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Abstract

The gut-brain axis plays an important role in maintaining homeostasis. Many intrinsic and 

extrinsic factors influence signaling along this axis, modulating the function of both the enteric 

and central nervous systems. More recently the role of the microbiome as an important factor in 

modulating gut-brain signaling has emerged and the concept of a microbiota-gut-brain axis has 

been established. In this review, we highlight the role of this axis in modulating enteric and central 

nervous system function and how this may impact disorders such as Irritable Bowel Syndrome 

and disorders of mood and affect. We examine the overlapping biological constructs that underpin 

these disorders with a special emphasis on the neurotransmitter serotonin, which plays a key role 

in both the gastrointestinal tract and in the brain. Overall, it is clear that although animal studies 

have shown much promise, more progress is necessary before these findings can be translated for 

diagnostic and therapeutic benefit in patient populations.

Lay Summary:

25–30 words and very briefly summarize the article’s fundamental components: In this 

comprehensive review, the authors have united the known and most recent evidence of how the 
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microbiota-gut-brain axis modulates enteric and central nervous system development and function 

to impact disorders such as Irritable Bowel Syndrome and those affecting mood and affect

Introduction: Microbiota-gut-brain axis

The understanding that the brain and gut participate in continuous, bidirectional 

communication was recognized as remotely as in Ancient Greece where philosophers such 

as Hippocrates, Plato and Aristotle postulated that the brain and the rest of the body are 

intrinsically connected. This notion led to the understanding that in order to study disease 

processes, the whole person must be considered rather than an isolated organ system1. 

It wasn’t until the 1840s, however, that William Beaumont experimentally showed that 

emotional status affected the rate of digestion and, thus, that the brain affects the gut and 

that there is a brain-gut axis. Although this concept was subsequently recognized by the 

greats of modern biology including Darwin, Pavlov, James, Bernard and Cannon2, it took 

until the early to mid 20th century for the first scientifically recorded observations to be 

made that correlated gut physiology changes with changes in emotion. These studies were 

limited, however, by simple techniques and the lack of study of the reciprocal effects of 

changes in gut physiology on mental function1. Emerging data has confirmed connections 

between brain and gut health and has further suggested several mechanistic underpinnings. 

Alterations in gastrointestinal (GI) function and GI symptoms have been reported to 

accompany an increasing number of central nervous system (CNS) disorders and, as in the 

case of Parkinson’s disease, GI dysfunction might occur even before central neurological 

symptoms become evident3. Similarly, GI symptoms are an important component of 

disorders of brain-gut interactions such as IBS, which are commonly associated with 

psychological symptoms and psychiatric diagnoses. Moreover, with the advent of brain 

imaging, the reciprocal interactions can be visualized for the first time, demonstrating that 

gut stimuli can activate key brain regions involved in emotion regulation2.

Most aspects of GI physiology are under neural control, which is exerted via a vast network 

of intrinsic enteric neurons and glia that span throughout the enteric nervous system (ENS), 

GI smooth muscle and the lamina propria of the mucosa, as well as extrinsic innervation 

from primary afferent and autonomic fibers that connect the intestine to the spinal cord 

and the brain4, 5. Although the ENS can regulate GI peristalsis largely independent of CNS 

input, GI motility is also modulated by factors extrinsic to the ENS, including the brain6 

and other divisions of the autonomic nervous system (ANS), the gut associated immune 

system and the gut microbiome. The influence on the gut is not unidirectional, as the gut 

also sends information to these various systems through complex pathways that function as 

bidirectional conduits for homeostasis, and alterations in this communication are associated 

with disease. Adequate gut function is thus critical for not only long-term survival but also 

for brain-gut homeostasis. Precisely how gut-brain communication occurs in health and 

disease in humans, however, remains an active area of investigation.

More recently, the microbiome (the trillions of microrganisms that reside in the gut) 

has emerged as an integral player in gut-brain communication and a microbiome-gut­

brain axis has been proposed7–10. Although mechanistic studies on how this expansive 
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community of microorganisms influences human ENS and CNS development11, GI 

motility12, mood10, cognition and learning13 are still in their infancy, it offers itself as 

a potentially important site for future therapeutic interventions (Figure 1). Gut microbes 

communicate to the CNS through neuronal, endocrine, and immune signaling channels. 

Conversely, the CNS can affect the gut microbiota directly via stress mediator-induced 

virulence gene expression and indirectly through ANS-mediated control of gut function 

(e.g., motility, immune modulation and secretion)14 (Figure 1). In addition, the ENS can 

directly modulate microbial composition through changes in secretion, motility, permeability 

and immunological defense. These parallel and interacting pathways are thus emerging to 

investigators as a complex communication matrix which also has been referred to as the gut 

connectome15.

In addition to the contributions of the microbiome, studies in animal models have provided 

evidence that some GI dysfunction in neurological conditions may also be due to genetic 

defects and/or environmental influences that can simultaneously impact gut and brain 

development and/or function. Supportive of this notion are the demonstrations that the ENS, 

often described as a “second brain,” shares many likenesses with the CNS. Their shared 

structure, developmental patterns and neurochemistry have formed the basis for research in 

understanding how pathogenic mechanisms that give rise to CNS disorders might also lead 

to ENS dysfunction and vice versa. For example, one of the key transmitters in the CNS 

and the intestine, serotonin (5-HT), can act in neuroendocrine, endocrine and/or paracrine 

fashions to impact the development and long-term functions of both the ENS and CNS.

