 2.3 (i). When the sparsity level β is between 

0.4 and 0.5, we note that a0 = 2 achieves the minimum of g(a). This shows that when ∣JA∣ is 

“moderately” large and ΣA is “moderately” dense, U(2) is more powerful than U(1). When 

the sparsity level β > 0.5, we find that a0 > 2. This implies that when ∣JA∣ becomes smaller 

and ΣA becomes sparser, U-statistics of higher orders are more powerful. Additionally, we 

note that a0 increases slowly as β increases, which verifies Proposition 2.3(ii). Moreover, the 

curves converge as a increases and the differences of g(a) for large a values (a ≥ 6) are small. 

This implies that when selecting the range of considered orders of U-statistics, it suffices to 

select an upper bound with a = 6 or 8, which gives better or similar ρa values to those larger 

a’s.

In summary, when ∣JA∣ is large, that is, ΣA is dense, a small a tends to obtain a smaller lower 

bound in terms of ρ. But when ∣JA∣ decreases, that is, ΣA becomes sparse, a U-statistic of 

large finite order (or the maximum-type U-statistic as shown next) tends to obtain a smaller 

lower bound in ρ. This observation is consistent with the existing literature [7, 8, 10, 13].

Next, we proceed to examine the power of the maximum-type test statistic U(∞), and 

compare it with the U-statistics U(a) of finite a defined in (2.3). By [8], the rejection region 

for U(∞) with significance level α is

∣ U(∞) ∣ ≥ tp ≔ n−1 ∕ 2 4 log p − log log p − log(8π) − 2 log log(1 − α)−1 .

Note tp ≃ 2 log p ∕ n and under alternative, the power for U(∞) is

P( ∣ U(∞) ∣ ≥ tp) . (2.14)

As discussed, we consider the alternatives satisfying Conditions 2.2* and 2.5, σj1, j2 = ρ > 0 

for (j1, j2) ∈ JA, and σj, j = ν2 for j = 1,…,p. For simplicity, we assume E(x) = μ and ν2 are 

given, and focus on the simplified

U(∞) = max
1 ≤ j1 < j2 ≤ p

v−2n−1 ∑
i = 1

n
(xi, j1 − μj1)(xi, j2 − μj2) . (2.15)
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We show in the following proposition when the power of U(∞) asymptotically converges to 

1 or is strictly smaller than 1 under alternative.

PROPOSITION 2.4. Under the considered alternative ΣA above, suppose maxj=1,…,p Eet0∣xj–μj∣ς 

< ∞ for some 0 < ς ≤ 2 and t0 > 0, and log p = o(nβ) with β = ς/(4 + ς). Then for (2.15), 

when n, p → ∞:

(i) there exists a constant c1 > 2 such that if ρ ≥ c1 log p ∕ n, (2.14) → 1;

(ii) there exists another constant 0 < c2 < 2 such that when ρ ≤ c2 log p ∕ n, Condition 2.2* 

holds for κ1 ≤ 1 and ∣ JA ∣ = o(1)p
2(1 − c2 ∕ 2)2

κ1 + m (log p)
1
2 − 1

2(κ1 + m)  for some m > 0, we have 

(2.14) ≤ log(1 – α)−1.

Recall that Proposition 2.3 shows that there exists a finite integer a0, such that ρa0 is the 

minimum of (2.13), and ρa0 is a lower bound of ρ value for the finite-order U-statistics to 

achieve the given asymptotic power. With Propositions 2.3 and 2.4, we next compare the 

finite-order U-statistics defined in (2.3) with the maximum-type test statistic U(∞).

PROPOSITION 2.5. Under the conditions of Theorem 2.5 and Proposition 2.4, for any finite 
integer a, there exist constants c1 and c2 such that when p is sufficiently large:

(i) For any M, when ∣ JA ∣ < c1
−a(a!)

1
2κ

1

a
2(log p)−

a
2Mp, U(∞) has higher asymptotic power 

than U(a).

(ii) When M is big enough and ∣ JA ∣ > c2
−a(a!)

1
2κ

1

a
2(log p)−

a
2Mp, U(a) has higher asymptotic 

power than U(∞).

From Proposition 2.3, we know when Mp/∣JA∣ = O(1), there exists a finite a0 such that 

U(a0) is the “best” among all the finite-order U-statistics; in this case, Proposition 2.5(ii) 

further indicates that U(a0) has higher asymptotic power than U(∞). Specifically, if Mp/∣JA∣ 

< 1, a0 = 1, then U(1) is the “best” and its lowest detectable order of ρ is Θ(p∣JA∣−1n−1/2). 

More interestingly, when ΣA is moderately dense or moderately sparse with Mp/∣JA∣ > 1 and 

bounded, some U-statistic of finite order a0 > 1 would become the “best.” By Figure 1, the 

value of a0 increases as ΣA becomes denser. On the other hand, when ΣA is “very” sparse 

with ∣ JA ∣ < c1
−a0(a0!)

1
2κ

1

a0
2 (log p)−

a0
2 Mp, U(∞) is the “best” and its lowest detectable order 

of ρ is Θ( log p ∕ n).

REMARK 2.5. The above power comparison results are under the constructed family of 

U-statistics. We note that additional formulation may further enhance the test power. For 

instance, [11, 73] showed that an adaptive thresholding in certain ℓp-type test statistics can 

achieve high power under the alternatives with sparse and faint signals. It is of interest to 
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incorporate the adaptive thresholding into the constructed family of U-statistics, which is left 

for future study.

Remark 2.6. The analysis above focuses on the ideal case where the nonzero off-

diagonal entries of ΣA are the same for illustration. When these entries of ΣA are 

different, similar analysis still applies by Theorem 2.5 for general covariance matrices. 

In particular, the asymptotic power of U(a) depends on the mean variance ratio (2.11) 

and ρa = κ1n−1 ∕ 2(a!)1 ∕ 2a × (M∑j = 1
p σj, ja ∕ ∑1 ≤ j1, j2 ≤ pσj1, j2

a )1 ∕ a. We can then obtain 

conclusions similar to Propositions 2.3-2.5. One interesting case is when ΣA contains both 

positive and negative entries; the same analysis applies for even-order U-statistics, since 

σj1, j2
a ’s are all nonnegative for even a. On the other hand, the odd-order U-statistics would 

have low power, since ∑1 ≤ j1 ≠ j2 ≤ pσj1, j2
a ’s could be small due to the cancellation of 

positive and negative σj1, j2
a . We have conducted simulations when the nonzero σj1,j2’s are 

different in Section 3.1, and the results exhibit consistent patterns as expected.

