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Abstract

Introduction: Achieving health gains from the United Nations Sustainable Development Goals 

of universal coverage for water and sanitation will require interventions that can be widely adopted 

and maintained. Effectiveness -- how an intervention performs based on actual use -- as opposed 

to efficacy will therefore be central to evaluations of new and existing interventions. Incomplete 

compliance -- when people do not always use the intervention and are therefore exposed to 

contamination -- is thought to be responsible for the lower-than-expected risk reductions observed 

from water, sanitation, and hygiene interventions based on their efficacy at removing pathogens.

Methods: We explicitly incorporated decision-theory into a quantitative microbial risk 

assessment (QMRA) model. Specifically, we assume that the usability of household water 

treatment (HWT) devices (filters and chlorine) decrease as they become more efficacious due 

to issues such as taste or flow rates. Simulations were run to examine the tradeoff between device 

efficacy and usability.

Results: For most situations, HWT interventions that trade lower efficacy (i.e., remove less 

pathogens) for higher compliance (i.e., better usability) contribute substantial reductions in 

diarrheal disease risk compared to devices meeting current World Health Organization (WHO) 

efficacy guidelines.

Conclusions: Recommendations that take into account both the behavioral and microbiological 

properties of treatment devices are likely to be more effective at reducing the burden of diarrheal 

disease than current standards that only consider efficacy.
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1. INTRODUCTION

Despite substantial global progress across water, sanitation, and hygiene (WASH) programs, 

diarrheal disease remains the second leading cause of death among children under five 

(Fuller, Goldstick, Bartram, & Eisenberg, 2016; World Health Organization, 2017). As of 

2012, roughly 11% of the population remained without safe drinking water while roughly 

36% of the population lacked access to improved sanitation, representing major challenges 

to the United Nations Sustainable Development Goals target of complete global access 

to safe drinking water and sanitation (Fuller et al., 2016). Access to these resources is 

necessary to reduce morbidity and mortality from environmentally transmitted diarrheal 

disease. However, access alone may not be sufficient. While many promising interventions 

(e.g. household water treatment devices, latrines, and cook stoves) have been developed, 

health gains in field trials have often underperformed expectations. For example, modern 

household water treatment devices are capable of removing or inactivating nearly all 

pathogens in treated water. However, they have not yielded corresponding reductions in 

observed infection risk (B. Arnold, Arana, Mäusezahl, Hubbard, & Colford, 2009; Schmidt 

& Cairncross, 2009; Stauber et al., 2006; Waddington & Snilstveit, 2009). Similarly, a recent 

randomized trial of latrine construction and promotion demonstrated increased coverage, 

but no significant reduction in diarrheal disease (T. Clasen et al., 2014; D. G. McNeil 

Jr., 2014; Schmidt, 2015). Incomplete compliance may be responsible for some of the 

observed inconsistency between treatment efficacy from small scale trials (B. F. Arnold & 

Colford, 2007) and population health outcomes. We focus on household water treatment 

(HWT) interventions to demonstrate the potential impact of compliance on intervention 

effectiveness.

One complication in addressing HWT compliance is that treatment efficacy may not 

correlate to end user appeal. Instead, higher treatment efficacies may compromise end

user convenience or device reliability (Waddington & Snilstveit, 2009). For example, 

chlorine is increasingly detectable by taste as concentrations increase, and can render 

drinking water unpalatable (Mintz, Bartram, Lochery, & Wegelin, 2001; World Health 

Organization, 2011b). Water filtration devices can achieve similarly significant pathogen 

reductions without altering taste, but slow flow rates and clogging can impede adoption 

and long-term effectiveness (T. F. Clasen, Brown, & Collin, 2006; Murphy, Sampson, 

McBean, & Farahbakhsh, 2009; van Halem, van der Laan, Heijman, van Dijk, & Amy, 

2009). Under these circumstances, the efficacy of a HWT method does not capture its 

actual capacity to reduce the burden of disease, as a more efficacious treatment device may 

induce lower compliance and therefore be less effective than a less efficacious but more 

appealing intervention. HWT efficacy is typically reported as log10-removal values (LRVs) 

that quantify the amount of pathogen removed from treated water, i.e., the proportion 

of pathogens remaining after treatment is 10-LRV. LRVs serve as a comparative measure 

for treatment methods within a given class or between classes. The 2011 World Health 

Organization (WHO) guidelines for water treatment recommend HWT efficacies of 4 LRV 

for bacteria, 5 LRV for viruses, and 4 LRV for protozoa in order to attain a “highly 

protective” standard in generic scenarios where contextual information about exposure 

levels and the population at risk are not available (World Health Organization, 2011b). 
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Notably, the WHO guidelines assume perfect compliance with the treatment method. 

However, technological adoption is seldom complete (Rogers, 2010). HWT uptake in 

particular is variable but rarely widespread in lower income regions (Rosa & Clasen, 2010; 

Shaheed et al., 2018). More recently, the WHO International Scheme to Evaluate Household 

Water Treatment Technologies has begun to include usability considerations, but remains 

primarily focused on the microbiological performance of HWT technologies (World Health 

Organization, 2016).

To address the interactions between compliance and microbiological efficacy, we develop 

and analyze a quantitative microbial risk assessment (QMRA) model that includes decision 

theoretic intervention compliance. QMRA has proven to be a valuable tool to study the 

health risks associated with pathogen exposure from a variety of pathways as well as 

evaluating the potential impact of interventions on these pathways. Recent QMRA research 

has begun to address the impact of compliance on the effectiveness of HWT interventions 

(Brown & Clasen, 2012; Enger, Nelson, Clasen, Rose, & Eisenberg, 2012; Enger, Nelson, 

Rose, & Eisenberg, 2013). In particular, these results suggest the existence of diminishing 

returns in risk reduction for higher LRV. However, these studies did not directly address 

the causes of variable compliance, or the implications of interactions between efficacy and 

compliance. By contrast, decision theory models individual choices based on preferences 

determined by costs and benefits. Decision theory is widely used in economics and other 

social sciences, and applications to public health have largely focused on cost analysis 

for institution-level interventions (Fischer et al., 2013; B. J. McNeil & Pauker, 1984). In 

the context of HWT, it is likely that uptake and compliance are determined by the degree 

to which an intervention matches individuals’ preferences regarding trade-offs between 

treatment efficacy and usability. Thus overall compliance depends both on the distribution 

of user preferences and the specific intervention proposed. In this study, we use our model 

to investigate the tradeoff between efficacy and compliance on the risk of diarrheal disease. 