Given the critical involvement of the ENS, CNS and the microbiome in brain and gut 

development and function, a greater understanding of the relationships between these 

systems is likely to enable the development of novel therapeutic targets for some of the 

most common yet poorly understood medical conditions. The current state of research, while 

impressive, leaves many vital unanswered questions that need to be addressed in order 

to facilitate novel, effective therapeutic development. In this review, we address current 

evidence supporting the ways in which the brain, the gut and the gut microbiota interact and 

the emerging data supporting its contribution to human disease.

The Microbiota-Gut-Brain (MGB) Axis

Driven by the development of next-generation sequencing technologies in tandem with large 

cohort studies, the past decade has seen a dramatic increase in our understanding of the 

microbiome in many aspects of health and disease16. In humans, the greatest abundance of 

microbes is found in the distal gut that hosts approximately 3·1013 microbes from more than 

60 genera17. Although bacteria are the most abundant and best-studied gut microorganisms, 

the multitude of archaea, yeasts, single-celled eukaryotes, helminth parasites and viruses 

are also more recently being considered, though the role that these other microorganisms 

play in MGB interactions is currently unknown. There are large inter-individual differences 

in the microbial composition and we are only beginning to understand the factors that 

influence this in health and disease 16. Moreover, there is a growing appreciation from 

cross sectional human studies that changes in the diversity and relative abundances of the 

microbiota and microbial metabolites are associated with a wide array of neurological and 
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psychiatric disorders, including Parkinson’s disease, Alzheimer’s disease, Autism spectrum 

disorders and depression18. Results from these studies, however, have been inconsistent and 

without evidence establishing causality for the gut microbiome. Further, examination of 

the MGB axis in clinical populations has been mostly restricted to cross-sectional studies 

demonstrating associations of gut microbes with brain architecture in healthy subjects 

or disease states 19. There is thus a large gap in our understanding of the underlying 

mechanisms involved in MGB dialogue. Based largely on results obtained in preclinical 

animal models, the more well-studied routes of communication thus far include the immune 

system20, metabolites and neurotransmitters and vagal nerve activation 21, 22.

Microbiome-Gut-Brain Axis in early Life

Whether microbial colonization occurs in utero is not yet fully understood23. Maternal 

diet 24 and maternal stress exposure during pregnancy25, 26, however, have been shown to 

influence the infant microbiome, and it is clear that the maternal microbiome can play a 

key role in shaping infant host development and physiology 27, 2829, 30. Intriguingly, the 

periods of major change in the developing microbiota overlap partially with the time-frames 

for development of other bodily systems and particularly the brain31 and the enteric nervous 

system11. This parallel development is likely to be biologically relevant, and these periods 

may correspond to sensitive periods in the development of the MGB axis that will be critical 

for establishing appropriate communication along the axis throughout the lifespan.

The postnatal microbiota is relatively volatile, gaining stability and diversity across 

maturation32. Most colonization of the infant gut starts at birth when delivery exposes the 

infant to a complex microbiota that are dependent on many elements, including mode of 

delivery, breastfeeding, prematurity, the environment, host genetics, antibiotic exposure, and 

maternal factors such as infection status, stress and/or obesity.

After the first several days of life, there is a shift towards a microbiota population focused 

on extracting nutrients in order to support the rapid development of the brain and body 

of the host33. A key component of gut microbiota differences may be dependent on 

whether an infant is breast or formula fed. While heterogeneity exists among the population 

characteristics and study techniques, most studies show that both diversity and richness 

of the microbiome are lower in breastfed than formula fed infants, with higher levels of 

Proteobacteria and Bifidobacteria, and lower levels Bacteroidetes and Firmicutes found in 

breast fed infants compared to those who are formula fed34, 35. However, these differences 

do not appear to be linked to infant behavioral distinctions such as those associated with 

colic35.

The last major change takes place at weaning, as the infant shifts from breastmilk or formula 

to a solid diet with a pattern observed across species, including humans and rodents36, 37. 

Although there are continuous changes well into adolescence 32, these alterations are more 

gradual and geared towards an adult-like profile 38. In the adult, diet has the greatest 

life-long influence on microbiota composition39 although antibiotic usage is also a key 

factor in disrupting the microbiota across the lifespan40.

Margolis et al. Page 4

Gastroenterology. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Microbiota and CNS Development

Overall, fundamental central neural processes including development, myelination, 

neurogenesis and microglia activation have shown to be dependent on the composition 

of the microbiota 4142−4849, 50. The strongest evidence for a role of the microbiota in 

neurodevelopment comes from research in germ-free (GF) mice 41, 51. Studies where GF 

rodents have been recolonized with “normal” microbiota (i.e., from specific pathogen-free 

animals) at different ages have shown that post-weaning re-colonization is more effective at 

restoring GF deficits than re-colonization later in life, at least for specific aspects of brain 

or immune function and behavior52–56. Still other functions in GF animals, such as those 

affecting CNS serotonergic neurotransmission, cannot be restored by re-colonization by the 

age of weaning, suggesting that the window for microbial influence on these functions is 

already closed56.

Although these studies in GF mice have been important in providing evidence supporting 

the concept that the microbiome is involved in brain processes involved in stress 

hormone signaling, neural function and neuroprotection 51, there are significant limitations 

to human translation of these findings including, but not limited to, the presence of 

defects in the immune system development, ENS formation and CNS maturation of GF 

animals 574142–4849, 50. The mechanistic underpinnings of these relationships are also little 

understood.

The human studies that have sought to evaluate the relationship between the microbiota 

and CNS development remain limited; most have been conducted in infants and are largely 

cross-sectional. Studies that have extended follow-up to two years of age, however, have 

continued to show connections. Antibiotic exposure in infancy has been reported to have 

a negative impact on cognitive development 58. Another study linked cognitive function at 

two years of age with microbiota composition assessed one year earlier 59. More recently, 

the same research group demonstrated that microbiota alpha diversity was also related 

to cognitive outcomes at two years of age and, further, was associated with functional 

connectivity between the supplementary motor area and the inferior parietal lobule in 

infancy. Importantly, this connectivity was also related to cognitive outcomes at two years of 

age 60.