2.3. Application to adaptive testing and computation.

Adaptive testing.—Power analysis in Section 2.2 shows that when the sparsity level 

of the alternative changes, the test statistic that achieves the highest power could vary. 

However, since the truth is often unknown in practice, it is unclear which test statistic 

should be chosen. Therefore, we develop an adaptive testing procedure by combining the 

information from U-statistics of different orders, which would yield high power against 

various alternatives.

In particular, we propose to combine the U-statistics through their p-values, which is widely 

used in literature [49, 52, 71]. One popular method is the minimum combination, whose 

idea is to take the minimum p-value to approximate the maximum power [52, 67, 71]. 

Specifically, let Γ be a candidate set of the orders of U-statistics, which contains both finite 

values and TO. We compute p-values pa’s of the U-statistics U(a)’s satisfying a ∈ Γ. The 

minimum combination takes the statistic TadpUmin = min{pa : a ∈ Γ} and has the asymptotic 

p-value padpUmin = 1 – (1 – TadpUmin)∣Γ∣, where ∣Γ∣ denotes the size of the candidate set Γ. 

We reject H0 if padpUmin < α. Under H0, pa’s are asymptotically independent and uniformly 

distributed by the theoretical results in Section 2.1. The type I error is asymptotically 

controlled as P(padpUmin < α) = P(mina ∈ Γ pa < pα∗) α, where pα∗ = 1 − (1 − α)1 ∕ ∣ Γ ∣ . Since 

P(mina ∈ Γ pa < pα∗) ≥ P(pa < pα∗), the power of the adaptive test goes to 1 if there exists a 

∈ Γ such that the power of U(a) goes to 1. We note that the power of the adaptive test is 

not necessarily higher than that of all the U-statistics. This is because the power of U(a)
is P(pa < α), and is different from P(pa < pα∗) since pα∗ < α when ∣Γ∣ > 1. Based on our 

extensive simulations, we find that the adaptive test is usually close to or even higher than 

the maximum power of the U-statistics.

REMARK 2.7. Fisher’s method [49] is another popular method for combining independent 

p-values. It has the test statistic TadpUf = − 2∑k = 1
∣ Γ ∣ log pk, which converges to χ2 ∣ Γ ∣

2  under 
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H0. By our simulations, the minimum combination and Fisher’s method are generally 

comparable, while Fisher’s method has higher power under several cases. Moreover, we can 

also use other methods to combine the p-values, such as higher criticism [16, 17]. We leave 

the study of how to efficiently combine the p-values for future research.

We select the candidate set Γ by the power analysis in Section 2.2. We would recommend 

including {1, 2,…, 6, ∞}, which can be powerful against a wide spectrum of alternatives. 

In particular, by Propositions 2.3 and 2.5, we include a = 1, 2 that are powerful against 

dense signals; a = ∞ that is powerful against sparse signals; and also a = {3,…, 6} for the 

moderately dense and moderately sparse signals. By Figure 1, it generally suffices to choose 

finite a up to 6–8, which often give similar/better performance to/than larger a values. 

The simulations in Section 3.1 confirm the good performance of this choice of Γ; and the 

proposed adaptive test appears to well approximate the “best” performance even when Γ 
may not always contain the unknown “optimal” U-statistics.

We would like to mention that the adaptive procedure can be generalized to other testing 

problems, as long as similar theoretical properties are given, such as the examples in Section 

4.

Computation.—Next, we discuss the computation in the adaptive testing. A direct 

calculation following the form of U(a) in (2.3) and V(a) in (2.9) would be computationally 

expensive for large a with a cost of O(p2n2a). To address this issue, we introduce a method 

that can reduce the cost.

We first consider a simplified setting when E(xi,j) = 0 to illustrate the idea. As discussed in 

Remark 2.2, we examine U(a) defined in (2.5). Let ℒ = {(j1, j2) :1 ≤ j1 ≠ j2 ≤ p} denote the 

set of index tuples, and for each index tuple l = (j1, j2) ∈ ℒ, define si,l = xi,j1 xi,j2. Note that 

U(a) = (Pa
n)−1∑l ∈ ℒUl(a), where Ul(a) = ∑1 ≤ i1 ≠ ⋯ ≠ ia ≤ n ∏k = 1

a sik, l. Calculating Ul(a)

directly is of order O(na). We then focus on reducing the computational cost of Ul(a). For 

l ∈ ℒ and finite integers t1,…,tk, define

V l
(t1, …, tk) = ∏

r = 1

k
∑
i = 1

n
si, l

tr , Ul
(t1, …, tk) = ∑

1 ≤ i1 ≠ ⋯ ≠ ik ≤ n
∏
r = 1

k
si1, l

tr . (2.16)

We can see that Ul(a) = Ul
1a with 1a being an a-dimensional vector of all ones, and 

Ul
(a) = V l

(a) for any finite integer a. To reduce the computational cost of Ul(a), the main 

idea is to obtain Ul
1a from V l

(t1, …, tk)
, whose computational cost is O(n). In particular, Ul(a)

can be attained iteratively from V l
(t1, …, tk)

 based on the following equation:

Ul
(k, 1r − k) = V l

(k) × Ul
1r − k − (r − k) × Ul

(k + 1, 1r − k − 1), (2.17)

which follows from the definitions. Algorithm 1 below summarizes the steps.
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Algorithm 1: 
Iterative computation implementation

We illustrate the idea of the algorithm by some examples. By definition, Ul
(1) = V l

(1), 

which can be computed with cost O(n). Next, consider in (2.17), if r = 2 and k = 

1, then Ul
(1, 1) = V l

(1) × Ul
(1) − (2 − 1) × Ul

(2) = V l
(1) × V l

(1) − V l
(2), which yields Ul

12 with cost 

O(n). For Ul
13, we first take r = 3 and k = 2 in (2.17), then with cost O(n), we have 

Ul
(2, 1) = V l

(2) × Ul
(1) − Ul

(3) = V l
(2) × V l

(1) − V l
(3), as V l

(k) = Ul
(k) by the definition. Given Ul

12

and Ul
(2, 1), we obtain Ul

(1, 12) = V l
(1) × Ul

12 − 2 × Ul
(2, 11)

. Thus Ul
13 is also computed with 

cost O(n). Iteratively, for any finite integer a, we can obtain Ul
1a from V l

(t1, …, tk)
 whose 

computational cost is O(n). More closed-form formulae representing Ul
1a by V l

(t1, …, tk)
 are 

given in Section C.1.1 of Supplementary Material [28].