Our model also represents a novel method to integrate techniques from social science into 

exposure assessment.

2. METHODS

2.1. Quantitative Microbial Risk Assessment (QMRA) model

QMRA provides a framework to evaluate the risk of infection based on environmental and 

microbiological characteristics. Conducting a QMRA involves the following stages:

1. Hazard identification -- Characterize the microbiological and epidemiological 

properties of the pathogen.

2. Dose response -- Determine the relationship between a dose of pathogen and the 

probability of infection.

3. Exposure assessment -- Establish transmission pathways and the average rate of 

pathogen ingestion.

4. Risk characterization -- Compute individual or population risks using exposure 

level and dose response.
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5. Risk management -- Determine strategies for reducing risk to tolerable levels.

QMRA can be implemented using either an analytical or (stochastic) simulation-based 

approach (Enger et al., 2012, 2013). Using an analytical approach, risk is directly calculated 

using data for exposure levels. For a stochastic QMRA simulation, risk is estimated from an 

ensemble of simulation runs. In a given simulation, exposure levels can vary, and infection 

is determined randomly according to the probability distribution specified by the dose

response function. We use a simulation approach in our analysis of the risk of waterborne 

infection. We consider three pathogens: Cryptosporidium, enterotoxigenic E. coli (ETEC), 
and rotavirus representing parasites, bacteria, and viruses respectively. These pathogens 

were selected due to their impact in developing nations (Kotloff et al., 2013; Platts-Mills et 

al., 2015; World Health Organization, 2017). In particular, the Global Enteric Multicenter 

Study (GEMS) found that Cryptosporidium, ETEC, and rotavirus were responsible for the 

highest attributable fractions of moderate to severe diarrhea in lower income countries, 

indicating that these pathogens are both prevalent and create a significant burden of disease 

(Kotloff et al., 2013).

2.1.1. Exposure assessment—For waterborne disease, contaminated drinking water 

acts as one of the primary transmission pathways, so exposure levels represent the quantity 

of viable pathogen ingested daily based on the quality of available drinking water. An 

individual’s daily volume of pathogen ingested is

di = wv × 10−x witℎ HW T  compliance wv otℎerwise  (1)

where w is the concentration of pathogen per liter of untreated water, v is the volume of 

water consumed per day, and x̂ is the LRV of the specific HWT method implemented. An 

individual i uses an HWT device (complies) with probability Pr(use)i. The expected dose 

E[di] across all individuals in a population can then be characterized as:

E di = wv 1 − E Pr use  i + E Pr use  i 10−x
(2)

where E[Pr(use)i] is the average population compliance. On average, individuals are 

exposed to fully contaminated water when they do not use their treatment device 

(wv 1 − E Pr use  i ) or reduced pathogen content when they do (wv E Pr use  i 10−x). 

Alternatively, average compliance can be interpreted as the fraction of a given day’s water 

that is effectively treated. These interpretations yield identical analytical results, but would 

alter the disease outcomes in an explicit simulation. This approach to exposure assessment 

is similar to (Enger et al., 2013), however, we choose to model compliance based on 

an individual’s attitude toward the specific implemented HWT, by developing a decision

theoretic model defined in Section 2.2.

2.1.2. Dose-response—The probability of infection per organism depends on 

interactions between the pathogen and the host immune system. Empirically, infection 

events can be modeled using a dose-response function fit to experimental data. We use 

an exponential or approximate beta-Poisson dose-response function to compute the daily 

probability of infection for a given quantity of pathogen. Specifically, we use an exponential 
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dose-response function for the probability of infection by Cryptosporidium and a beta

Poisson function for E. coli and rotavirus (Table 1). Both of these functions assume that a 

single pathogenic organism has a non-zero probability of causing an infection, essentially 

treating infection as the outcome of Bernoulli trials. The exponential dose-response function 

is

Pr infection  i = 1 − e−kdi (3)

with rate parameter k. Mechanistically, this function implies that the dose is Poisson 

distributed and that each unit of pathogen has an identical probability of surviving to reach 

the target site (k−1) and of causing an infection.

An exact beta-Poisson function can be computationally unstable due to its use of the 

confluent hypergeometric function. As a result, the approximate form is often used instead.

Pr infection  i = 1 − 1 + di
β

−α
(4)

β = N50
21/α − 1

(5)

where α controls the slope and N50 is the dose required to infect 50% of a population. 

This approximation is appropriate when α ≪ β and β ≫ 1 which are satisfied by our 

parameter values for E. coli and rotavirus (Table 1). The mechanistic interpretation of 

the beta-Poisson model is similar to that of the exponential model, however in this case 

the probability that a pathogen survives to infect (i.e., infectivity) is assumed to be given 

by a beta distribution. The choice of dose-response function is typically made based on 

both biological and statistical considerations. We use the exponential dose-response function 

for Cryptosporidium (Messner, Chappell, & Okhuysen, 2001). while the beta-Poisson dose

response function is used to characterize E. coli (DuPont et al., 1971) and rotavirus (Ward et 

al., 1986).

2.2. Decision-theoretic compliance

To accommodate variable individual compliance in a QMRA framework, we construct 

the following decision-theoretic model that determines the distribution of individual 

compliance based on attitudes toward recommended HWT levels. Given the limited data 

on the functional relationship between attitude and HWT levels we use functions that are 

heuristically derived.

Suppose we have individuals i ∈ N who each select a probability of compliance Pr(use)i 

with a treatment device chosen from the intervention space X ⊆ R > 0. This space represents 

the range of possible HWT levels quantified by their LRV. We assume that an individual’s 

attitude toward HWT properties map to the LRV of any given treatment method (since 

both the advantages and drawbacks of a given method are correlated with the LRV). 