Enteric Nervous System Development

In the early postnatal period, enteric neuro- and glio-genesis is accompanied by a functional 

maturation of intestinal neural circuits. 33, 61. This evolution has been shown to continue 

beyond the postnatal period in preclinical models; enteric gliogenesis is maintained at low 

levels throughout life 62–64, enteric neuronal turnover may occur even more rapidly than that 

of glial cells 65 and changes in synaptic contacts within the enteric circuitry are seen in mice 

through adolescence 66.

To date, ENS development has been examined primarily from its molecular and genetic 

origins 67. An increase in the understanding of the importance of postnatal ENS 

development, however, has led to an emergence of literature focusing on factors that are 
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contained within the postnatal gut microenvironment, including the presence of a complex 

gut microbiota and immune system11, 68–70.

Gut microbiota-driven effects on ENS development and function have been exemplified in 

studies on GF mice. These mice harbor reduced numbers and subtype distributions of enteric 

neurons that are associated with deficits in gut motility68–70 as well as attenuated excitability 

of intrinsic primary afferent neurons, a key component of gut-brain neural pathways71, 72. 

Conventionalization of adult GF mice reduces the deficit in intestinal transit time69, 73, 

restores neuronal excitability71, alters the chemical coding of enteric neurons and normalizes 

enteric glial cell density and gut physiology64, 69 demonstrating an important role for 

the microbiota in ENS plasticity. Similar effects have been noted after bacterial exposure 

through probiotics or specific bacterial strains74–76. Moreover, studies have also provided 

insight as to which microbial mechanisms may affect enteric nerve activity77, 7878, 79. These 

include G-protein-coupled receptor-mediated signaling pathways 80, 5-HT, short chain fatty 

acids (SCFAs) 78, microbial-epithelial interactions 79 and the transcription factor, aryl 

hydrocarbon receptor (Ahr).

Ahr is a recognized biosensor for intestinal epithelial- and immune-cell homeostasis in 

the gut. As such, enteric neuron specific Ahr may serve as a node that integrates signals 

from the luminal microbiota environment with the physiological output of intestinal neural 

circuits to maintain gut homeostasis81. Interestingly, in a recent study it was shown that 

neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback 

regulator, CYP1A1, results in reduced peristaltic activity of the colon, similar to that 

observed in microbiota-depleted mice 76. Moreover, expression of Ahr in the enteric 

neurons of mice treated with antibiotics partially restores intestinal motility. These studies 

suggest that the ENS possesses an ability to monitor the luminal microbial environment 

and adjust neuronal activity and motility accordingly and thus provides a further basis for 

studies that examine the microbial detection mechanisms used to alter GI and or gut-brain 

physiology. Overall, more research is needed to understand the mechanisms by which the 

microenvironment of the gut lumen influences ENS plasticity.

Finally, reverse regulation in which the ENS contributes to the shaping of the microbiome 

is also possible and has been addressed by several preclinical studies, including several in 

which alterations in the composition of colonic and/or fecal microbiota were observed in 

murine or zebrafish models of congenital aganglionosis8283. It still needs to be determined, 

however, whether these abnormalities represent direct effects of ENS circuits on microbiota 

or are merely the consequences of abnormal peristalsis.

Mechanisms of Microbiota to Gut-Brain Signaling

Vagus Nerve—As a major bidirectional highway of brain-gut connection, the afferent 

branch of the vagus nerve has been the focus of multiple studies examining its effects on 

brain-gut communication in health and disease 14, 84. While the sensory vagus nerve and 

ENS are intrinsically linked, the mechanisms underpinning this interaction and the role of 

vagal signalling from the ENS to the brain remain incompletely understood.
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The afferent branch of the vagus nerve is the main neural conduit connecting the 

gastrointestinal tract to the nucleus of the solitary tract and higher emotion-regulating 

networks in the mammalian brain 85. Although it does not appear to interact with the 

gut microbiota directly, evidence suggests that the vagus nerve can sense microbial signals 

in the form of bacterial metabolites, or be influenced via microbiota-mediated modulation 

of enteroendocrine (EECs) and enterochromaffin (ECCs) cells in the gut epithelium 86 

(Figure 2). For example, gut bacteria produce SCFA metabolites (e.g., butyrate, propionate, 

acetate and valerate) that regulate physiological intestinal functions, including those 

involving motility, secretion and inflammation (see below), through their cognate free fatty 

acid receptors (FFARs)87. Further, other receptors on vagal nerve fibers such as those 

for serotonin (5-HT3, 5-HT4) and other gut peptide receptors may also facilitate these 

messenger pathways86, 88. Vagotomy studies in mice also highlight possible roles for the 

vagus nerve in CNS-microbiota communication which may translate to human mood and 

neurobehavioral disorders. For example, in mice, vagotomy has been shown to block central 

signaling of Lactobacillus and Bifidobacterium species, resulting in the besiegement of their 

mood-modifying effects55, 89, 90.

A bidirectional communication system between diet, the gut microbiome, ECCs and the 

vagus nerve has recently been reported. ECCs contain more than 90% of the body’s 

serotonin (5-HT) and 5-HT synthesis and release in ECCs is modulated by SCFAs and 2BAs 

produced by spore-forming Clostridiales12, 91. These microbes increase their stimulatory 

actions on ECCs with increased dietary tryptophan availability92. ECCs also communicate 

with afferent nerve fibers through synaptic connections of neuropod-like extensions of 

ECCs93. On the other hand, the ANS can activate ECCs to release 5-HT into the gut lumen, 

where it can both be taken up by serotonin transporter-like mechanisms and influence gut 

microbial function 94.