Algorithm 1 reduces the computational cost of U(a) from O(p2na) to O(p2n). Its idea 

is general and can be extended to compute other different U-statistics by changing the 

input si,l. In particular, the variance estimator V(a) can be computed with cost O(p2n) by 

specifying si, l = (xi, j1 − x̄j1)2(xi, j2 − x̄j2)2, for each l ∈ ℒ = {(j1, j2) :1 ≤ j1 ≠ j2 ≤ p}. Then 

V(a) = 2a!(Pa
n)−2∑l ∈ ℒ ∑l ≤ i1 ≠ ⋯ ≠ ia ≤ n ∏k = 1

a sik, l and Algorithm 1 can be applied. 

Moreover, when E(xi,j) is unknown, U(a) can still be computed with cost O(p2n) using 

the iterative method similar to Algorithm 1. The details are provided in Section C.1.2 of 

Supplementary Material [28].
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3. Simulations and real data analysis.

3.1. Simulations.

We conduct simulation studies to evaluate the performance of the proposed adaptive testing 

procedures, and investigate the relationship between the power and sparsity levels. For 

one-sample covariance testing discussed in Section 2, we generate n i.i.d. p-dimensional xi 

for i = 1,…,n, and consider the following five simulation settings.

Setting 1: xi has p i.i.d. entries of N(0, 1) and Gamma(2, 0.5), respectively. Under each case, 

we take n = 100 and p ∈ {50, 100, 200,400, 600, 800, 1000} to verify the theoretical results 

under H0 and the validity of the adaptive test across different n and p combinations.

For the following settings 2–5, we generate xi from multivariate Gaussian distributions with 

mean zero and different covariance matrices ΣA’s.

Setting 2: ΣA = (1 − ρ)Ip + ρ1p, k01p, k0
⊺ , where 1p,k0 is a p-dimensional vector with the first k0 

elements one and the rest zero. We take (n, p) ∈ {(100, 300), (100, 600), (100, 1000)}, and 

study the power with respect to different signal sizes ρ and sparsity levels k0.

Setting 3: The diagonal elements of ΣA are all one and ∣JA∣ number of off-diagonal elements 

are ρ with random positions. We take (n, p) ∈ {(100, 600), (100, 1000)} and let the signal 

size ρ and sparsity level ∣JA∣ vary to examine how the power changes accordingly.

Setting 4: The diagonal elements of ΣA are all one and ∣JA∣ number of off-diagonal elements 

are uniformly generated from (0, 2ρ) with random positions. We take (n, p) = (100, 1000) 

and similarly let the signal size ρ and sparsity level ∣JA∣ vary to examine how the power 

changes accordingly.

Setting 5: We consider the multivariate models in [13]. Specifically, for each i = 1,…,n, 

xi = Ξzi + μ, where Ξ is a matrix of dimension p × m, and zi’s are i.i.d. Gaussian or 

Gamma random vectors. Under null hypothesis, m = p, Ξ = Ip, μ = 21p; under alternative 

hypothesis, m = p + 1, Ξ = ( 1 − ρIp, 2ρ1p), μ = 2( 1 − ρ + 2ρ)1p. We also take the n and p 

combination in [13] with (n, p) ∈ {(40, 159), (40, 331), (80, 159), (80, 331), (80, 642)}.

We compare several methods in the literature, including both maximum-type and sum-of-

squares-type tests. In particular, the maximum-type test statistic in Jiang [36] is taken 

as U(∞) in this framework. Since the convergence in [36] is known to be slow, we use 

permutation to approximate the distribution in the simulations. In addition, we consider 

some sum-of-squares-type methods. Specifically, we examine the identity and sphericity 

tests in Chen et al. [13], which are denoted as “Equal” and “Spher,” respectively. We also 

compare the methods in Ledoit and Wolf [42] and Schott [57], which are referred to as 

“LW” and “Schott,” respectively.

To illustrate, Figure 2 summarizes the numerical results for the setting 3 when n = 100 and 

p = 1000. All the results are based on 1000 simulations at the 5% nominal significance 

level. In Figure 2, we present the power of single U-statistics with orders in {1,…, 6, ∞}. 
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“adpUmin” and “adpUf” represent the results of the adaptive testing procedure using the 

minimum combination and Fisher’s method in Section 2.2, respectively. The simulation 

results show that the type I error rates of the U-statistics and adaptive test are well controlled 

under H0. In addition, Figure 2 exhibits several patterns that are consistent with the power 

analysis in Section 2.2. First, it shows that among the U-statistics, when ∣JA∣ is very small, 

U(∞) performs best; and when ∣JA∣ increases, the performances of some U-statistics of 

finite orders catch up. For instance, when ∣JA∣ = 100, U(6) and U(∞) are similar and are 

better than the other U-statistics; when ∣JA∣ = 400, U(4) and U(5) are similar and better 

than the other U-statistics. When ΣA is relatively dense, U(2) and U(1) become more 

powerful. Particularly, when ∣JA∣ = 1600, U(2) is powerful; when ∣JA∣ becomes larger, 

such as when ∣JA∣ = 3200, U(1) is overall the most powerful. Second, Figure 2 shows 

that “LW,” “Schott,” “Equal,” “Spher” and U(2) perform similarly under various cases. In 

particular, these methods are not powerful when the alternative is sparse but becomes more 

powerful when the alternative gets denser. This is because they are all sum-of-squares-type 

statistics that target at dense alternatives. Third and importantly, the two adaptive tests 

“adpUmin” and “adpUf” maintain high power across different settings. Specifically, they 

perform better than most single U-statistics: their powers are usually close to or even higher 

than the best single U-statistic. Moreover, “adpUmin” and “adpUf” generally have higher 

power than the compared existing methods. We also note that “adpUf” overall performs 

better than “adpUmin” in this simulation setting. In summary, Figure 2 demonstrates the 

relationship between the sparsity levels of alternatives and the power of the tests, confirming 

the theoretical conclusions in Section 2.2. Notably, the proposed adaptive testing procedure 

is powerful against a wide range of alternatives, and thus advantageous in practice when the 

true alternative is unknown.