That is, each individual has a most preferred LRV denoted xi ∈ X. We will refer to the 
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distribution of these points as the preference distribution. The shape of the preference 

distribution characterizes a population’s disposition toward potential HWT interventions; 

i.e., a population with many individuals who prefer low LRV will be more resistant to high 

efficacy devices than a population with higher average LRV preferences. For our analysis 

we assume that preferences are distributed according to a truncated normal distribution 

with mean μ and variance σ2, bounded by [0,6] (the range from no intervention to the 

highest current recommendation). We use x̂ to refer to a hypothetical intervention that has 

been provided to the population in question. Based on this model, an optimal intervention 

is a function a device’s microbiological efficacy (LRV) and the aggregate of individual 

preferences for efficacy. By contrast, most current HWT evaluations are based on a device’s 

microbiological characteristics.

Based on this framework we define the following decision problem: Given their preferred 

LRV, individuals choose the degree to which they comply with the specific HWT 

intervention provided. As noted above, this choice is over the probability of compliance 

as opposed to the binary choice of compliance on a specific day. This is because we 

assume that conditions informing compliance do not change enough between days to 

alter an individual’s choice. Instead, individuals choose Pr(use)i when the intervention is 

implemented and draw their daily compliance accordingly, analogous to a mixed strategy in 

game theory. To represent this problem we construct a utility function, ui, which represents 

an individual’s preferences regarding compliance with the intervention x̂. In particular, we 

use the following negative quadratic form:

ui xi, x =   − 1 − Pr use  i − f x i
2

(6)

where f x i ∈ 0,1  represents the “distance” between intervention x̂ and individual i’s most 

preferred intervention xi (we refer to f x i as the distance function). Note that a larger 

distance indicates a less appealing intervention. Qualitatively, Equation 6 reflects that 

individuals prefer to comply with devices that are more appealing to them (E.g. ui = 0
if Pr use i = 1 and f x i = 0 . Conversely, individuals prefer to not comply with devices 

that are not appealing. Equation 6 is meant to be a phenomenological representation 

of user preferences for devices in order to demonstrate our method. Additionally, a 

negative quadratic utility function is analytically appealing, as it is guaranteed to have a 

unique maximum. However, other functional forms could be chosen based on additional 

information regarding intervention end user behavior.

The shape of the distance function may depend on prior knowledge of how individuals 

compare HWT alternatives. We use two different functions to characterize different potential 

situations. The first function is the squared Euclidean distance

f x i = xi − x 2

X   − X   2’ (7)

where min(X) and max(X) are the lowest and highest feasible LRVs, respectively. This 

distance function implies that individuals dislike treatments that are either more or less 
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efficient than their ideal preference. Chemical treatment such as chlorination may be an 

example of an intervention for which individuals apply a symmetrical distance function. 

This may be because an individual who prefers some level of chlorination would be 

unwilling to treat their water at levels that they do not perceive as effective (lower LRV 

than preferred), and may not want to treat at high concentrations due to taste issues (B. F. 

Arnold & Colford, 2007; World Health Organization, 2011a).

Alternatively, we can use an asymmetrical piecewise distance function

f x i = xi − x 2

X   − X   2  if x ≥ xi 0 otℎerwise . (8)

Unlike for chlorination, this variant implies that individuals dislike LRVs greater than their 

ideal point, but view lower LRVs as equally favorable. This asymmetry may be appropriate 

for filtration methods, where individuals may not distinguish between a lower LRV device 

and the recommended treatment level, especially if changes in the aesthetic qualities of 

the filtered drinking water do not vary between devices. They may begin to become non

compliant, however, with a high LRV filter due to slow water flow or increased breakage 

rate. If X is normalized to the [0,1] interval, the above equations simplify to

f x i = xi − x 2
(9)

and

f x = xi − x 2 if x ≥ xi 0 otℎerwise . (10)

Note that the steepness of our distance functions determines the degree to which individuals 

dislike less favorable interventions. While not explicitly included in the above equations, this 

could be tuned as an additional parameter by scaling the quadratic term in either distance 

function if appropriate data is available.

Decision theory requires that individuals will choose actions that maximize their utility.

(Tadelis, 2013) The inner term of Equation 6 implies that when the provided intervention 

is not appealing, utility is maximized by adopting a low probability of compliance. By 

contrast, when an intervention is appealing, utility is maximized by adopting a high 

probability of compliance. Thus, maximizing Equation 6 with respect to Pr(use)i results 

in the following probability of compliance:

Pr use  i = 1 − f x i (11)

To account for the fact that an individual will never comply perfectly even with their most 

preferred HWT intervention, Equation 11 can be modified using a scaling factor as follows:

Pr use  i = cmax 1 − f x i (12)
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where cmax is the maximum possible compliance. The inclusion of cmax does not impact 

our estimates of optimal interventions but does have an impact on our risk estimates. In 

particular we would expect a lower cmax to attenuate the risk reduction for any intervention. 

This is because risk responds monotonically to compliance for a given intervention level, so 

lowering the maximum compliance probability acts as an offset.

2.2.1. Applying the decision theoretic model to household water filtration—
Household water filters include a range of specific technologies including biosand (Elliott, 

Stauber, Koksal, DiGiano, & Sobsey, 2008), and ceramic (Oyanedel-Craver & Smith, 2008) 

devices. Filter types vary with respect to their filtration efficacy for viral, bacterial, and 

protozoan parasites as well as properties such as flow rate, capacity, and durability. While 

individuals facing endemic diarrheal disease are likely to value improved pathogen removal, 

the usability of a filter may significantly influence whether an individual is willing to treat 

their drinking water. Filters that are more efficient may have reduced usability as smaller 

pores decrease the flow rate and are more likely to clog. As a result, attitudes toward filters 

may become less favorable as efficacy increases, especially once the usability of a filter 

becomes unacceptable. However, filters below that acceptability threshold may be equally 

acceptable, given that individuals may not explicitly evaluate the LRV so long as a filter 

reduces apparent risk.

We illustrate our decision-theoretic approach using this context. To this end, suppose we 

have a population in which preferences regarding filter efficacy (xi) are normally distributed 

with a mean of 2 LRV (Figure 1a), and that we wish to determine the distribution of 

compliance if a 4 LRV filter (x̂) is provided. For this example, we assume that filters may 

have a minimum LRV of 0 and a maximum LRV of 6. Individuals select their compliance 

level with the 4 LRV device (Pr(use)i) based on Equation 12 using the asymmetric distance 

function, where x̂ = 4 LRV, and cmax= 1. All else equal, this function implies that individuals 

dislike filters more efficient than their ideal point but are ambivalent about filters as efficient 

or less. As a result, we are able to determine the distribution of compliance with the 

provided filter (Figure 1b). In this case, our model predicts an average compliance of 

approximately 85%.