Immune Mechanisms for microbiota to gut-brain signaling—In the gut, an 

intact immune system is critical for maintaining the careful balance between homeostatic 

tolerance of commensal organisms and the simultaneous protection of the body against 

pathogenic microbial invasion. In addition,immunity also serves a critical role in mediating 

communication between the gut microbiota, the ENS and the brain. Toll-like receptors 

(TLRs) and peptidoglycans (PGNs) mediate the immune response to microbes by acting as 

sensors of microbial components95, 96.An intact gut barrier also prevents the inappropriate 

activation of immune cells and the development of systemic immune activation.

Bacteria can release immune agonists, such as lipopolysaccharide (LPS) and PGN, into 

the circulation where they can gain access to the brain. TLRs have been found in the 

brain of mouse disease models, and especially the microglia, where they have been studied 

in the development of Alzheimer’s Disease97, Parkinson’s disease 98, visceral pain99 and 

depression100. GF and antibiotic-treated mice also both display a reduction in the expression 

of several of the receptors that detect PGN in the striatum, which suggests that gene 

expression in the brain is sensitive to microbiota manipulation. 101. Moreover, knockdown 

of a PGN sensing receptor, PGN-recognition protein 2, resulted in an increase in sociability 

in mice, indicating that loss of the ability to sense peptidoglycan results in host behavioral 
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changes101. More research is needed, however, to unravel the functional consequences of 

such immune signaling across the lifespan in health and disease

Diet-induced changes in the gut microbiome can lead to a compromised mucus layer, 

allowing access of luminal microbes to extensions of dendritic cells, resulting in activation 

of these cells by both pathogens and commensals. This local immune activation can 

lead to increased permeability of the epithelial tight junctions that further compromises 

the intestinal barrier. The diet-induced release of immune mediators into the systemic 

circulation is referred to as metabolic endotoxemia, which can lead to immune activation 

in different organs, including the brain102. This low grade immune activation has been 

implicated in the pathophysiology of some forms of depression and neurodegenerative 

disorders such as Alzheimer’s and Parkinson’s disease.

Immune Signaling and the ENS—TLRs and other components of the innate immune 

system (e.g., macrophages) may serve as sensors of gut microbial presence and deliver 

messages to the ENS that result in changes in gut nervous system development and function. 

Enteric neurons and glia have the machinery necessary to detect the gut microbiota; they 

both express TLR2 and TLR468, 103. Further, antibiotic depletion of the microbiota alters 

TLR expression in mice and also results in concomitant alterations in GI motility and 

sensitivity to acetycholine 104.These effects may, at least in part, may be mediated by 

TLR4 and/or TLR2. TLR4 deficient mice have decreased numbers of nitrergic neurons and 

reduced motility, a similar phenotype to that observed in GF and antibiotic-treated mice68. 

Mice deficient in TLR2 signaling exhibit abnormalities in the neurochemical coding of the 

ENS that is accompanied by gut dysmotility and attenuated chloride production in intestinal 

explants 103. Further, antibiotic treatment of wild-type mice leads to ENS abnormalities that 

can be reversed after supplementation with a TLR2 agonist, further confirming the idea that 

the gut microbiota-TLR2 axis is important for ENS morphology and function103.

These data suggest that the ENS has the capacity to respond to stimuli from distinct types 

of microbes affecting its physiology. Precisely how microbe-TLR communication affects 

ENS structure and function, and how these changes relate to gut-brain signaling, have yet 

to be determined. For example, it would be important to determine how alterations in TLR 

activation during early-life, including those induced by infections and/or antibiotics, can 

affect ENS development and long-term function of brain-gut interactions. The plasticity of 

the ENS demonstrated in these studies and others make this likely to be high-yielding area 

of therapeutic investigation.

Macrophages are present throughout the gut where they play an essential role in the 

reparative response to intestinal injury 105, 106. Monocyte-derived and tissue-resident 

macrophages are decreased in quantity in GF mice or in mice that that are microbiota­

depleted with antibiotics, implying a role for the microbiota in intestinal macrophage 

recruitment and differentiation107. Further, muscularis macrophages (MMs) engage in a 

bidirectional relationship with enteric neurons that appears to be regulated by the gut 

microbiota; MM activation by the cytokine, bone morphogenetic protein 2 (BMP-2) results 

in alterations in GI motility and production of macrophage colony-stimulating factor 1 

(CSF1), a critical mediator of MM development, and both CSF1 and BMP2 production are 
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decreased after antibiotic treatment 107. Microbiota-neuron-macrophage interactions have 

also been exemplified in studies showing that sympathetic ganglia activation elicited by S. 
typhimurium may influence macrophages to protect the ENS by stimulating processes that 

both limit enteric neuronal damage and enhance gut motility108. The ENS may also protect 

itself from invasive S. typhimurium infection by producing IL-18, a cytokine that both 

drives goblet cell antimicrobial peptide production and maintains the mucosal barrier 109. 

It has most recently been demonstrated that the gut microbiota may influence gut-extrinsic 

sympathetic activation through a gut-brain circuit110.

Microbial Metabolites—The gut microbiota generate metabolites that are implicated 

in the modulation of both CNS and ENS physiology and behavior. Although in vitro 
studies have shown that specific bacteria can produce neurotransmitters (e.g., noradrenaline, 

dopamine and GABA)111, 112, whether these neurotransmitters are capable of reaching 

specific targets within the CNS, and/or in sufficient concentrations, is unknow. The short 

half-lives of most neurotransmitters and their limited ability to cross the blood brain barrier, 

however, make this possibility unlikely. The way this gut-brain communication may happen 

has been studied most extensively for serotonin and other tryptophan metabolites (see 
below) which have been shown to exert major influences on ENS and CNS development and 

functions including GI motility, mood and behavior113–118.

Short Chain Fatty Acids: Gut bacteria produce SCFA metabolites that can regulate 

motility, secretion, and gut-brain signaling by acting through FFARs on epithelial cells, 

EECs, ECCs, immune cells, and intrinsic and extrinsic neurons12, 91 (Figure 2) 119. 

Centrally, administration of acetate, propionate and butyrate is capable of restoring 

morphological deficits of microglia in GF mice 120 and reversing the behavioral and 

physiological effects of chronic stress 121. Moreover, SCFAs may influence the production 

of neurotransmitters in the brain through regulating the expression of enzymes involved 

in their biosynthesis; administration of propionate and butyrate to PC12 cells (neuroblastic 

cells which differentiate to neuron-like cells) in vitro increased the expression of tyrosine 

hydroxylase, the rate-limiting enzyme involved in noradrenaline and dopamine synthesis 
122. Whether these microbial metabolites are capable of regulating neurotransmission in 
vivo, however, is not clear. More evidence is also needed to determine the extent to which 

physiologically relevant concentrations of SCFAs are capable of reaching the brain given 

their relatively short half-life (25 minutes to three hours). To date, studies investigating the 

effect of exogenous SCFA administration upon brain physiology and behavior have typically 

used concentrations that far exceed what is microbially derived 123.

Serotonin: A key regulator of the MGB Axis in the Gut and Brain—There is 

growing appreciation that the neurotransmitter 5-HT is one of the key players in MGB 

axis signaling in both the brain, the gut and in gut to brain communication. Indeed, 

recent studies have shown that specific spore-forming bacteria from both humans and 

mice increase colonic and serum 5-HT levels in GF mice and ameliorate GF-associated 

gut dysmotility by producing SCFAs124, which increase 5-HT production by up-regulating 

Tph1 expression in ECCs12, 91 (Figure 2). Recent evidence suggests that 5-HT released 

from ECCs communicates with the gut microbiota, Turicibacter sanguinis, that possesses 
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serotonin uptake mechanisms which are involved in its colonization and host physiology125. 

This may account for some of the bidirectional influences that occur between some 

psychotropic drugs, including SSRIs, and the intestinal microbiota126. Gut microbiota 

has also been shown to induce maturation of the adult ENS via activation of 5-HT4 

receptors (5-HT4R); GF mice retain a higher degree of nestin-expressing neuronal stem 

cells and exhibit slower intestinal transit and both factors normalize following bacterial 

colonization that is dependent on 5-HT4R signaling73. Finally, the gut microbiota may also 

act through neurotransmitter precursors; it can influence serotonergic neurotransmission 

through regulating the availability of the 5-HT precursor, tryptophan. Circulating tryptophan 

concentrations are significantly higher in male GF mice relative to conventional controls 56 

and these altered tryptophan levels correspond with an increase in hippocampal serotonin, 

and its metabolite, 5-hydroxy-indole acetic acid 56. Whether this has any bearing on the 

social deficits observed in these animals, however, requires further investigation.

Tryptophan Metabolism: Beyond Serotonin—The main physiological pathway for 

tryptophan metabolism is along the kynurenine pathway. GF mouse studies have shown 

an increased availability of tryptophan in GF animals as a consequence of a reduction 

in peripheral kynurenine pathway activation56. Moreover, in a rodent model of chronic 

variable stress, a stress induced reduction of Lactobacilli reduced hydrogen peroxide (H202)­

mediated inhibition of Indoleamine 2, 3-Dioxygenase 1 (IDO1). This inhibition resulted 

in an increase in the conversion of tryptophan to kynurenine, a feature that was linked to 

depression-like behavioral alterations in mice exposed to chronic stress127. In contrast to 

serotonin, kynurenine can traverse the blood brain barrier and negatively impact brain health 

by inducing neuroinflammation and neurodegeneration128.

Indole production which is limited to the gut microbiota, is catalyzed by the microbial 

enzyme, tryptophan hydroxylase and indole has been detected in blood, brain and the GI 

tract 92. There is a growing literature supporting the concept that the microbial processing 

of tryptophan to indole affects gut-brain axis function129. Indoles exert many beneficial 

actions on intestinal and systemic homeostasis130.Yet, adverse effects on the gut-brain axis 

are also evident following absorption from the gut and host processing, where some indole 

derivatives, have been shown to exert neurodepressive-like affects on behavior, at least in 

preclinical studies131.

Tryptamine—Bacteria express tryptophan decarboxylase and are capable of producing 

tryptamine from dietary tryptophan. It has recently been demonstrated that bacterial-derived 

tryptamine can act via the 5-HT4R to impact gastrointestinal motility88. The capacity of the 

gut microbiota to produce metabolites like tryptamine, that can influence host physiology by 

activation of G protein-coupled receptors, is an important facet of host-microbe interactions 

that warrants increased attention132,133. It is currently unclear, however, if microbially 

derived tryptamine reaches the CNS and whether it acts there to control behavior.

The Microbiota-Gut-Brain axis in Healthy subjects

There are a number of studies that demonstrate the effects of microbiota-targeted 

interventions in healthy individuals 19. Four weeks of probiotic consumption by healthy 
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females led to changes in the functional connectivity of an emotion recognition network 

in the brain134. In a different cohort of female healthy control subjects, white and gray 

matter imaging parameters were associated with two bacterial genus-based clusters that each 

differed in the structures associated with emotional, attentional, and sensory processing and 

also in fMRI-measured emotional reactivity 135. Several trials involving the administration 

of a Lactobacillus rhamnosus (JB-1) supplement to healthy males showed inconsistent 

outcomes in stress-related behaviors with either a positive136 or no137 difference in those 

receiving the supplement. In another examination of healthy subjects, however, probiotics 

improved emotional decision-making and affect relative to placebo with concomitant 

changes in specific taxa138. In contrast to preclinical models, there is currently no solid 

evidence that probiotic ingestion in healthy individuals can modulate behavior, as reported 

studies on probiotic consumption in small clinical studies have produced contradictory 

outcomes139–143.

Disorders of brain-gut interactions: IBS

IBS is the most common disorder of brain-gut interaction, occurring in up to 4.8 % of 

the population worldwide144. Based on the current symptom criteria,145 IBS is defined by 

chronically recurring abdominal pain associated with altered bowel habits in the absence of 

detectable organic disease. This gut-restricted definition overlooks the findings that up to 

50% of individuals who meet diagnostic criteria for an anxiety disorder have IBS, and that 

individuals with IBS have a greater than three-fold risk of meeting diagnostic criteria for an 

anxiety disorder146. While in the majority of IBS patients, CNS-related precipitants in early 

and adult life (e.g., psychological trauma, stress, abuse, maternal neglect) 147 have been 

identified, about half of IBS patients present after an intestinal trigger 148. The bidirectional 

nature of brain-gut involvement in IBS was illustrated in a one-year population-based 

prospective study that evaluated individuals with anxiety +/− depression and IBS as well 

as control individuals with neither condition. At the conclusion of the study, it was found 

that individuals with higher baseline levels of anxiety and depression were significantly 

more likely to develop IBS and, conversely, that those subjects with baseline IBS reported 

significantly higher levels of anxiety or depression. Interestingly, in 2/3 of these co-morbid 

cases, an IBS diagnosis preceded the mood disorder, implying that in some patients primary 

gut dysfunction might serve as a driver for mood disorders149.

Alterations in fMRI-detected brain activity are linked to abdominal pain150. Connections 

have been shown between brain networks that mediate anxiety and ANS output, like 

the amygdala, with mechanisms that modulate colonic sensitivity and gut motility. 

Increased and decreased activation of endogenous pain excitatory and inhibitory pathways, 

respectively, have also been observed in CNS locations that have been associated with 

visceral afferent processing and emotional arousal151–153. Interestingly, these pathways 

share significant homology to a stress circuit in rodents that implicates the involvement 

of corticotropin releasing factor in the central and peripheral regulation of brain-gut 

interactions in IBS154.

IBS and the Microbiome—A causal role for altered gut microbiota in IBS symptoms 

remains to be determined, even though a number of cross sectional studies have reported 
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alterations in fecal microbial community composition in IBS subjects, based on disease 

subtype (IBS-D, IBS-C, IBS-M), age (pediatric vs. adult), and/or compartment (mucosa 

vs. stool)155. Recent evidence suggests the presence of IBS subgroups based on gut 

microbial community structure, with groups not differing from healthy controls despite 

GI symptoms156, 157. In one study, a dysbiotic IBS subgroup differed in regional brain 

volumes from a group with normal gut microbiota157, suggesting a relationship between 

microbial community composition and brain structure. However, as both microbiota-defined 

subgroups met the IBS diagnostic criteria and did not differ in any clinical parameters, these 

findings put into question a causative role for dysbiosis in IBS symptoms. The absence of 

group differences in the microbial composition between healthy controls and individuals 

with IBS has been reproduced elsewhere, though IBS symptom severity was found to 

be correlated with dysbiosis158. A more recent cross-sectional study revealed significant 

differences among IBS subtypes in the distribution of Clostridiales. Relative Clostridiales 

abundance was correlated with significant differences in the level of fecal SCFAs, which 

together were associated with altered fecal cytokine levels159. Even though this study aimed 

to identify mechanistic pathways in gut microbe-host interactions, the findings need to be 

confirmed in a study with a control population and a larger sample size.

The diverse findings from the IBS microbiota studies have been attributed to the extensive 

range of technologies employed for microbiota study, sample source, differences in IBS 

subtype, differential effects of the ANS on other aspects of physiology (e.g., mucus 

secretion, intestinal permeability and mucosal immunity; reviewed in160) as well as the 

many other influences that affect microbial composition and function (e.g., age, diet, 

antibiotic exposure, geography, probiotic intake, medication exposure)155, 161. Further 

complicating this dynamic is the need to factor in the CNS-mediated aspects of motility and 

gut physiology, including sleep quality and stress. The examination of much larger cohorts 

in longitudinal studies that also integrate clinical phenotypes and diet are thus needed for a 

more comprehensive understanding of these populations.

IBS and serotonin—Serotonin is one of most highly studied neurotransmitters in IBS 

physiology. As a major determinant of ENS and CNS development and a modulator of 

IBS-related symptoms (e.g., motility, secretion and visceral hypersensitivity) as well as 

mood 113, serotonin may thus be an important developmental modulator of the comorbid 

mood and IBS diagnoses made in some affected patients. Alterations in enteric mucosal 

and blood serotonin signaling have also been demonstrated in adults and children with IBS, 

potentially indicative of GI-initiated serotonergic dysregulation162, 163. Although serotonin 

can activate more than 15 receptors/receptor subtypes in the brain and intestine, the majority 

of IBS research has focused on the 5-HT3 and 5-HT4 receptors, as both have been shown to 

have effects on mood, motility and abdominal pain (reviewed previously113, 164–167).

Altogether, these data suggest a possible role of the gut microbiome in altered brain 

gut interactions in IBS. They also provide the basis for larger, longitudinal interventional 

studies, both clinical and functional, to identify the roles of specific microbiota in behavioral 

and gut dysfunction in IBS and also the utility of serotonin-based modulators as potential 

therapeutic targets (Figure 2).
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Gut Microbiome in Depression

In recent years, there have been an increasing number of studies showing that patients 

with Major Depressive disorder (MDD) have an altered gut microbiome composition when 

compared to healthy controls, although the nature of the alterations in each study are 

diverse168–170. This variation in outcomes is likely due to similar reasons as those noted 

for IBS. It is worth noting that studies have also shown that transferring the microbiome 

of a depressed individual into a healthy rodent can induce depressive-like behaviors in 

the murine recipient suggesting the possibility of a causal role for the microbiota in 

pathophysiology of depression and opening up the concept of targeting the microbiome 

for mental health benefit19, 169.

Mood and IBS: Targeting the Microbiota-Gut-Brain Axis

The effects of enteric microbial manipulations in controlled clinical trials in patients 

with depression and/or IBS have been evaluated with probiotics, antibiotics and the low 

fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) 

diet. Several studies have demonstrated the effectiveness of a low FODMAP diet in the 

short-term treatment of IBS symptoms, and diet induced changes in the gut microbiome 

have been implicated as an underlying mechanism. The low FODMAP diet results in a 

decreased production of gas and osmotically active metabolites, as a result of decreased 

microbial fermentation, that is thought to lead to improvements in bloating, flatulence, and 

pain171. In line with this theory, adult RCTs demonstrate that intake of a low FODMAP 

diet improves IBS symptoms, regardless of subtype, as well as health-related quality of life 

(QOL), anxiety, and activity impairment in adults with IBS-D171. However, even though 

these study results indirectly support a role for the gut microbiome in some IBS symptoms 

and may be useful for short term treatment of some IBS symptoms, the value of a low 

FODMAP diet for long term treatment for IBS has been questioned171. This reduction 

efficacy may be because of the reduction of oligosaccharides important for the diversity and 

abundance of the gut microbiota, and/or because of the low compliance rate associated with 

long-term adherence171.

A different dietary approach has been taken in the treatment of depression which 

comes under the umbrella of Nutritional Psychiatry. There is clinical evidence from both 

epidemiological and several interventional studies that a largely plant based diet, such as the 

traditional Mediterranean diet, has benefits in the adjuvant treatment of depression172, 173. 

There are many open questions that remain, especially in regard to the mechanisms of how 

diet may impact mood and which components are the most beneficial.

Supplementing the Gut Microbiome to improve MGB Axis—Apart from dietary 

intervention, probiotics have also been tried as a treatment meant to target the microbiome. 

Although numerous preclinical and some clinical studies have reported beneficial effects 

of specific probiotics on mood and emotional behaviors, clinically significant effects of 

probiotics in the treatment of psychiatric disorders have not been demonstrated174. There 

is thus a need for high quality randomized controlled clinical studies in human subjects to 

demonstrate that the beneficial effects observed in preclinical models can be translated and 

confirmed in human settings.
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Studies on probiotics, including strains of Bifidobacterium and/or Lactobacillus, as well 

as VSL#3, have been shown to improve symptom severity in adults and children with 

IBS175–177. Due to the insufficient quality of these studies, however, the recently published 

AGA Guidelines on probiotics do not recommend their use in IBS, other than in controlled 

studies176, 177.

Interestingly, although some probiotic supplementation in humans changes the gut 

microbiota composition, as judged by 16S rRNA sequencing, others show no or only 

transient modification of the collective microbiome transcriptional state. These findings 

suggest that measurement of probiotic intervention on gut microbial profiles must be 

accompanied by technologies assessing microbial function, such as metagenomics or 

metabolomics.

Fecal microbiome transplantation as a therapy for IBS & mood disturbances—
Clinical studies on fecal microbiota transplantation (FMT) remain limited and systematic 

review fails to show any overall benefit178, 179. Two recent RCT studies showed alterations 

in gut microbial composition in the group receiving a FMT. However, while one study 

showed a significant IBS symptom reduction three months after FMT, the other study 

demonstrated greater symptom improvement in the placebo-treated group178–180. High 

quality FMT studies in patients with depression are in the pipeline.

Conclusions and Future Directions

Considerable progress has been made in the understanding of the MGB axis in preclinical 

models of human brain disorders and in the potential translation of these findings to humans. 

A growing body of research has confirmed that disorders of brain gut interactions like 

IBS have a strong brain component and that many brain disorders have a GI facet to 

their manifestations or even their origins. A causal role of the gut microbiome in these 

interactions remains to be determined. This valuable knowledge will inform the development 

of cross-disciplinary therapeutic approaches well into the future.

Key areas that have not yet been examined extensively are the roles that sex and race play 

in microbiome-gut-brain-axis development and disease. Accumulating evidence has shown, 

however, that both sex and race may exert important influences over the gut microbiota. 

The microbiome may alter brain development in a sex-specific manner and females are 

significantly more likely to suffer from stress-related and functional GI- disorders56, 181, 182. 

On the other hand, at least in animal models, the male brain appears to be more susceptible 

to microbial disturbances in early life than the female brain183. These sex-specific effects 

have given rise to justified calls for more intensive study of the “microgenderome”181, 184. 

Although racial diversity of the gut microbiome has been explored somewhat in cancer 

and other medical conditions, there has been no in-depth exploration of how race impacts 

microbial diversity and its relationship with brain-gut axis conditions185. The current 

knowledge, however, emphasizes the need to understand how the sexual dimorphism and 

racial diversity impact the microbiome and contribute to brain-gut axis disorders.
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It is important to reiterate that translation of preclinical findings into more effective therapies 

for human brain disorders has largely been unsuccessful to date (Figure 3). Moving forward, 

the development of live biotherapeutics or substances whose beneficial effects on the 

brain are bacteria-mediated (i.e., psychobiotics) are currently being investigated as direct 

and/or adjunctive therapies for brain disorders, but this field is very much in its infancy19. 

Until identification of gut microbiome-related patient subtypes becomes possible and new 

pharmacologic and specific microbiome targeted approaches emerge, the most effective 

treatments for IBS and other disorders of MGB interactions remain a combination of 

personalized diet approaches, behavioral therapies and a limited number of pharmacologic 

treatments aimed at improvement of bowel function186.
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What You Need to Know

BACKGROUND AND CONTEXT:

A growing body of research has confirmed that disorders of brain gut interactions (e.g., 

IBS) have a strong brain component and that many brain disorders have a GI facet to 

their manifestations or even their origins. The gut-brain axis plays an important role 

in maintaining homeostasis. Hence, when this system goes awry, disease can develop. 

More recently, the role of the microbiome as an important factor in modulating gut-brain 

signaling has emerged and the concept of a microbiota-gut-brain (MGB) axis has been 

established.

NEW FINDINGS:

In this review, we highlight the role of the MGB axis in modulating enteric and central 

nervous system function and how this modulation may impact disorders such as Irritable 

Bowel Syndrome and disorders of mood and affect. We also examine the overlapping 

biological constructs that underpin these disorders with a special emphasis on the 

neurotransmitter serotonin, which plays a key role in both the gastrointestinal tract and in 

the brain.

LIMITATIONS:

Although considerable progress has been made in the understanding of the MGB axis in 

preclinical models of disease and in the potential translation of these findings to humans, 

several limitations remain. These limitations include a lack of understanding of whether 

there is a causal role of the gut microbiome in these interactions and the identification of 

gut microbiome-related patient subtypes.

IMPACT:

Overall, it is clear that although animal studies have shown much promise, more progress 

is necessary before these findings can be translated for diagnostic and therapeutic benefit. 

Although in its infancy, the development of live biotherapeutics or substances whose 

beneficial effects on the brain or gut are bacteria-mediated may ultimately serve as novel, 

effective therapies for brain-gut disorders.
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Figure 1: Pathways of communication between microbiota & brain
A growing body of research is implicating different pathways of communication between 

the microbiome and brain in disorders of both mood and motility. Multiple direct and 

indirect (via systemic circulation) pathways exist through which the gut microbiota 

can modulate the gut-brain axis. They include endocrine (cortisol), immune (cytokines) 

and neural (vagus, enteric nervous system and spinal nerves) pathways. Several gut 

microbes are capable of synthesizing neurotransmitters (i.e., γ-amino butyric acid (GABA), 

noradrenaline, and dopamine) locally, which can act on target cells in the gut and act as 

an important avenue of communication. Neuroactive microbial metabolites can modulate 

brain and behavior through a number of ways that are still being elucidated. These include 

affecting epithelial cells to impact gut barrier function and enteroendocrine cells (EECs) 

to release GI hormones, as well as dendritic cells (DCs) to modulate immune function. 

Specialized structures on EECs and ECCs, known as neuropods have been shown to 

transduce sensory signals from the intestinal milieu to the brain through forming synapse­

like connections to afferent nerves, including the vagus nerve. The enteric nervous system is 

perfectly poised to be an integral hub for microbial signals and can communicate with the 

brain via vagal and spinal pathways. However, the exact molecular signaling pathways of all 

these pathways involved remain to be defined.
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Figure 2: Serotonin (5-HT) as a critical regulator of gut-brain-microbiome axis signaling.
Gut bacteria in the intestinal microbiome produce short-chain fatty acids (SCFAs) that 

directly stimulate tryptophan hydroxylase 1 (TPH1), resulting in 5-HT synthesis in and 

secretion from intestinal enterochromaffin (ECC) cells. 5-HT released from the basal 

membrane of intestinal EC cells then interacts with receptors from neurons in the enteric 

nervous system to modulate motility and, during development, neuronal development and 

differentiation. Vagal afferents signal to the nucleus of the solitary tract (NTS) and the dorsal 

raphe nucleus (DRN), the latter of which houses the majority of the brain’s 5-HT neurons. 

Margolis et al. Page 26

Gastroenterology. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These areas then interact with emotion-regulating brain networks that influence mood. Of 

note, SCFAs produced by gut bacteria can also directly stimulate free fatty acid receptors on 

multiple cell types, including epithelial cells, ECCs, immune cells, and nerve cells, including 

the vagus nerve and primary afferent neurons. This signaling can also modulate downstream 

regulation of motility, secretion, and gut-brain signaling. Abbreviations: Trp: tryptophan; 

SERT: serotonin reuptake transporter; MAO: monoamine oxidase.
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Figure 3: Challenges in Translational Research.
Schematic representation of research approaches aimed to identify a causal role of the gut 

microbiome in human brain and brain gut disorders. There is extensive evidence for cross 

sectional differences in the gut microbial composition between defined disease populations 

and healthy control populations (top row). A number of rodent models of human brain 

diseases have been developed that mimic certain disease aspects (second row from top). 

More recently, studies have been reported in which fecal microbial transplants from patients 

with certain brain diseases into germ free mice have resulted in altered mouse behaviors, 
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mimicking some aspects of the human phenotype (middle row). Fecal microbial transplants 

from healthy human subjects into individuals with brain disorders have not resulted in 

consistent improvement in respective symptoms to date (second row from bottom). To date, 

there is limited evidence for the effectiveness of therapeutic interventions targeted at the 

microbiome (bottom row).
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