Due to the space limitation, we provide other extensive numerical studies in Supplementary 

Material [28], Section C.2. The conclusions are similar to those of Figure 2, and consistent 

with the theoretical results in Section 2.2. In particular, the results show that the empirical 

sizes of the tests are close to the nominal level, suggesting the good finite-sample 

performance of the asymptotic approximations. Moreover, under highly dense alternatives 

with only nonnegative entries in the covariance matrix, U(1) is the most powerful one among 

the U(a)’s and the other tests in [13, 42, 57], in agreement with the results in Propositions 

2.3 and 2.5. Furthermore, the proposed adaptive testing procedures often have higher power 

than most single U-statistics.

3.2. Real data analysis.

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease [56] and is 

ranked as the sixth leading cause of death in the US [68]. Every 65 seconds, someone 

in the US develops AD [2]. To advance our understanding of AD, the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) was started in 2004, collecting extensive genetic data for 

both healthy individuals and AD patients. To gain insight into the genetic mechanisms of 

AD, one can test a single SNP a time. However, due to a relatively small sample size of 

the ADNI data, scanning across all SNPs failed to identify any genomewide significant SNP 

(with p-value < 5 × 10−8) [40]. To date, the largest meta-analysis of more than 600,000 

individuals identified 29 significant risk loci [35] and can only explain a small proportion 
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of AD variance. On the other hand, a group of functionally related genes as annotated in 

a biological pathway are often involved in the same disease susceptibility and progression 

[29]. Thus, pathway-based analyses, which jointly analyze a group of SNPs in a biological 

pathway, have become increasingly popular. We retrieve a total of 214 pathways from the 

KEGG database [39] for the subsequent analysis.

Although pathway-based analyses with KEGG pathways are common in real studies, 

formally testing the correlations of the genes in a KEGG pathway has been largely 

untouched. Here, we apply our method and other competing methods in [13] to test if 

all the genes in a pathway have correlated gene expression levels. Perhaps as expected, 

all methods reject the null hypothesis for all pathways with highly significant p-values, 

since the KEGG pathways are constructed to include only the genes with similar function 

into the same pathway [39], while similar function often implies co-expression (and vice 

versa). To compare the performance of the different tests, for each pathway we randomly 

select 50 subjects and restrict our analysis to pathways of at least 50 genes, leading to 

103 pathways for the following analysis. Then we perturb the data by shuffling the gene 

expression levels of randomly selected 100(1 – α)% genes in a pathway before applying 

each test. Figure 3 shows the performance of the tests with two significance cutoffs, where 

“U(2)” represents the single U(2) statistic, “adpU” represents our proposed adaptive testing 

procedure using the minimum combination with candidate U-statistics of orders in {1,…, 6, 

∞}, and “Equal” and “Spher” represent the identity and sphericity tests in [13], respectively. 

Because all pathways are highly significant with all samples, we can treat all pathways 

as the true positives. Due to the adaptiveness of our proposed testing procedure, “adpU” 

identifies more significant pathways than the competing methods across all the levels of data 

perturbation (mimicking the varying sparsity levels of the alternatives).

4. Other high-dimensional examples.

In this section, we apply the proposed U-statistics framework to other high-dimensional 

testing problems, including testing means, two-sample covariances, and regression 

coefficients in generalized linear regression models. Similar theoretical results to Section 

2 are developed, with detailed proofs and related simulation studies provided in 

Supplementary Material [28].

4.1. Mean testing.

Testing mean vectors is widely used in many statistical analysis and applications [1, 50]. 

Under high-dimensional scenarios, for example, in genome-wide studies, dimension of the 

data is often much larger than the sample size, so traditional multivariate tests such as 

Hotelling’s T2-test either cannot be directly applied or have low power [18]. To address this 

issue, several new procedures for testing high-dimensional mean vectors have been proposed 

[4, 9, 11, 12, 16, 17, 25-27, 60, 62, 67]. However, many of the statistics only target at either 

sparse or dense alternatives, and suffer from loss of power for other types of alternatives. We 

next apply the U-statistics framework to one-sample and two-sample mean testing problems.

One-sample mean testing.—We first discuss the one-sample mean vector testing. 

Assume that x1,…, xn are n i.i.d. copies of a p-dimensional real-valued random vector x 
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= (x1,…,xp)⊤ with mean vector μ = (μ1,…,μp)⊤, covariance matrix Σ = {σj1,j2 : 1 ≤ j1, j2 ≤ 

p}. We want to conduct the global test on H0 : μ = μ0 where μ0 = (μ1,0,…,μp,0)⊤ is given.

Similar to previous discussion, the parameter set that we are interested in is 

ℰ = {μ1 − μ1, 0, …, μp − μp, 0}. For each j = 1,…, p, E(xi,j) = μj, so Kj(xi) = xi,j – μj,0 

is a kernel function, which is a simple unbiased estimator of the target. Following our 

construction, the U-statistic for finite a is

U(a) = ∑
j = 1

p 1
Pa

n ∑
1 ≤ i1 ≠ ⋯ ≠ ia ≤ n

∏
k = 1

a
(xik, j − μj, 0), (4.1)

which targets at ‖ℰ‖a
a = ∑j = 1

p (μj − μj, 0)a, and the U-statistic corresponding to ‖ℰ‖∞ is 

U(∞) = max1 ≤ j ≤ p σj, j−1(x̄j − μ0, j)2 with x̄j = ∑i = 1
n xi, j ∕ n.

Given the statistics, we have the theoretical results similar to Theorems 2.1-2.3. The 

following Theorems 4.1-4.2 are established under similar conditions to that of Theorems 

2.1-2.3. Due to the limited space, we provide the conditions and corresponding discussions 

in Supplementary Material [28].

THEOREM 4.1. Under H0: μ = μ0, assume Condition A.2 in 
Supplementary Material [28]. Then for any finite integers {a1,…,am}, 

as n, p → ∞, [U(a1) ∕ σ(a1), …, U(am) ∕ σ(am)]⊺ D N(0, Im), where 

σ2(a) = var[U(a)] = ∑i = 1
p ∑j = 1

p a!σi, ja ∕ Pa
n with the order of Θ(a!pn−a).

THEOREM 4.2. Under H0: μ = μ0, assume Condition A.3 in Supplementary Material [28]. 

Then ∀u ∈ ℝ, P(nU(∞) − τp ≤ u) exp{ − π−1 ∕ 2 exp( − u ∕ 2)}, as n, p → ∞, where τp = 2 

log p – log log p. In addition, for any finite integer a, {U(a) ∕ σ(a)} and {nU(∞) − τp} are 

asymptotically independent.