2.3. Optimizing HWT interventions

When we assume perfect compliance, we can always compute the treatment level (efficacy) 

necessary to obtain a given risk threshold. With incomplete compliance, however, it 

is possible that no feasible treatment level will reduce risk below current acceptable 

disease burden standards; i.e., increasing non-compliance decreases the effectiveness of 

an intervention. When we account for incomplete compliance, therefore, it is important to 

consider the optimal treatment level that will reduce infections the most relative to baseline 

conditions. Effective interventions from this perspective must take into account both the 

microbiological characteristics of the device and behavioral features of potential users. We 

define an optimal intervention as the LRV that most reduces risk subject to a tradeoff 

between compliance and device efficacy. Formally, this problem can be stated as follows:

x* = argminxPr infection x,  θ , (13)
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Where argminx means that we search for the intervention x̂* that minimizes the average 

probability of infection -- a function of the intervention level x̂ and other parameters θ 
(i.e. the dose response function). This procedure is equivalent to solving a game-theoretic 

model in which a policy maker first selects an intervention and individuals then choose their 

compliance probabilities (Appendix B). Conveniently, when the dose response function is 

monotonic, the optimal intervention can be found by minimizing the function representing 

the expected dose (Equation 2). Notably, this means that the solution does not depend 

on pathogen or exposure characteristics beyond the effect of treatment. We illustrate this 

framework by computing numerical solutions to Equation 13 assuming normally distributed 

preferences. Appendix A describes our procedure in detail.

2.4. Risk Simulation framework

We simulate a population of size N for T days. Each day healthy individuals may 

become infected based on their exposure level and probability of infection. Sick individuals 

recover based on times drawn from a gamma distribution. Table 1 describes the specific 

dose-response and recovery models used for each pathogen.(Enger et al., 2013) Gamma 

distributions characterize the expected time to recovery for diseases with multiple infectious 

stages assuming a Poisson process. When represented by an integer, the shape parameter 

denotes the number of stages. In the case where the shape parameter is one, the gamma 

distribution is equivalent to an exponential distribution. For Cryptosporidium and E. coli, 
gamma distribution parameters were drawn from existing literature on the infectious period 

of each disease (Eisenberg, Seto, Colford, Olivieri, & Spear, 1998; Estrada-Garcia et al., 

2009). Because less data is available for rotavirus we chose a gamma distribution with an 

average waiting time equal to the median recovery time of 5.2 days (Gurwith, Wenman, 

Hinde, Feltham, & Greenberg, 1981) and a shape parameter of one. We implemented our 

models and analyses in Python 2.7 using Numpy, Scipy, and Matplotlib (Hunter, 2007; Jones 

E, Oliphant T, Peterson P, Others, 2001).

3. RESULTS

3.1. The effect of imperfect compliance

We simulate the disease burden of our three reference pathogens. For each pathogen type, 

we simulated our stochastic QMRA model for 1 year and computed the average yearly 

disease burden. Our simulations are largely consistent with the scenarios defined in the 

original WHO guideline analysis. For example, we assumed perfect compliance, water 

treatment interventions meeting the 2011 WHO Guidelines (4 LRV for bacteria/protozoa 

and 5 LRV for viruses), and a target disease burden of 10−6 DALY/year. Similarly, 

our assumptions about pathogen contamination levels, water consumption, and individual 

burden of disease are drawn from the methods used in the Guidelines.

Our approach differed in three ways. First, the original WHO analysis used Campylobacter 
Jejuni, Cryptosporidium, and rotavirus as reference pathogens. As noted above, we used data 

from the GEMS (published after the Guidelines) to select reference pathogens resulting in 

our choice of ETEC over Campylobacter. Second, our model used dose-response functions 

and expected recovery times specified in Table 1 for each reference pathogen. These 
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functions have been derived from previous experimental studies. The original WHO analysis 

assumed linear dose-response relationships, which is likely to match our simulations for 

lower doses (Brouwer, Weir, Eisenberg, Meza, & Eisenberg, 2017). Third, for rotavirus, 

the original WHO analysis presented results corresponding to the disease burden in high 

income countries (low income disease burden was presented in a supplement) while we used 

a burden of disease corresponding to low-income countries, which reflects higher mortality 

in countries that will receive the greatest potential benefit from the SDGs and which have 

lower rotavirus vaccination coverage. Like the WHO analysis, E. coli and Cryptosporidium 
DALYs were only derived for developed countries.

With perfect compliance, our simulations for E. coli and Cryptosporidium correspond to 

the WHO analytical results for bacteria and protozoa (Table 2), indicating that in the ideal 

case, 4 LRV treatment would reduce the burden of disease below the target threshold. Due 

to rotavirus’ higher burden of disease in low income countries, the 5 LRV treatment did 

not reduce the overall simulated disease burden below the threshold level. Next, we relax 

the assumption of perfect compliance for Cryptosporidium (similar results for E. coli and 

rotavirus can be found in the supplementary material). At all contamination levels, greater 

than 99% compliance is necessary to reach the WHO target (Figure 2). This finding is a 

consequence of two factors. The 2011 guidelines were determined by solving for the lowest 

efficacy that resulted in a tolerable disease burden, so we would not expect a less efficacious 

intervention to meet the threshold. Additionally, individuals face substantially higher disease 

risks whenever they do not use their treatment device, causing disease burden to be very 

sensitive to compliance. While the largest changes occur between compliance levels of 80–

100%, substantial health gains are predicted for more modest improvements in compliance. 

For example, at 1 oocyst/L, if compliance increases from 20% to 60%, the disease burden 

decreases from 0.134 DALY/year to 0.0827 DALY/year, a 38% reduction.

Note that the target threshold of 10−6 DALY/year implies extremely low endemic prevalence 

based on analytical QMRA. This is impossible to verify in practice due to the large 

population size required to detect any cases once the risk of infection is sufficiently low. 

Our stochastic model results in this phenomenon -- many simulations with near-perfect 

compliance had zero cases. As a result, although the disease burden for incomplete 

compliance is higher than the 10−6 DALY/year threshold, contamination levels of 0.01 and 

0.001 oocysts/L cause a very small absolute number of cases on average.