By Theorems 4.1 and 4.2, we obtain the asymptotic independence among the U-statistics 

and the corresponding limiting distributions of the U-statistics under H0. Under the 

alternative hypothesis, since the power analysis of the one-sample mean testing is similar 

to that of the two-sample case, we delay the power analysis after presenting the asymptotic 

independence property of the proposed U-statistics in the two-sample mean testing problem.

Two-sample mean testing.—Next, we discuss the two-sample mean testing problem. 

Suppose we have two groups of p-dimensional observations {xi}i = 1
nx  and {yi}i = 1

ny , which are 

i.i.d. copies of two independent random vectors x = (x1, … , xp)⊤ and y = (y1, … , yp)⊤, 

respectively. Suppose E(x) = μ = (μ1, … , μp)⊤, E(y) = ν = (ν1, … , νp)⊤, cov(x) = Σx and 

cov(y) = Σy. We write n = nx + ny and assume nx = Θ(ny). For easy illustration, we first 

consider Σx = Σy = Σ = {σj1, j2 : 1 ≤ j1, j2 ≤ p}. We will then discuss the case when Σx ≠ Σy, 

where similar analysis applies.
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The two-sample mean testing examines H0: μ = ν versus HA: μ ≠ ν, then 

ℰ = (μ1 − v1, …, μp − vp)⊺. For 1 ≤ j ≤ p, 1 ≤ k ≤ nx, 1 ≤ s ≤ ny, Kj(xk, ys) 

= xk,j − ys,j is a simple unbiased estimator of μj − νj, and thus we construct 

U(a) = ∑j = 1
p (Pa

nx Pa
ny)−1 × ∑1 ≤ k1 ≠ ⋯ ≠ ka ≤ nx; 1 ≤ s1 ≠ ⋯ ≠ sa ≤ ny ∏t = 1

a (xkt, j − yst, j), 

which is also equivalent to

U(a) = ∑
j = 1

p
∑

c = 0

a a
c

( − 1)a − c

Pc
nxPa − c

ny ∑
1 ≤ k1 ≠ ⋯ ≠ kc ≤ nx

1 ≤ s1 ≠ ⋯ ≠ sa − c ≤ ny

∏
t = 1

c
xkt, j ∏

m = 1

a − c
ysm, j .

(4.2)

We can check that (4.2) satisfies E{U(a)} = ∑j = 1
p (μj − vj)a, so U(a) is an unbiased estimator 

of ‖ℰ‖a
a = ∑j = 1

p (μj − vj)a. On the other hand, for ‖ℰ‖∞, following the maximum-type test 

statistic in Cai et al. [9], we have

U(∞) = max
1 ≤ j ≤ p

σj, j−1(x̄j − ȳj)2, (4.3)

where x̄j = ∑i = 1
nx xi, j ∕ nx, ȳj = ∑i = 1

ny yi, j ∕ ny. We then obtain results similar to Theorems 

2.1, 2.3 and 2.5. As the conditions are similar to those in Section 2, we only keep the 

key conclusions, and the details of conditions and discussions are given in Supplementary 

Material [28], Section A.8.

THEOREM 4.3. Under Condition A.4 in Supplementary Material [28], 

Σx = Σy and H0: μ = ν, for any finite integers (a1, … , 

am), as n, p → ∞, [U(a1) ∕ σ(a1), …, U(am) ∕ σ(am)]⊺ D N(0, Im), where 

σ2(a) ≃ a!∑j1, j2 = 1
p (nx + ny)aσj1, j2

a ∕ (nxny)a is of the order Θ(a!pn−a).

THEOREM 4.4. Under Condition A.4 in Supplementary Material [28], Σx = Σy and H0: μ = ν, 

∀u ∈ ℝ, P(
nxny

nx + ny
U(∞) − τp ≤ u) exp{ − π−1 ∕ 2exp( − u ∕ 2)}, as n, p → ∞, where τp = 2log 

p − log log p. Moreover, {U(a) ∕ σ(a)} of finite integer a and {nxnyU(∞) ∕ (nx + ny) − τp} are 

asymptotically independent.

Theorems 4.3 and 4.4 provide the asymptotic properties of finite-order U-statistics and 

U(∞) under H0. To analyze the power of U(a)’s, we derive the asymptotic results of U(a)’s 

under the alternative hypotheses. We focus on the two-sample mean testing problem, while 

one-sample mean testing can be obtained similarly. Specifically, we consider the alternative 

ℰA = {μj − vj = ρ > 0 for j = 1, … , k0; μj − νj = 0 for j = k0 + 1, … , p}. We then obtain 

similar conclusions to Theorem 2.5.

THEOREM 4.5. Assume Condition A.4 in Supplementary Material [28] and k0 = o(p). For 

any finite integers {a1, … , am}, if ρ in ℰA satisfies ρ = O(k0
−1 ∕ atp1 ∕ (2at)n−1 ∕ 2) for 
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t = 1, … , m, then [U(a1) − E{U(a1)}] ∕ σ(a1), …, [U(am) − E{U(am)}] ∕ σ(am)]⊺ D N(0, Im), 

as n, p → ∞. Here, E[U(a)] = ‖ℰA‖a
a = k0ρa and σ2(a) = var{U(a)} ≃ V a, with 

V a = a!∑j1, j2 = k0 + 1
p (nx + ny)aσj1, j2

a ∕ (nxny)a of the order Θ(a!pn−a).

Next, we compare the power of different U-statistics under alternatives with different 

sparsity levels. Theorem 4.5 shows that under the local alternatives, the asymptotic power 

of U(a) mainly depends on E{U(a)} ∕ var{U(a)}. Therefore, by Theorem 4.5, given constant 

M > 0, for each U(a), if ρ = M1 ∕ ak0
−1 ∕ aV a

1 ∕ (2a), then E{U(a)} ∕ var{U(a)} ≃ M; that is, 

different U(a)’s have the same power asymptotically. For easy illustration, we consider σj1, j2 
= 1 when j1 = j2 ∈ {k0 + 1, … , p}, and σj1, j2 = 0 when j1 ≠ j2 ∈ {k0 + 1, … , p}, then 

M1 ∕ ak0
−1 ∕ aV a

1 ∕ (2a) ≃ ρa with

ρa ≔ a!
1

2a(M p ∕ k0)
1
a{(nx + ny) ∕ (nxny)}

1
2 . (4.4)

Therefore, similar to the analysis in Section 2.2, to find the “best” U(a), it suffices to find 

the order, denoted by a0, that gives the minimum ρa in (4.4). We have the following result 

similar to Proposition 2.3.

PROPOSITION 4.1. Given any constant M ∈ (0, + ∞) and n, p, k0, we consider ρa in (4.4) as a 
function of positive integers a, then:

(i) when k0 ≥ M p, the minimum of ρa is achieved at a0 = 1;

(ii) when k0 < M p, the minimum of ρa is achieved at some a0, which increases as 

M p ∕ ∣ JD ∣ increases.

Proposition 4.1 shows that when the sparsity level k0 is large, that is, ℰa is dense, a small a 

tends to obtain a smaller lower bound in ρ, and vice versa. As (4.4) and (2.13) are similar, 

we have similar patterns to that in Figure 1 when examining the corresponding numerical 

plots of ρa. In addition, [9] shows that when ρ = ρ∞ ≔ C1 log p ∕ n for a large C1, the power 

of U(∞) converges to 1, and log p ∕ n is minimax rate optimal for sparse alternatives; see 

also [17]. Thus, if ρ∞ < ρa0, that is, k0 < MC1
−a0 pa0! ∕ loga0 ∕ 2p, U(∞) is the “best” and its 

lowest detectable order of ρ is Θ( log p ∕ n). On the other hand, Proposition 4.1 shows that 

when ℰA is dense with k0 > Mp, U(1) is the “best” and its lowest detectable order of ρ is 

Θ( pk0
−1n−1 ∕ 2). Moreover, for some large M and C2, when ℰA is “moderately dense” or 

“moderately sparse” with C2 pa0! ∕ loga0 ∕ 2p < k0 < Mp, U(a0) is the “best” and its lowest 

detectable order of ρ is Θ{( p ∕ k0)
1
a0n−1 ∕ 2}, which is of a smaller order than the optimal 

detection boundary of the sparse case Θ( log p ∕ n).
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More generally, when Σx ≠ Σy, similar results to Theorems 4.3 and 4.5 can be obtained. In 

particular, we have the following corollary.

COROLLARY 4.1. When Σx ≠ Σy, under Condition A.4 in Supplementary Material [28], 

Theorem 4.3 holds with σ2(a) ≃ a!∑j1, j2 = 1
p (σx, j1, j2 ∕ nx + σy, j1, j2 ∕ ny)a and Theorem 4.5 

holds with V a = a!∑j1, j2 = k0 + 1
p (σx, j1, j2 ∕ nx + σy, j1, j2 ∕ ny)a.

Corollary 4.1 shows that the asymptotic power of finite-order U-statistics depends on 

E{U(a)} ∕ var{U(a)}. By the construction of finite-order U-statistics and the proof, we 

obtain that E{U(a)} = k0ρa and var{U(a)} = Θ(a!pn−a). We then know that for finite-order 

U-statistics, similar results to Proposition 4.1 still hold by examining E{U(a)} ∕ var{U(a)}.

The above power analysis shows that the optimal U-statistic varies when the alternative 

hypothesis changes. To achieve high power across various alternatives, we can develop 

an adaptive test similar to that in Section 2.3. Specifically, we calculate the p-values of 

the U-statistics (4.1) and (4.2) following the theoretical results above and the algorithm in 

Section 2.3. By combining the p-values as discussed in Section 2.3, the asymptotic power of 

the adaptive test goes to 1 if there exists one U(a) whose power goes to 1.

REMARK 4.1. Xu et al. [67] has also discussed the adaptive testing of two-sample mean that 

is powerful against various ℓp-norm-like sums of μ − ν. But [67] is under the framework 

of a family of von Mises V-statistics where V(a) = ∑j = 1
p (x̄j − ȳj)a. We note that V(a) is 

equivalent to

V(a) = ∑
j = 1

p
∑

c = 0

a
( − 1)a − c a

c (nxcnya − c)−1 ∑
1 ≤ k1, …, kc ≤ nx

1 ≤ s1, …, sa − c ≤ ny

∏
t = 1

c
xkt, j ∏

m = 1

a − c
ysm, j,

which allows the indexes k’s and s’s to be the same, and thus is different from the 

U-statistics in (4.2). [67] shows that the constructed V-statistics are biased estimators of 

‖μ − v‖a
a, and V(a) and V(b) are asymptotically independent if a + b is odd, but are 

asymptotically correlated if a + b is even. The constructed U-statistics in this work extend 

the properties of those V-statistics such that U(a) in (4.2) is an unbiased estimator of 

‖μ − v‖a
a, and all U(a)’s are asymptotically independent with each other. Given these nice 

statistical properties, it becomes easier to obtain the joint asymptotic distribution of the 

U-statistics, and then apply the adaptive test.

4.2. Two-sample covariance testing.

The U-statistics framework can be applied similar to testing the equality of two covariance 

matrices. Suppose {xi}i = 1
nx  and {yi}i = 1

ny  are i.i.d. copies of two independent random vectors 

x = (x1, … , xp)⊤ and y = (y1, … , yp)⊤, respectively. Denote E(x) = μ = (μ1, … , μp)⊤, E(y) 

= ν = (ν1, … , νp)⊤; cov(x) = Σx = [σx, j1, j2 : 1 ≤ j1, j2 ≤ p} and cov(y) = Σy = [σy, j1, j2 : 1 
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≤ j1, j2 ≤ p}. Consider H0 : Σx = Σy = Σ = (σj1, j2)p×p. Given 1 ≤ j1, j2 ≤ p, 1 ≤ k1 ≠ k2 ≤ nx, 

and 1 ≤ s1 ≠ s2 ≤ ny, Kj1, j2 (xk1, xk2, ys1, ys2 ) = (xk1,j1 xk1,j2 − xk1,j1 xk2,j2) − (ys1,j1 ys1,j2 
− ys1,j1 ys2,j2) is a simple unbiased estimator of σx, j1, j2 − σy, j1, j2. Therefore, for a finite 

positive integer a, we have the U-statistic

U(a) = ∑
1 ≤ j1, j2 ≤ p

1
P2a

nxP2a
ny ∑

1 ≤ k1, 1 ≠ k1, 2 ≠ ⋯
≠ ka, 1 ≠ ka, 2 ≤ nx

∑
1 ≤ s1, 1 ≠ s1, 2 ≠ ⋯
≠ sa, 1 ≠ sa, 2 ≤ ny

∏
t = 1

a
Kj1, j2(xkt, 1,

xkt, 2, yst, 1, yst, 2) .