3.2. Optimal interventions

3.2.1. Case study—We use a hypothetical water filter trial to demonstrate our optimal 

intervention framework when data on intervention compliance is available. For simplicity, 

we assume that the variance of compliance is not available. First, we calculate the average 

LRV preference E[xi] by solving Equation 12:

E Pr use  i = cmax  1 − f x i E xi = x − X  2 1 −
E Pr use  i

cmax
(14)

where cmax is the maximum compliance. We use the negative square root since our 

model for filters assumes an asymmetric distance function, which implies that incomplete 
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compliance is generally a product of an intervention that is more efficacious than the average 

user preference. For our scenario, we assume that the maximum compliance level, cmax = 

0.9, the highest possible treatment efficacy max(X) = 6 LRV, the lowest possible treatment 

efficacy min(X) = 0 LRV. We also assume that when given a 6 LRV filter participants do 

not use their device 20% of the time on average, and the average observed compliance level 

E[Pr(use)i] = 0.8. Plugging these values into Equation 14 results in an average preference 

E[xi] = 4 LRV. We then solve Equation 13 numerically to obtain the optimal intervention 

x̂* = 4 LRV, the same value as the average user preference. Therefore, by knowing the 

maximum compliance level and percent compliance for a given device, we can obtain a 

recommendation that suggests a 4 LRV device would be more effective than the initial 

6 LRV device implemented. With more information, such as a variance estimate of the 

compliance distribution we could obtain a more precise estimate. While this example is 

highly artificial, it is intended to demonstrate that our approach can flexibly address multiple 

questions related to HWT compliance and intervention effectiveness.

3.2.2. Selecting HWT based on user preferences—We now consider a more 

general case where compliance is not known but end user preferences regarding device 

efficacy could be estimated (e.g. stated preference surveys). In these analyses, we examine 

the optimal interventions for a range of possible preference distributions. Simulating a filter 

intervention, we assume that individuals have an asymmetrical distance function, i.e., users 

accept LRVs lower than their preference but are less likely to use filters that have higher 

LRV than their preference (Equation 8). Based on these assumptions optimal LRVs for 

filters tend to be higher than the average user preference μ when the average is low and 

tend to be lower than the average preference when the average preference is high (Figure 

3). The transition point occurs at approximately 2 LRV. This can be seen by comparing the 

solution line with the dashed line indicating an intervention set at the mean of the preference 

distribution (Figure 3).

For a chlorination intervention we assume that the distance function is symmetrical -- 

individuals are less likely to treat their water if the treatment LRV is either higher or lower 

than their preference. Like filtration, the optimal LRV for chlorination is higher than the 

average preference when the average preference is below 2. However, between 2 and 5 LRV 

optimal chlorination tracks the average preference. Above an average preference of 5 LRV 

the optimal value is slightly below the average user preference.

The symmetrical distance function results in higher optimal LRV interventions than the 

asymmetrical measure for distributions with an average preference above 2 LRV. This is 

because with the asymmetrical function compliance with lower LRV devices is generally 

high. This is not true for a symmetrical distance function. Consequently, overall compliance 

with any intervention under these conditions is higher than in the case where individuals also 

dislike less efficient treatments.

3.2.3. Risk reduction—As the average LRV preference increases, the optimal 

intervention becomes more effective at decreasing prevalence for both chlorination and 

filtration (Figure 4a). This relationship becomes more dramatic for average preferences 

between 1 and 2 LRV. Beyond this point, the effectiveness of chlorination plateaus while 
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optimal filtration continues to reduce risk for populations with greater average preference. 

In both cases, optimal interventions are generally more effective than the implemented 4 

LRV device (Figure 4b). For chlorination, the only exception is if the average preference 

is at 4 LRV; then the optimal intervention is also at 4 LRV (Figure 3). For filtration, the 

exception occurs closer to 5.5 LRV at which point the optimal intervention is 4 LRV (Figure 

3). Simulations for E. coli and rotavirus can be found in the supplementary material (Figures 

S1, S2). While specific values differ, the qualitative features of the absolute and relative risk 

curves do not vary substantially by pathogen.

4. DISCUSSION

Current HWT guidelines have been developed using QMRA assuming perfect compliance 

and focus on microbiological performance (World Health Organization, 2011a). As a 

result, recommended treatment devices favor high LRV capabilities. However, these 

recommendations become problematic if compliance is inversely related to efficacy. In 

fact, uptake of HWT in developing countries has been documented to vary from 13–67% 

(Rosa & Clasen, 2010). It is important, therefore, to characterize the causes and impact of 

non-compliance with HWT. Recent QMRA analyses have found evidence for diminishing 

returns in risk reduction for increasing LRVs under imperfect compliance (Brown & Clasen, 

2012; Enger et al., 2013; Rosa & Clasen, 2010). Our simulation results broadly support 

these findings. Notably, we find that improving compliance from low to moderate levels can 

provide significant health gains (Figure 2). Conversely, even a small level of non-compliance 

with a high LRV treatment method can still result in a significant loss in health gains 

when drinking water is sufficiently contaminated (Figure 2). This suggests that once the 

microbiological efficacy of a device is “good enough”, focusing on improving compliance 

may be at least as important as increasing a device’s LRV.

Across the range of scenarios we tested, the optimal LRV from the perspective of 

minimizing disease burden was almost always lower than the current WHO standards 

that assume perfect compliance (Figure 3). In addition, we found that the risk-reductions 

generated by interventions chosen by our model framework as opposed to high efficacy 

interventions were considerable for all three pathogens (protective-ratio comparing the 

optimal intervention with the implemented device: 0.1 – 1). Assuming that achieving 

perfect compliance is unrealistic, our simulations further suggest that reaching the tolerable 

disease burden threshold of 10−6 DALY/year is impractical. However, balancing compliance 

and efficacy provides the maximum possible risk reductions. These findings indicate that 

multiple WASH interventions, or coupled technological-behavioral interventions may be 

needed in order to achieve desired reductions in diarrheal disease.

Our modeling framework further extends the scope of QMRA for environmental 

epidemiology by integrating decision theory into exposure assessment to explicitly represent 

the response of potential HWT users to a given intervention. Characterizing individual level 

incentives is crucial, as in many cases HWT appears to be subject to a trade-off between 

usability and efficacy. Specifically, studies of filter adoption have suggested that usability 

may decline as a function of LRV. Biosand and clay pot filters have LRV approaching 

5 for bacteria, but are prone to breakage and clogging (Fiore, Minnings, & Fiore, 2010; 
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Gupta, Islam, Johnston, Ram, & Luby, 2008; van Halem et al., 2009). By contrast cloth 

filters have been successfully adopted for cholera prevention in spite of a much lower (2 

LRV) efficacy (Colwell et al., 2003; Huq et al., 2010). Chemical treatment involves a similar 

trade-off as the taste and odor of treated water become less palatable as the concentration of 

disinfectant increases (Mintz et al., 2001; World Health Organization, 2011b). Our decision

theoretic model captures these scenarios by assuming that usability and therefore individual 

preference is a function of device efficacy measured in LRV. This approach is designed 

to accommodate a wide range of incentive structures. Our choice of an asymmetrical or 

symmetrical distance function to represent filtration or chlorination respectively is based on 

a mechanistic hypothesis of the perceived trade-off between efficacy and usability. Specific 

characteristics of the function; e.g., rate of drop-off and value where drop-off begins will 

vary by type of intervention and the specific technology. Both consultation with experts and 

behavioral data will help to identify these functional forms.

Willingness to adopt more efficacious (but potentially less usable) HWT methods is likely 

to vary substantially by region. Ideally, HWT recommendations should be informed by data 

regarding the target group’s preferences and attitudes regarding treatment. Such attitudes are 

complex, determined by a wide range of elements including private costs, social contexts, 

and political forces. Our decision-theory model is designed to accommodate behavioral data 

at multiple levels of resolution. In particular, when data on compliance are unavailable or 

unreliable, attitude surveys and similar techniques can be used to assess the distribution 

of preferences and inform the selection or construction of a utility function (Albert, 

Luoto, & Levine, 2010; Mankad & Tapsuwan, 2011; Poulos et al., 2012). Alternatively, as 

demonstrated by our household water treatment case study, data on compliance with existing 

interventions can be used to infer more effective treatment levels should they be feasible.

Our QMRA model relies on a simplified representation of enteric pathogen transmission. 

Like other QMRA approaches, we assume that infected individuals do not shed pathogen 

back into drinking water sources, and that contaminated drinking water is the primary 

transmission pathway. In order to focus on the implications of intervention and preference

dependent compliance we omitted temporal variation in pathogen exposure due to seasonal 

or other periodic factors. Future work may address these factors by implementing a 

compartmental transmission model with environmental transmission similar to the EITS 

or SIWR models (Li, Eisenberg, Spicknall, & Koopman, 2009; Tien & Earn, 2010).

5. CONCLUSIONS

Realizing health gains from environmental interventions requires an understanding of the 

role of host behaviors in transmission systems. Our framework represents a straightforward 

extension to QMRA that addresses end user compliance behavior as well as environmental 

and microbiological factors. This systems approach can be applied to evaluate new and 

existing HWT interventions. In particular, our analyses suggest that it may be advisable 

to focus on cost-efficient and readily usable treatment options. Addressing the usability 

efficacy trade-off is likely to be crucial to the successful deployment of HWT in areas 

still lacking access to safe drinking water. Applications of our framework are not limited 
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to decentralized HWT contexts. Indeed, even centralized water treatment can fail to attain 

complete coverage due to infrastructure limitations such as reliability and re-contamination.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This research was funded under the Models of Infectious Disease Agent Study (MIDAS) program within the 
National Institute of General Medical Sciences of the National Institutes of Health (grant number U01GM110712).

REFERENCES

Albert J, Luoto J, & Levine D. (2010). End-user preferences for and performance of competing POU 
water treatment technologies among the rural poor of Kenya. Environmental Science & Technology, 
44(12), 4426–4432. [PubMed: 20446726] 

Arnold B, Arana B, Mäusezahl D, Hubbard A, & Colford JM Jr. (2009). Evaluation of a pre-existing, 
3-year household water treatment and handwashing intervention in rural Guatemala. International 
Journal of Epidemiology, 38(6), 1651–1661. [PubMed: 19574492] 

Arnold BF, & Colford JM Jr. (2007). Treating water with chlorine at point-of-use to improve water 
quality and reduce child diarrhea in developing countries: a systematic review and meta-analysis. 
The American Journal of Tropical Medicine and Hygiene, 76(2), 354–364. [PubMed: 17297049] 

Brouwer AF, Weir MH, Eisenberg MC, Meza R, & Eisenberg JNS (2017). Dose-response relationships 
for environmentally mediated infectious disease transmission models. PLoS Computational Biology, 
13(4), e1005481.

Brown J, & Clasen T. (2012). High adherence is necessary to realize health gains from water quality 
interventions. PloS One, 7(5), e36735.

Clasen T, Boisson S, Routray P, Torondel B, Bell M, Cumming O, … Schmidt W-P (2014). 
Effectiveness of a rural sanitation programme on diarrhoea, soil-transmitted helminth infection, and 
child malnutrition in Odisha, India: a cluster-randomised trial. The Lancet. Global Health, 2(11), 
e645–e653. [PubMed: 25442689] 

Clasen TF, Brown J, & Collin SM (2006). Preventing diarrhoea with household ceramic water filters: 
assessment of a pilot project in Bolivia. International Journal of Environmental Health Research, 
16(3), 231–239. [PubMed: 16611567] 

Colwell RR, Huq A, Islam MS, Aziz KMA, Yunus M, Khan NH, … Russek-Cohen E. (2003). 
Reduction of cholera in Bangladeshi villages by simple filtration. Proceedings of the National 
Academy of Sciences of the United States of America, 100(3), 1051–1055. [PubMed: 12529505] 

DuPont HL, Formal SB, Hornick RB, Snyder MJ, Libonati JP, Sheahan DG, … Kalas JP (1971). 
Pathogenesis of Escherichia coli diarrhea. The New England Journal of Medicine, 285(1), 1–9. 
[PubMed: 4996788] 

Eisenberg JN, Seto EY, Colford JM Jr, Olivieri A, & Spear RC (1998). An analysis of the Milwaukee 
cryptosporidiosis outbreak based on a dynamic model of the infection process. Epidemiology, 
9(3), 255–263. [PubMed: 9583416] 