(4.5)

As in Remark 2.1, another formulation of U(a) equivalent to (4.5) is

U(a) = ∑
c = 0

a
∑

b1 = 0

c
∑

b2 = 0

a − c
( − 1)c − b1 + b2 ∑

1 ≤ j1, j2 ≤ p
∑

1 ≤ i1 ≠ ⋯ ≠
i2c − b1 ≤ nx

∑
1 ≤ w1 ≠ ⋯ ≠

w2(a − c) − b2 ≤ ny

Cnx, ny, a, c, b1, b2 × ∏
k = 1

b1
(xik, j1xik, j2) ∏

s = b1 + 1

c
xis, j1 ∏

t = c + 1

2c − b1
xit, j2

× ∏
m = 1

b2
(ywm, j1ywm, j2) ∏

l = b2 + 1

a − c
ywl, j1 ∏

q = a − c + 1

2(a − c) − b2
ywq, j2,

(4.6)

where Cnx, ny, c, b1, b2 = (P2c − b1
nx P2(a − c) − b2

ny )−1a! ∕ {b1!(c − b1)!b2!(a − c − b2)!}, and (4.6) 

shall be used in the theoretical developments.

We next present the asymptotic results of the constructed U-statistics under the null 

hypothesis. Here, we assume the regularity Condition A.5 or A.6, whose details and 

discussions are provided in Section A.13.1 of Supplementary Material [28] due to the 

space limitation. We mention that Condition A.5 is a mixing-type dependence assumption 

similar to Condition 2.2, and Condition A.6 is a moment-type dependence assumption 

similar to Condition 2.2*. Particularly, Condition A.6 extends the moment assumption for 

second-order U-statistics in Li and Chen [45] to U-statistics of general orders; please see the 

detailed discussions in Section A.13.1.

THEOREM 4.6. Under H0 and Condition A.5 or A.6 in Supplementary Material [28], for finite 

integers {a1, … , am}, [U(a1) ∕ σ(a1), …, U(am) ∕ σ(am)]⊺ D N(0, Im), where for a ∈ {a1, … , 

am},

σ2(a) = var{U(a)}

≃ ∑
1 ≤ j1, j2, j3, j4 ≤ p

a! 1
nx

(Πj1, j2, j3, j4
x − σj1, j2σj3, j4) + 1

ny
(Πj1, j2, j3, j4

y − σj1, j2σj3, j4)
a

with Πj1, j2, j3, j4
x = E{∏t = 1

4 (x1, jt − μjt)} and Πj1, j2, j3, j4
y = E{∏t = 1

4 (y1, jt − vjt)}.
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Theorem 4.6 provides the asymptotic independence and joint normality of the finite-order 

U-statistics, which are similar to Theorems 2.1, 4.1 and 4.3. To further study the power of 

these finite-order U-statistics, we next consider the alternative hypotheses where Σx ≠ Σy. 

Let J0 be the largest subset of {1, … , p} such that σx, j1, j2 = σy, j1, j2 = σj1, j2 for any 

j1, j2 ∈ J0. We then obtain the following theorem under the regularity conditions given in 

Section A.14 of Supplementary Material [28].

THEOREM 4.7. Under Conditions A.7 and A.8 in Supplementary Material [28], for finite 

integers {a1, … , am}, [U(a1) − E{U(a1)}] ∕ σ(a1), …, [U(am) − E{U(am)}] ∕ σ(am)]⊺ D N(0, Im), 
where

σ2(a) = var{U(a)} ≃ a!Cκ, a ∑
j1, j2, j3, j4 ∈ J0

σj1, j2
a σj3, j4

a ,

and Cκ,a = {(κx − 1)/nx + (κy − 1)/ny}a + 2(κx/nx + κy/ny)a with κx and κy given in 
Condition A.7.

Given the asymptotic results under the alternatives, we next analyze the power of the 

finite-order U-statistics. By Theorem 4.7, the asymptotic power of U(a) depends on 

E{U(a)} ∕ var{U(a)}. Let JD = {(j1, j2) : σx, j1, j2 ≠ σy, j1, j2, 1 ≤ j1, j2 ≤ p}, then 

E{U(a)} = ∑(j1, j2) ∈ JD (σx, j1, j2 − σy, j1, j2)a. Similar to Section 2.2, to study the relationship 

between the sparsity level of Σx − Σy and the power of U-statistics, we consider the 

case where the nonzero differences between Σx and Σy are the same. Specifically, let 

σx, j1, j2 − σy, j1, j2 = ρ for (j1, j2) ∈ JD, and then E{U(a)} = ∣ JD ∣ ρa. Following the 

analysis in Section 2.2, we compare the ρ values needed by different U(a)’s to achieve 

E{U(a)} ∕ var{U(a)} ≃ M for a given constant M. In particular, for given integer a, suppose 

E{U(a)} ∕ var{U(a)} ≃ M is achieved when ρ = ρa. For any a ≠ b, we compare U(a) and 

U(b) following Criterion 1.

We use the following example as an illustration, where Σx and Σy satisfy the conditions 

of Theorem 4.7. Specifically, we assume that Σx = (σx, j1, j2)p×p has the diagonal elements 

σx, j, j = ν2; and the off-diagonal elements σx, j1, j2 = h∣j1−j2∣ ∈ (0, ν2) with h∣j1−j2∣ = 

Θ(ν2) when ∣j1 − j2∣ ≤ s, while σx, j1, j2 = 0 when ∣j1 − j2∣ > s. This covers the moving 

average covariance structure of order s, and Σx is a banded matrix with bandwidth s. In 

addition, we assume the bandwidth s = o(p) and p − ∣ J0 ∣ = o(p). By the definition of J0, 

the assumption p − ∣ J0 ∣ = o(p) implies that a large square sub-matrix of Σx and Σy are the 

same. For simplicity, we let nx = ny with n = nx + ny, and a similar analysis can be applied 

when nx ≠ ny. By Theorem 4.7, var{U(a)} ≃ (n ∕ 2)−aa!{2κ1
a + κ2

a}{pv2a + 2∑t = 1
s ℎt

a(p − t)}2, 

where κ1 = κx + κy and κ2 = κx + κy − 2. Therefore, we know for given finite integer a, 

E{U(a)} ∕ var{U(a)} ≃ M holds when ρ = ρa defined as
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ρa =
(a!)

1
2a κ1v

(n ∕ 2)1 ∕ 2
Mp

∣ JD ∣
1 ∕ a

2 +
κ2
κ1

a
1

2a 1 + 2 ∑
t = 1

s ℎt
v2

a
1 − t

p

1
a

.

We next compare the ρa’s and obtain the following proposition.

PROPOSITION 4.2. There exists D0 that only depends on the given κx, κy, ν2, s, and ht, t = 1, 

… , s, and satisfies D0 = Θ(1 ∕ s2) such that:

(i) When ∣ JD ∣ ≥ Mp ∕ D0, the minimum of ρa is achieved at a0 = 1.

(ii) When ∣ JD ∣ < Mp ∕ D0, the minimum of ρa is achieved at some a0, which increases as 

Mp/∣JD∣ increases.

Proposition 4.2 is similar to Propositions 2.3 and 4.1. Following the analysis in Section 

2.2, Proposition 4.2 shows that when the difference Σx − Σy is “very” dense with 

∣ JD ∣ ≥ Mp ∕ D0, U(1) is the most powerful U-statistic; when Σx − Σy becomes sparser 

as Mp/∣JD∣ decreases, a higher-order U-statistic is more powerful; when the Σx − Σy is 

“moderately” dense or sparse, a U-statistic of finite order a0 > 1 would be the most powerful 

one.

The power analysis above shows that the power of the U-statistics varies when the 

alternative changes. To maintain high power across different alternatives, we can develop an 

adaptive testing procedure similar to that in Section 2.3. Given the asymptotic independence 

in Theorem 4.6, an adaptive testing procedure using the constructed U(a)’s is valid with 

the type I error asymptotically controlled. Also, the adaptive test achieves high power by 

combining the U-statistics as discussed in Section 2.3.

We provide simulation studies on two-sample covariance testing in Supplementary Material 

[28], Section C.3. By the simulations, we first find that the type I errors of the U statistics 

and the adaptive test are well controlled under H0. This verifies the theoretical results in 

Theorem 4.7. Second, similar to the one-sample covariance testing, we find that generally 

when the difference Σx − Σy is sparser, a U-statistic of higher order is more powerful, 

and vice versa. Moreover, under moderately sparse/dense alternatives, U(a0) with a0 > 1 

could achieve the highest power. The results are consistent with Proposition 4.2. Third, we 

compare the proposed adaptive test with existing methods in literature including [6, 45, 

57, 61], and find that the proposed adaptive testing procedure maintains high power across 

various alternatives.

REMARK 4.2. Similar to Section 2, we can let U(∞) be the maximum-type test statistic 

in [6], and expect that the result similar to Theorem 2.3 holds under certain regularity 

conditions. However, as the dependence structure of two-sample covariance matrices is more 

complicated than the one-sample case, it is more challenging to establish the asymptotic 

joint distribution of U(∞) and finite-order U-statistics. We leave this interesting problem for 
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future study, while find in simulations that the performance of U(∞) is similar to high-order 

U-statistics U(a)’s.

4.3. Generalized linear model.

In this section, we consider Example 3 of generalized linear models (on page 156) to show 

that the proposed framework can be extended to other testing problems. Similar to the results 

in Section 4.1, we show that the constructed U-statistics are asymptotically independent 

and normally distributed, and also establish the power analysis results of the U-statistics. 

We provide the details in Section A.16 of Supplementary Material [28]. Recently, Wu et 

al. [65] also discussed the adaptive testing of generalized linear model. But [65] is under 

the framework of a family of von Mises V-statistics, and thus is different from the current 

paper as discussed in Remark 4.1. Moreover, the current work provides the theoretical power 

analysis while [65] did not.

5. Discussion.

This paper introduces a general U-statistics framework for applications to high-dimensional 

adaptive testing. Particularly, we focus on the examples including testing of means, 

covariances and regression coefficients in generalized linear models. Under the null 

hypothesis, we prove that the U-statistics of finite orders have asymptotic joint normality, 

and establish the asymptotic mutual independence among the finite-order U-statistics and 

U(∞). Moreover, under alternative hypotheses, we analyze the power of different U-statistics 

and demonstrate how the most powerful U-statistic changes with the sparsity level of the 

alternative parameters. Based on the theoretical results, we propose an adaptive testing 

procedure, which is powerful against different alternatives. The superior performance of this 

adaptive testing is confirmed in the simulations and real data analysis.

There are several possible extensions of the U-statistics framework in this paper. First, 

by our current proof, the convergence rate in Theorem 2.3 is bounded by O(log−1/2 p), 

which is an upper bound and not sharp. From our extensive simulations, we find that 

the type I error rate of the adaptive testing is well controlled with a relatively small p, 

for example, p = 50. We might obtain a shaper bound of the convergence rate, but more 

refined concentration property of the high-dimensional and high-order U-statistics is needed. 

Second, the proposed framework requires that the elements in the parameter set ℰ have 

unbiased estimates. When we cannot obtain unbiased estimates easily, for example, for the 

precision matrix, the proposed construction may not follow directly. Nevertheless we may 

use “nearly” unbiased estimators to construct “U-statistics” for hypothesis testing, such as 

the “nearly” unbiased estimator of the precision matrix proposed in [66]; the main challenge 

is then to control the accumulative bias over the parameters under high dimensions. Third, 

this paper discusses the examples where the elements in ℰ are comparable. When the 

parameters in ℰ are not comparable, such as ℰ containing both means and covariances 

parameters, the construction of U-statistics still follows but the theoretical derivation may 

require a careful case-by-case examination. Fourth, the construction of the U-statistics treats 

the parameters in ℰ with equal weight. More generally, we could assign different weights 

to different parameter estimators. For instance, standardizing the data is one example of 
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assigning different weights. As inappropriate weight assignments could lead to power loss, 

when the truth is unknown, how to effectively assign weights to maximize the test power 

is an interesting research question. We shall discuss these extensions in the future as a 

significant amount of additional work is still needed.

In addition to the examples in this paper, the proposed U-statistics framework can be applied 

to other high-dimensional hypothesis testing problems. For example, it can be applied to 

testing the block-diagonality of a covariance matrix, whose theoretical analysis would be 

similar to the considered one sample and two sample covariance testing problems. It can 

also be used to test high-dimensional regression coefficients in complex regression models 

other than the generalized linear models, following a similar construction based on the 

score functions. A key step is then to characterize the impact of nuisance parameters that 

are estimated under the null hypothesis, and challenges arise especially when the nuisance 

parameters are high dimensional. Such interesting extensions will be further explored in our 

follow-up studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
g(a) versus a with different sparsity level β for p = 100, 10000.
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Fig. 2. 
Power comparison.
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Fig. 3. 
Power comparison of different methods with ADNI data.
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