Elliott MA, Stauber CE, Koksal F, DiGiano FA, & Sobsey MD (2008). Reductions of E. coli, 
echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand 
filter. Water Research, 42(10–11), 2662–2670. [PubMed: 18281076] 

Enger KS, Nelson KL, Clasen T, Rose JB, & Eisenberg JNS (2012). Linking quantitative microbial 
risk assessment and epidemiological data: informing safe drinking water trials in developing 
countries. Environmental Science & Technology, 46(9), 5160–5167. [PubMed: 22486606] 

Enger KS, Nelson KL, Rose JB, & Eisenberg JNS (2013). The joint effects of efficacy and compliance: 
a study of household water treatment effectiveness against childhood diarrhea. Water Research, 
47(3), 1181–1190. [PubMed: 23290123] 

Hayashi et al. Page 14

Risk Anal. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Estrada-Garcia T, Lopez-Saucedo C, Thompson-Bonilla R, Abonce M, Lopez-Hernandez D, Santos JI, 
… Long KZ (2009). Association of diarrheagenic Escherichia coli Pathotypes with infection and 
diarrhea among Mexican children and association of atypical Enteropathogenic E. coli with acute 
diarrhea. Journal of Clinical Microbiology, 47(1), 93–98. [PubMed: 19020055] 

Fiore MM, Minnings K, & Fiore LD (2010). Assessment of biosand filter performance in rural 
communities in southern coastal Nicaragua: an evaluation of 199 households. Rural and Remote 
Health, 10(3), 1483. [PubMed: 20795755] 

Fischer AJ, Threlfall A, Meah S, Cookson R, Rutter H, & Kelly MP (2013). The appraisal of public 
health interventions: an overview. Journal of Public Health, 35(4), 488–494. [PubMed: 23995712] 

Fuller JA, Goldstick J, Bartram J, & Eisenberg JNS (2016). Tracking progress towards global drinking 
water and sanitation targets: A within and among country analysis. The Science of the Total 
Environment, 541, 857–864. [PubMed: 26433336] 

Gupta SK, Islam MS, Johnston R, Ram PK, & Luby SP (2008). The chulli water purifier: acceptability 
and effectiveness of an innovative strategy for household water treatment in Bangladesh. The 
American Journal of Tropical Medicine and Hygiene, 78(6), 979–984. [PubMed: 18541780] 

Gurwith M, Wenman W, Hinde D, Feltham S, & Greenberg H. (1981). A prospective study of rotavirus 
infection in infants and young children. The Journal of Infectious Diseases, 144(3), 218–224. 
[PubMed: 6268713] 

Hunter JD (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 
9(3), 90–95.

Huq A, Yunus M, Sohel SS, Bhuiya A, Emch M, Luby SP, … Colwell RR (2010). Simple sari 
cloth filtration of water is sustainable and continues to protect villagers from cholera in Matlab, 
Bangladesh. mBio, 1(1). 10.1128/mBio.00034-10

Jones E, Oliphant T, Peterson P, Others. (2001). SciPy: Open Source Scientific Tools for Python. 
Retrieved from http://www.scipy.org/

Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, … Levine MM (2013). 
Burden and aetiology of diarrhoeal disease in infants and young children in developing countries 
(the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. The Lancet, 
382(9888), 209–222.

Li S, Eisenberg JNS, Spicknall IH, & Koopman JS (2009). Dynamics and Control of Infections 
Transmitted From Person to Person Through the Environment. American Journal of Epidemiology, 
170(2), 257–265. [PubMed: 19474071] 

Mankad A, & Tapsuwan S. (2011). Review of socio-economic drivers of community acceptance and 
adoption of decentralised water systems. Journal of Environmental Management, 92(3), 380–391. 
[PubMed: 21084149] 

McNeil BJ, & Pauker SG (1984). Decision analysis for public health: principles and illustrations. 
Annual Review of Public Health, 5, 135–161.

McNeil DG Jr. (2014, 10 27). Latrines may not improve the health of poor children. The New York 
Times.

Messner MJ, Chappell CL, & Okhuysen PC (2001). Risk assessment for Cryptosporidium: a 
hierarchical Bayesian analysis of human dose response data. Water Research, 35(16), 3934–3940. 
[PubMed: 12230176] 

Mintz E, Bartram J, Lochery P, & Wegelin M. (2001). Not just a drop in the bucket: expanding access 
to point-of-use water treatment systems. American Journal of Public Health, 91(10), 1565–1570. 
[PubMed: 11574307] 

Murphy HM, Sampson M, McBean E, & Farahbakhsh K. (2009). Influence of household practices on 
the performance of clay pot water filters in rural Cambodia. Desalination, 248(1–3), 562–569.

Oyanedel-Craver VA, & Smith JA (2008). Sustainable colloidal-silver-impregnated ceramic filter for 
point-of-use water treatment. Environmental Science & Technology, 42(3), 927–933. [PubMed: 
18323124] 

Platts-Mills JA, Babji S, Bodhidatta L, Gratz J, Haque R, Havt A, … MAL-ED Network Investigators. 
(2015). Pathogen-specific burdens of community diarrhoea in developing countries: a multisite 
birth cohort study (MAL-ED). The Lancet. Global Health, 3(9), e564–e575. [PubMed: 26202075] 

Hayashi et al. Page 15

Risk Anal. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.scipy.org/


Poulos C, Yang J-C, Patil SR, Pattanayak S, Wood S, Goodyear L, & Gonzalez JM (2012). Consumer 
preferences for household water treatment products in Andhra Pradesh, India. Social Science & 
Medicine, 75(4), 738–746. [PubMed: 22621996] 

Rogers EM (2010). Diffusion of Innovations, 4th Edition. Simon and Schuster.

Rosa G, & Clasen T. (2010). Estimating the scope of household water treatment in low- and medium
income countries. The American Journal of Tropical Medicine and Hygiene, 82(2), 289–300. 
[PubMed: 20134007] 

Schmidt W-P (2015). Seven trials, seven question marks. The Lancet. Global Health, 3(11), e659–
e660. [PubMed: 26475003] 

Schmidt W-P, & Cairncross S. (2009). Household water treatment in poor populations: is there enough 
evidence for scaling up now? Environmental Science & Technology, 43(4), 986–992. [PubMed: 
19320147] 

Shaheed A, Rathore S, Bastable A, Bruce J, Cairncross S, & Brown J. (2018). Adherence to Point-of
Use Water Treatment over Short-Term Implementation: Parallel Crossover Trials of Flocculation
Disinfection Sachets in Pakistan and Zambia. Environmental Science & Technology, 52(11), 
6601–6609. [PubMed: 29733647] 

Stauber CE, Elliott MA, Koksal F, Ortiz GM, DiGiano FA, & Sobsey MD (2006). Characterisation 
of the biosand filter for E. coli reductions from household drinking water under controlled 
laboratory and field use conditions. Water Science and Technology: A Journal of the International 
Association on Water Pollution Research, 54(3), 1–7.

Tadelis S. (2013). Game Theory: An Introduction. Princeton University Press.

Tien JH, & Earn DJD (2010). Multiple Transmission Pathways and Disease Dynamics in a Waterborne 
Pathogen Model. Bulletin of Mathematical Biology, 72(6), 1506–1533. [PubMed: 20143271] 

van Halem D, van der Laan H, Heijman SGJ, van Dijk JC, & Amy GL (2009). Assessing the 
sustainability of the silver-impregnated ceramic pot filter for low-cost household drinking water 
treatment. Physics and Chemistry of the Earth, Parts A/B/C, 34(1–2), 36–42.

Waddington H, & Snilstveit B. (2009). Effectiveness and sustainability of water, sanitation, and 
hygiene interventions in combating diarrhoea. Journal of Development Effectiveness, 1(3), 295–
335.

Ward RL, Bernstein DI, Young EC, Sherwood JR, Knowlton DR, & Schiff GM (1986). Human 
rotavirus studies in volunteers: determination of infectious dose and serological response to 
infection. The Journal of Infectious Diseases, 154(5), 871–880. [PubMed: 3021869] 

World Health Organization. (2011a). Evaluating Household Water Treatment Options: Health-based 
Targets and Microbiological Performance Specifications.

World Health Organization. (2011b). Guidelines for Drinking-water Quality.

World Health Organization. (2016). Results of round 1 of the WHO International Scheme 
to Evaluate Household Water Treatment Technologies. Retrieved from http://apps.who.int/iris/
bitstream/handle/10665/204284/?sequence=1

World Health Organization. (2017). Fact sheet: Diarrhoeal disease. Retrieved from http://www.who.int/
news-room/fact-sheets/detail/diarrhoeal-disease

Hayashi et al. Page 16

Risk Anal. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://apps.who.int/iris/bitstream/handle/10665/204284/?sequence=1
http://apps.who.int/iris/bitstream/handle/10665/204284/?sequence=1
http://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease
http://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease


Figure 1. 
An example of our decision-theoretic framework. 1a: The frequency distribution of 

preferences for interventions (xi) represented by their LRV in a simulated example 

population. In this example the minimum LRV is 0, the maximum LRV is 6, and a 4 

LRV treatment device has been provided (x). 1b: The frequency distribution of compliance 

among the simulated population (Pr(use)i) determined by solving Equation 11 using an 

asymmetrical distance function with x = 4.
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Figure 2. 
Simulated disease burden estimates for Cryptosporidium given expected doses calculated 

using Equation 2 for v = 1L/day, varying contamination concentrations (w), and varying 

compliance with a 4 LRV device (Pr(use)i). A population of 5000 was simulated 

until equilibrium using the exponential dose-response function (Equation 3) and gamma

distributed recovery times (Table 1).
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Figure 3. 
Numerical solutions to Equation 13, i.e. optimal interventions given average population 

preferences μ assuming normally distributed preferences with variance σ2 = 3.6. Solutions 

are shown using a symmetrical (blue) and asymmetrical (red) distance function. The dashed 

line indicates whether the optimal intervention for a given μ is higher or lower than that 

value.
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Figure 4. 
4a: The simulated endemic Cryptosporidium prevalence when the optimal intervention from 

Figure 3 is implemented. 4b: The risk ratio comparing the optimal intervention vs. the 

current 4 LRV guideline for Cryptosporidium across a range of LRV preferences (4b). 

Results are shown for both an asymmetric and symmetric distance function. Endemic 

prevalence was calculated for a simulated population of 10,000 after one year using a 

contamination concentration w = 1 oocyst/L, volume v = 2L/day, and dose response and 

recovery parameters given in Table 1
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Table 1:

Dose-response functions and recovery time distributions for each pathogen. The average time to recovery for 

a gamma distribution is the product of the shape and scale parameters. For an exponential distribution the 

average time is equal to the scale parameter.

Pathogen Dose-Response Dose-Response Parameters Recovery Distribution Recovery Parameters

Cryptosporidium Exponential (Messner et al. 2001) k = 5.72 × 10-2 Gamma shape = 4, scale = 2.5

E. coli(ETEC) Beta-Poisson (DuPont et al. 1971) α = 0.155, N50 = 2 × 106 Gamma shape = 1.775, scale = 1.69

Rotavirus Beta-Poisson (Ward et al. 1986) α = 0.253, N50 = 6.17 Gamma shape = 1, scale = 5.2
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Table 2:

Simulated disease burden estimates for three waterborne enteric pathogens at 6 LRV with complete 

compliance.

E. coli (ETEC) Rotavirus* Cryptosporidium

Organisms/L 1 × 103 1 0.1

Daily water consumption (L) 1 1 1

Treatment efficacy (LRV) 4 5 4

DALY/person 5.47 × 10-2 0.482 1.47 × 10-3

Prevalence/year 2.92 × 10-4 1.36 × 10-2 2.26 × 10-3

Disease burden (DALY/person-year) 1.59 × 10-5 6.54 × 10-3 3.32 × 10-6

Tolerable threshold (DALY/person-year) 1 × 10-6 1 × 10-6 1 × 10-6

*
Rotavirus assumes 6% population at risk in a low income country.

Risk Anal. Author manuscript; available in PMC 2021 December 01.


	Abstract
	INTRODUCTION
	METHODS
	Quantitative Microbial Risk Assessment (QMRA) model
	Exposure assessment
	Dose-response

	Decision-theoretic compliance
	Applying the decision theoretic model to household water filtration

	Optimizing HWT interventions
	Risk Simulation framework

	RESULTS
	The effect of imperfect compliance
	Optimal interventions
	Case study
	Selecting HWT based on user preferences
	Risk reduction


	DISCUSSION
	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1:
	Table 2:

