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SUMMARY Klebsiella oxytoca is actually a complex of nine species—Klebsiella grimontii,
Klebsiella huaxiensis, Klebsiella michiganensis, K. oxytoca, Klebsiella pasteurii, Klebsiella spal-
lanzanii, and three unnamed novel species. Phenotypic tests can assign isolates to the
complex, but precise species identification requires genome-based analysis. The K. oxytoca
complex is a human commensal but also an opportunistic pathogen causing various
infections, such as antibiotic-associated hemorrhagic colitis (AAHC), urinary tract infection,
and bacteremia, and has caused outbreaks. Production of the cytotoxins tilivalline and tili-
mycin lead to AAHC, while many virulence factors seen in Klebsiella pneumoniae, such as
capsular polysaccharides and fimbriae, have been found in the complex; however, their
association with pathogenicity remains unclear. Among the 5,724 K. oxytoca clinical iso-
lates in the SENTRY surveillance system, the rates of nonsusceptibility to carbapenems,
ceftriaxone, ciprofloxacin, colistin, and tigecycline were 1.8%, 12.5%, 7.1%, 0.8%, and 0.1%,
respectively. Resistance to carbapenems is increasing alarmingly. In addition to the intrin-
sic blaOXY, many genes encoding b-lactamases with varying spectra of hydrolysis, includ-
ing extended-spectrum b-lactamases, such as a few CTX-M variants and several TEM and
SHV variants, have been found. blaKPC-2 is the most common carbapenemase gene found
in the complex and is mainly seen on IncN or IncF plasmids. Due to the ability to acquire
antimicrobial resistance and the carriage of multiple virulence genes, the K. oxytoca com-
plex has the potential to become a major threat to human health.

KEYWORDS b-lactamases, carbapenemases, resistance, Klebsiella oxytoca, virulence,
taxonomy, Klebsiella, antimicrobial resistance

INTRODUCTION

K lebsiella oxytoca is a Gram-negative bacterium of the genus Klebsiella within the
family Enterobacteriaceae and is widely distributed in nature (1–3). In humans, K. oxytoca

is a member of the normal gut microflora and has been detected in the stool of 8% to 10% of
healthy adults by culture-based methods (4). It is also found on the skin and in the oropharynx
(5). In addition to being a member of the commensal microflora, K. oxytoca is an important
human pathogen causing a large variety of infections ranging frommild diarrhea to life-threat-
ening bacteremia and meningitis (5–7) and also causing outbreaks of health care-associated
infections. Despite its importance, K. oxytoca is relatively under the radar and is largely masked
by its notorious relative, Klebsiella pneumoniae (8). However, K. oxytoca is quite different from
K. pneumoniae in many respects, such as antimicrobial resistance, virulence, and disease spec-
trum. Recently, new findings have significantly advanced our knowledge of this important
pathogen. For example, genome-based taxonomic studies have shown that K. oxytoca is not a
single species but in fact a complex comprising at least six species, i.e., Klebsiella grimontii,
Klebsiella huaxiensis, Klebsiella michiganensis, K. oxytoca, Klebsiella pasteurii, and Klebsiella spal-
lanzanii. In this review, we provide updates on the taxonomy, antimicrobial resistance, and vir-
ulence of the K. oxytoca complex and also summarize studies on its epidemiology and
infections.

TAXONOMY

In 1886, an organism called “Bacillus oxytocus perniciosus” was recovered from old milk by
Flugge and then renamed “Aerobacter oxytocum” by Bergey in 1923 and Klebsiella oxytoca by
Lautrop in 1956 (9). K. oxytoca is indole positive and was considered a subgroup of K. pneumo-
niae for many years, but the clear distinction between the two species was finally revealed by
DNA relatedness studies (9, 10). Through genome sequencing technologies and bioinfor-
matics, K. oxytoca has been found to be a heterogeneous complex comprising multiple spe-
cies (9). Sequence variations of the chromosomally encoded b-lactamase gene blaOXY can
assign the K. oxytoca complex into phylogroups (9). Currently, nine phylogroups, Ko1 to Ko9,
are assigned to reflect the blaOXY variant (blaOXY-1 to blaOXY-9) that they carry (Table 1). However,
Ko5 is now known to be a sub-phylogroup of Ko1 (11), and Ko9 is a sub-phylogroup of Ko3
(12), while the taxonomic status of Ko7 needs to be determined, as no genome sequence of
the strain carrying blaOXY-7 is available for analysis (13). K. oxytoca sensu stricto belongs to Ko2,
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as it carries blaOXY-2, and the type strain is ATCC 13182 (= NCTC13727 = CIP103434). The taxo-
nomic determination of the Ko1, Ko3, Ko4, Ko6, and Ko8 phylogroups is summarized below
according to the timeline of their species designations.

K. michiganensis represents the phylogroup Ko1, which also comprises Ko5 (11). In
2012, strain W14T of the phylogroup Ko1 was recovered from a toothbrush holder and
shared the consistent biochemical profile of the genus Klebsiella (14). Analysis based on
housekeeping rpoB, gyrB, and gyrA gene sequences showed its close relatedness with K. oxy-
toca. However, the strain was negative in the pectate degradation test and negative by PCR
for the polygalacturonase gene pehX (involved in pectin degradation), which has been used
to differentiate K. oxytoca from other Klebsiella species (15, 16). The DNA-DNA hybridization
(DDH) value between W14T and the K. oxytoca type strain was 55.7% 6 6.2% (14), below
the$70% cutoff for defining a bacterial species. Isolate W14T was therefore thought deserv-
ing of the status of new species and was named K. michiganensis to reflect the state of
Michigan in the United States, where the type strain was isolated (14). The type strain is W14
(also designated ATCC BAA-2403 and DSM 25444) (14).

K. grimontii represents the phylogroup Ko6. Six Ko6 strains were found, forming a
well-defined sequence cluster based on rpoB and gyrA sequencing and separate from K. michi-
ganensis and K. oxytoca (17, 18). The average nucleotide identity (ANI) value of Ko6 was 91.2%
with K. oxytoca and 93.47% with K. michiganensis, both of which were well below the $95%
to 96% ANI cutoff for bacterial species distinction (19). The name Klebsiella grimontii, referring
to Patrick A. D. Grimont (a French microbiologist), was proposed for the phylogroup Ko6 (19).
The type strain is 06D021 (also designated CIP111401 and DSM 105630) (19).

K. huaxiensis represents the phylogroup Ko8. Strain WCHKl090001T was isolated
from human urine in China in 2017 (20). WCHKl090001T had up to 87.18% ANI and an in silico
DNA-DNA hybridization (isDDH) value of up to 35.2% with type strains of other Klebsiella species
(20). Strain WCHKl090001T therefore belongs to a novel species of the genus Klebsiella, named K.
huaxiensis (Ko8) to refer to West China (Huaxi in Chinese) Hospital, where the strain was isolated
(20). The type strain is WCHKl090001 (also designated GDMCC 1.1379 and CNCTC 7650) (20).

K. spallanzanii represents the phylogroup Ko3. Strain SPARK_775_C1T, a representative
Ko3 strain, had the highest ANI value, 90.7%, with K. huaxiensis WCHKl090001T compared
with other members of the genus Klebsiella. The name K. spallanzanii, referring to Lazzaro
Spallanzani (an Italian biologist), was proposed for the phylogroup Ko3 (12). The type strain
is SPARK_775_C1 (also designated CIP 111695 and DSM 109531) (12).

K. pasteurii represents the phylogroup Ko4. Strain SPARK_836_C1T, a representative Ko4
strain, had the highest ANI value, 95.5%, with K. grimontii 06D021T, which falls into the 95% to
96% inconclusive zone of defining a bacterial species (21, 22). Nonetheless, the name K. pas-
teurii, commemorating Louis Pasteur, the well-known French microbiologist, was proposed for
the Ko4 phylogroup. The type strain is SPARK_836_C1 (also designated CIP 111696 and DSM
109530) (12). We performed an analysis and found that the isDDH between K. pasteurii
SPARK_836_C1T and K. grimontii 06D021T was 67.8%, below the 70% cutoff (23). The species
status of K. pasteurii is therefore confirmed.

In addition to the blaOXY variants blaOXY-1 to blaOXY-9 reported in the literature (12),
blaOXY-10, blaOXY-11, and blaOXY-12 have been assigned in the b-lactamase database curated by

TABLE 1 Species of the K. oxytoca complex

Speciesa Phylogroup OXY variant(s) Type or reference strain Genome accession no. Reference
K. michiganensis Ko1 OXY-1, OXY-5 W14T GCA_901556995 14
K. oxytoca Ko2 OXY-2 ATCC 13182T GCA_900977765 9
K. spallanzanii Ko3 OXY-3, OXY-9 SPARK_775_C1T ERS3550824 12
K. pasteurii Ko4 OXY-4 SPARK_836_C1T ERS3550825 12
K. grimontii Ko6 OXY-6 06D021T GCA_900200035 17
K. huaxiensis Ko8 OXY-8 WCHKl090001T GCA_003261575 20
Taxon 1 OXY-10 67 QJJG00000000
Taxon 2 OXY-11 P620 CP046115
Taxon 3 OXY-12 RHBSTW-00484 CP055481
aTaxa 1, 2, and 3 were identified here.
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the Institute Pasteur (https://bigsdb.pasteur.fr/cgi-bin/bigsdb/bigsdb.pl?db=pubmlst_klebsiella
_seqdef&page=alleleQuery&locus=blaOXY). These three blaOXY genes reflect three new phy-
logroups and may represent three novel species of the K. oxytoca complex. The correspond-
ing genome sequences of strains harboring blaOXY-10, blaOXY-11, and blaOXY-12 were examined
for precise species identification as described previously (23, 24). The strains harboring
blaOXY-10, blaOXY-11, and blaOXY-12 indeed represent three novel species, which are designated
taxa 1 to 3 here (Table 1 and Fig. 1), as the assignation of proper species names needs
detailed phenotype characterization (25). Taxa 1 and 3 are most closely related to K. huaxien-
sis, with a 95.62 or 95.18% ANI and a 62.4% or 60.6% isDDH value, while taxon 2 is most
closely related to K. grimontii, with a 90.42% ANI and a 40.8% isDDH value. The three novel
species are therefore members of the K. oxytoca complex, which extends the complex to
nine species (Table 1 and Fig. 1). Of note, blaOXY has not been found in species other than
those of the K. oxytoca complex at present; in the chromosomal location corresponding to
blaOXY in K. oxytoca, there is a gene encoding a myoinosose 2 dehydratase in K. pneumoniae,
and the genetic context of blaOXY in the K. oxytoca complex has no similarities with that of
blaSHV, which is intrinsic to K. pneumoniae.

Recently, a novel species named Klebsiella indica was reported and is most closely related
to species of the K. oxytoca complex (26). In the phylogenomic tree, K. indica is clustered
with species of the K. oxytoca complex and is phylogenetically separated from other
Klebsiella species and Raoultella species (Fig. 1). However, we found that K. indica contains
no blaOXY gene, and instead, there is a 1,224-bp gene encoding a putative transporter of the
major facilitator superfamily (MFS) in the location of blaOXY. In the phylogenomic tree, K. ind-
ica is also placed outside species within the K. oxytoca complex. The above findings suggest
that K. indica should not be considered a member of the K. oxytoca complex at present.

SPECIES IDENTIFICATION
Phenotypic Tests

Strains of the K. oxytoca complex are non-spore forming and nonmotile and form smooth,
circular, dome-shaped, glistening colonies on agar plates (12). The classical phenotypic tests

FIG 1 Phylogenomic tree based on the concatenated nucleotide sequence of core genes of Klebsiella species. Strains and their nucleotide accession
numbers are listed alongside the species names. Species belonging to the K. oxytoca complex are in red, while other Klebsiella species are in blue.
Raoultella species that were separated from Klebsiella 20 years ago (399) are included, while the genus Kluyvera, which is closely related to Klebsiella and
Raoultella (400), is used as an outgroup. The tree was inferred by the core genome identification using PIRATE v1.0.4 (401) and subsequent phylogenetic
inference using IQ-TREE v2.1.4 (402) using the GTR1G1ASC model with 10,000 rapid bootstraps. Branches with support over 70% are indicated by
gradients. The bar shows nucleotide substitutions per site.
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for identification of K. oxytoca include indole, lactose, mannitol, malonate, lysine decarboxylase,
ornithine decarboxylase, Voges-Proskauer, and O-nitrophenyl-b-D-galactopyranoside (ONPG)
tests and the test for reduction of nitrate to nitrite (12). Strains of all six named species of the
K. oxytoca complex are positive for indole, lactose, lysine decarboxylase, mannitol, ONPG, and
reduction of nitrate to nitrite but are negative for ornithine decarboxylase (9, 12). The positive
indole test could differentiate species of the K. oxytoca complex from K. pneumoniae, while the
positive ONPG test or the negative ornithine decarboxylase test could differentiate the com-
plex from Raoultella ornithinolytica (9, 27–29). A combination of Simmons’ citrate agar supple-
mented with bile salts, inositol, and tryptophan (SCITB agar) and a spot indole test for screen-
ing the K. oxytoca complex has shown a superior sensitivity (93.8% versus 63.3%) and
specificity (99.9% versus 60.4%) and contributed to a reduction in workload and cost com-
pared to the use of MacConkey agar for isolation (30). Conventional phenotypic identification
kits such as API 20E and API 50CH and automated phenotypic identification systems such as
Vitek II and VITK-JR30 systems are widely used in clinical and scientific laboratories, but they
exhibit limited performance for differentiating members of the K. oxytoca complex at the spe-
cies level (17, 31–35).

Based on currently available literature (9, 12), each of the six species of the K. oxytoca
complex has unique phenotypic features (Table 2), which could help to design pheno-
typic tests to differentiate these closely related species. For instance, the combination of
the Voges-Proskauer, urease, and a-ketoglutaric acid tests could correctly differentiate
the six species based on results reported in the literature (Table 2). However, these phe-
notypic characterizations have been performed for only a very limited number of strains
or even on just a single strain (9, 12), and therefore, these discriminatory features are
prone to be changed as additional strains of each species are tested. More studies are
warranted to investigate the phenotypic differences among species within the K. oxytoca
complex. At present, it appears that phenotypic tests are more appropriate for screening
purposes and preliminary identification to the K. oxytoca complex level rather than the
individual species level.

TABLE 2 Phenotypic characteristics of species of the K. oxytoca complexa

Phenotypic characteristic test

Result for phylogroup (species)

Ko1
(K. michiganensis)

Ko2
(K. oxytoca)

Ko3
(K. spallanzanii)

Ko4
(K. pasteurii)

Ko6
(K. grimontii)

Ko8
(K. huaxiensis)

n = 1 NA n = 3 n = 13 n = 6 n = 1
Motility 2 2 2 2 2 2
Indole 1 1 1 1 1 1
Lysine decarboxylase 1 1 1 1 1 1
Lactose 1 1 1 1 1 1
Mannitol 1 1 1 1 1 1
ONPG 1 1 1 1 1 1
Reduction of nitrate to nitrite 1 1 1 1 1 1
Voges-Proskauer 1 1 2 1 1 2
Malonate 1 1 1 1 1 2
Urease 2 1 1 2 2 2
Ornithine decarboxylase 2 2 2 2 2 2

n = 7 n = 5 n = 4 n = 5 n = 6 n = 3
L-Proline 1 1 2 1 1 2
D,L-a-Glycerol-phosphate 1 1 v 1 v 2
a-Ketoglutaric acid 2 2 2 2 1 2
Glyoxylic acid 2 2 2 v 2 2
Melezitose 1 1 1 1 2 v
Tricarballylic acid 1 1 2 1 1 2
Acetyl-b-D-mannosamine v 1 v 1 1 1
3-O-Methyl-glucose 2 2 2 2 2 1
g-Amino-butyric acid 1 1 2 v v 2
L-Tartaric acid v v v 1 1 2
Reference(s) 12, 14 9, 12 12 12 12, 17 12, 20
aONPG, O-nitrophenyl-b-D-galactopyranoside;1, positive;2, negative; v, between 20 and 80% positive strains; NA, not available.
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MALDI-TOF MS

Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF
MS) has been increasingly used in clinical microbiology laboratories for identifying microor-
ganisms to the species level (36). It has been attempted for identification of the K. oxytoca
complex, but misidentification occurs (12). For instance, some Raoultella strains have been
incorrectly assigned to K. oxytoca by MALDI-TOF MS, although this accuracy of identification
could be improved by applying a more stringent 10% differential score (37). It is more diffi-
cult to differentiate each species within the K. oxytoca complex, as most of them were identi-
fied very recently, and therefore, most laboratories may not have reference spectra of these
new species in their databases (14, 38–40). MALDI-TOF MS patterns of all six species within
the K. oxytoca complex were analyzed in a study (12) which also updated the data set to
improve species identification by MALDI-TOF MS. With the updated data set, the specificity
and sensitivity of correct identification for the six named species within the K. oxytoca com-
plex by MALDI-TOF MS range from 60 to 100% and from 80 to 100%, respectively (12).

16S rRNA Gene Sequence Analysis

16S rRNA gene sequence analysis has been widely used for bacterial species identification.
Typically, the nearly complete 16S rRNA gene sequences of bacterial strains are amplified
using PCR with the universal primers 27F and 1492R (41), and the generated amplicons are
then subjected to Sanger sequencing (42). Comparison of the 16S rRNA gene sequences can
be performed using curated data sets such as EzBioCloud (43). In 1994, a,97% similarity was
proposed as the cutoff to delineate species (44), and in 2008, it was proposed to update the
cutoff to 99% (45). However, as shown in Table 3, type strains of species within the K. oxytoca
complex have up to 99.9% similarity of the 16S rRNA gene sequences. This suggests that the
current scheme of 16S rRNA gene sequence analysis does not have adequate resolution for
correct species identifications in the K. oxytoca complex as previously demonstrated (12, 14,
17, 20).

Single Gene Markers

All species of the K. oxytoca complex carry blaOXY, a b-lactamase-encoding gene intrinsic to
the complex, which has not been reported in other species in the literature. In the b-lacta-
mase database curated by the Institute Pasteur (https://bigsdb.pasteur.fr/cgi-bin/bigsdb/
bigsdb.pl?db=pubmlst_klebsiella_seqdef&page=alleleQuery&locus=blaOXY; accessed 1
August 2021), there are blaOXY genes encoding 86 distinct OXY enzymes, including 38 that
have not been reported in the literature. The pairwise amino acid identity between 12 OXY

TABLE 3 16S rRNA gene sequence identity, ANI, and isDDH values between type strains of each species belonging to the K. oxytoca complex

Organism

Identity, ANI, and isDDH (%) for:

K. grimontii
06D021T

K. huaxiensis
WCHKl090001T

K.
michiganensis
CCUG 66515T

K. oxytoca
NCTC3727T

K. pasteurii
SB6412T

K. spallanzanii
SB6411T Taxon 1 Taxon 2

K. grimontii
06D021T

K. huaxiensis
WCHKl090001T

99.8, 88.0, 35.2

K. michiganensis
CCUG 66515T

99.7, 93.6, 53.8 99.5, 88.0, 35.5

K. oxytoca
NCTC3727T

97.9, 91.5, 44.7 98.1, 87.6, 34.0 97.9, 92.3, 48.2

K. pasteurii
SB6412T

99.3, 96.0, 67.8 99.5, 87.7, 34.4 99.4, 93.7, 54.3 98.1, 91.2, 43.9

K. spallanzanii
SB6411T

98.4, 89.0, 37.7 98.6, 91.2, 44.2 98.5, 89.1, 37.9 98.5, 88.6, 36.3 98.6, 88.7, 36.9

Taxon 1 98.5, 87.7, 34.2 98.8, 95.1, 62.4 98.6, 87.6, 34.3 99.4, 87.1, 32.8 98.6, 87.4, 33.6 98.9, 89.7, 39.4
Taxon 2 98.4, 90.2, 40.8 98.2, 87.5, 34.0 98.5, 90.1, 40.9 97.6, 89.6, 39.4 98.7, 89.9, 39.8 97.9, 88.6, 36.4 98.1, 87.0,

32.7
Taxon 3 98.5, 88.0, 35.1 98.3, 94.8, 60.6 98.5, 88.0, 35.2 98.5, 87.2, 33.5 98.4, 87.5, 34.1 97.9, 89.9, 40.1 98.7, 95.4,

64.0
97.9, 87.1,
33.3
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groups ranges from 82.82% (between OXY-9-1 and OXY-11-1) to 98.97% (between OXY-1-1
and OXY-6-1) (Table 4). Each of the blaOXY variants matches a species within the complex
(Table 1), and therefore, amplification and sequencing of blaOXY genes may be used for spe-
cies identification within the K. oxytoca complex.

The polygalacturonase-encoding gene pehX was found to be unique to K. oxytoca
(15, 16). PCR for pehX alone (15, 16, 46–49) or in combination with other housekeeping
genes, such as infB (50), has been widely used to differentiate K. oxytoca from K. pneumoniae
and Raoultella spp. However, it has been reported that K. michiganensis is negative by PCR
for pehX (14). In addition, we found by BLAST analysis that pehXwas truncated between nucle-
otides 1,977 and 1,983 in a number of K. oxytoca complex genomes, such as K. michiganensis
strains A10 (342 bp left; accession no. PIDR01001036.1) and A11 (531 bp; accession no.
PIDS01000708.1), K. oxytoca strain 112_KOXY 226_19650_207590 (288 bp; accession no.
WCM01000066.1), and K. pasteurii strain FDAARGOS_511 (247 bp; accession no. CP033824.1).
These strains may be missed by the currently reported PCR for pehX.

The efflux pump-encoding genes oqxA and oqxB and the fosfomycin resistance
gene fosA are intrinsic to K. pneumoniae (51). oqxA and oqxB are also intrinsic to some species
of the K. oxytoca complex (52) but are absent from strains of K. huaxiensis, K. spallanzanii, taxon
1, and taxon 3 as identified by BLAST. fosA is seen in almost all isolates of the K. oxytoca com-
plex as identified by BLAST. We found that the nucleotide identities of fosA between species
of the K. oxytoca complex and K. pneumoniae are 76.13 to 85.19%. However, the maximum
nucleotide sequence identity of fosA between different Klebsiella species and the minimum
nucleotide identity within the same species overlap. For instance, the minimum nucleotide
identity within K. huaxiensis is 94.93%, while the maximum nucleotide identity between K.
huaxiensis and K. spallanzanii is 99.77%. The presence of oqxA and oqxB in only some species
of the complex and the absence of clear, unified cutoffs of the nucleotide sequence identity
for fosA suggest that these three genes are not suitable for species identification for the K. oxy-
toca complex.

Whole-Genome Sequencing and Analysis

Whole-genome sequencing provides a maximal level of resolution for precise bacterial
species identification (53). Along with the rapidly increased use of whole-genome sequenc-
ing and a deluge of bacterial genomes, genome-based species identification has gained in
popularity, at least in the research domain, and is usually used as the gold standard for pre-
cise species designations and evaluation of other methods, such as phenotypic tests and
MALDI-TOF MS (53–55). ANI and isDDH are the two most commonly used algorithms for ge-
nome-based species identification (22, 23, 56). The K. oxytoca complex has been found to
comprise multiple species, and each species has been assigned based on ANI and isDDH
(12, 14, 19, 20) with the values shown in Table 3. As currently available phenotypic tests and
MALDI-TOF MS are unable to correctly identify species in all cases, genome-based species
identification using ANI and isDDH is usually required to determine the precise species for
strains of the K. oxytoca complex.

TABLE 4 Pairwise amino acid sequence identity between OXY groups

Group

% identity with:

OXY-1-1 OXY-2-1 OXY-3-1 OXY-4-1 OXY-5-1 OXY-6-1 OXY-7-1 OXY-8-1 OXY-9-1 OXY-10-1 OXY-11-1
OXY-2-1 88.66
OXY-3-1 89.35 87.59
OXY-4-1 96.56 88.28 89.66
OXY-5-1 97.94 90.00 89.66 97.24
OXY-6-1 98.97 88.66 89.69 97.60 96.91
OXY-7-1 97.25 88.28 90.69 97.24 96.21 98.28
OXY-8-1 88.32 86.90 93.10 87.93 88.62 88.32 88.97
OXY-9-1 86.94 84.83 94.10 87.24 87.24 87.29 87.93 92.41
OXY-10-1 89.00 85.86 93.10 87.59 88.62 88.66 88.62 94.48 93.45
OXY-11-1 86.25 86.60 86.25 86.25 86.25 86.25 86.94 85.57 82.82 84.88
OXY-12-1 90.03 87.93 94.14 89.31 90.35 89.69 90.35 97.59 93.10 96.55 85.57
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EPIDEMIOLOGY, INFECTION, AND ANTIMICROBIAL TREATMENT

As K. oxytoca has only recently been identified as an actual complex comprising multiple
species, strains called K. oxytoca in most studies have not been subjected to precise species
identification, and the prevalence of each species of the complex in human colonization
and infection remains largely unknown. Due to this absence of precise species identification,
organisms referred to as K. oxytoca in the literature could actually be any species within the
K. oxytoca complex. Therefore, “K. oxytoca” in this section represents the K. oxytoca complex
as a whole unless otherwise specified. K. oxytoca colonizes the skin, oral cavity, and intestinal
and respiratory tracts of both healthy and sick people (5, 57, 58). K. oxytoca is also an oppor-
tunistic pathogen able to cause a variety of infections, in particular antibiotic-associated
hemorrhagic colitis (AAHC) after administration of antimicrobial agents and other health
care-associated infections in patients with underlying diseases or immunocompromised con-
ditions (49, 59–61). Of note, studies of antimicrobial susceptibility surveillance or virulence
assays that contain information about sample types of the isolates but no clinical informa-
tion are not included in the analysis here. In general, compared to K. pneumoniae, infection
due to K. oxytoca is much less common, which may be partially due to its relatively low colo-
nization rate, but is associated with relatively better prognoses, with a mortality rate of 7.14
to 23.58% (62–64) versus the 13.52 to 54.30% seen with K. pneumoniae (65). In addition,
AAHC is commonly caused by K. oxytoca but not by K. pneumoniae.

Colonization

K. oxytoca is detected from the feces of 1.6 to 9% of healthy subjects, suggesting a
relatively low colonization rate (6, 66), which is lower than the 3.9% to 87.7% colonization
rate of K. pneumoniae (67–69). Nonetheless, the colonization rate is much higher in patients,
as K. oxytoca was detected in 4.7% of those with inflammatory bowel diseases (IBD) (70),
14% of those with influenza A (71), and 25.5% of infants and neonates in neonatal intensive
care units (NICUs) and intermediate care units (72). In addition, the intestinal colonization of
K. oxytoca producing extended-spectrum b-lactamases (ESBL) has been found in 2.24% of
NICU patients and 3.3% of pregnant women (73, 74), while another study reported that
1.4% of adult ICU patients are colonized with carbapenem-resistant K. oxytoca (75).

Geological Distribution of Infections

According to published clinical reports (Table 5), infections caused by the K. oxytoca
complex have been reported mainly in the Asia-Western Pacific region, North America,
and Western Europe, with few reports in Africa and South America. All types of infections
caused by the K. oxytoca complex have been seen in the Asia-Western Pacific region,
Europe, or North America, while AAHC appears to be more common in the Asia-Western
Pacific region, in particular Iran and Japan (49, 76–79). In contrast, there are no reports of
AAHC due to the complex in Africa and South America. However, as reports of infections
due to the K. oxytoca complex are still limited in the literature, the exact geographical dis-
tribution of K. oxytoca infections, specifically regarding infection types, incidences, and
prognoses, is yet to be elucidated.

AAHC

K. oxytoca can cause various gastrointestinal infections in both children and adults,
among which AAHC is particularly common (49). In fact, K. oxytoca is recognized and known
to clinicians largely due to AAHC, which was first described in 1978 (80). K. oxytoca and
Salmonella are the two pathogens causing AAHC (66), while K. pneumoniae has not been
reported to cause this disease. In a recent study involving three major hospitals in Iran
between 2011 and 2016, K. oxytoca was recovered from 50 (9.2%) of 545 patients with
AAHC, while no pathogens were reported for the remaining patients (49). There are 22 pub-
lished studies reporting a total of 161 cases of AAHC due to K. oxytoca, but large-scale sur-
veys are lacking, and most of the studies are case reports (6, 30, 49, 66, 76–79, 81–94) (Table
5). The majority of these AAHC cases occurred after the patients received various antimicro-
bial agents, including b-lactams, fluoroquinolones, clarithromycin, clindamycin, and metro-
nidazole, for 1 to 7 days with sudden onset of bloody diarrhea (6, 30, 66, 76, 93). AAHC due
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to K. oxytoca may develop in critically ill patients who received antimicrobial agents for
more than 2 weeks (49). The abdominal cramps and diarrhea symptoms are not mild in
AAHC patients but are usually alleviated within 24 to 48 h and resolve within 1 week after
withdrawal of antimicrobial agents in nearly all cases (6, 81, 84, 93). This is different from
non-AAHC infectious diarrhea caused by other species of the Enterobacterales, which often
requires antimicrobial treatment to resolve (95).

Urinary Tract Infection

K. oxytoca is a relatively common pathogen of urinary tract infections (UTI) in both
children and adults, primarily in pregnant women, immunocompromised patients, or
those with genitourinary diseases (20, 96–136) (Table 5). K. oxytoca accounted for 1.3%
(16/1,235), 0.7% (24/3,103), 1.9% (18/937), and 3.6% (109/3,038) of all UTI isolates in
Mexico, China, Spain, and the United States, respectively, between 2009 and 2018
according to the Study for Monitoring Antimicrobial Resistance Trends (SMART) pro-
gram (137–140). In hospitalized patients, the proportion of K. oxytoca in all bacterial
uropathogens ranges from 2.5% to 3.5% (59, 101). For pregnant women, K. oxytoca
appears to be more common in UTI and accounted for 19.4% and 38.1% of bacterial
uropathogens, second only to Escherichia coli, in two studies (100, 135). Several studies
have also reported UTI due to K. oxytoca in many patients with immunocompromised
conditions, critical illness, or malignancies (97, 98, 115, 136). Most of these patients
have a favorable outcome of UTI except for those with critical illness who always have
infections at other sites (106, 114, 124, 127). In addition, UTI due to K. oxytoca is also
common in patients with underlying genitourinary diseases or conditions, such as neu-
rogenic bladder, renal lithiasis, urinary tract surgery, prostatic hyperplasia, and testicu-
lar infarction (99, 113, 125). In most of such cases, UTI can be resolved but are prone to
recur, as the underlying diseases often continue to exist, and may then lead to long-
term colonization with K. oxytoca (113, 119, 132).

Bloodstream Infection

Bacteremia refers to viable bacteria in the blood, which can evolve into a bloodstream
infection (BSI) when the immune response mechanisms fail or become overwhelmed (141).
K. oxytoca has not been reported as a common bacteremia pathogen in the past (62), but
recently, a number of studies and cases have reported bacteremia or BSI due to K. oxytoca
in patients across all age groups (62–64, 96, 98, 104, 105, 111, 114, 115, 127, 128, 142–173)
(Table 5). In particular, there are three large-scale retrospective studies reporting the propor-
tion of K. oxytoca in pathogens causing bacteremia or BSI (60, 62). K. oxytoca accounted for
0.57% of all bacteremia cases in South Korea between 1991 and 2001 (62), 3.7% (261/6,754)
in Toronto, Canada, between 2006 and 2016 (60), and 4.2% (44/1,040) in Kabul, Afghanistan,
between 2010 and 2015 (143).

Most K. oxytoca bacteremia or BSI cases are secondary to infections at other sites, such as
UTI, skin and soft tissue infections, and pneumonia, and are associated with certain underly-
ing diseases, including diabetes, malignancies, chemotherapy, radiation therapy, hepatobili-
ary diseases, cerebrovascular accidents, chronic obstructive pulmonary disease, chronic renal
insufficiency, congestive heart failure, and various surgeries (63, 115, 144, 148–151, 153,
154). Septic shock, which is a subset of sepsis with circulatory and cellular/metabolic dys-
function associated with increased risks of mortality (174), was developed in many BSI cases
(152, 156, 159, 160, 173, 175). The mortality of patients with K. oxytoca BSI varies significantly
in different studies (62, 63, 98, 146), and only one large-scale study reported the mortality
rate, which was 23.2% in South Korea (62). More large-scale studies are warranted to investi-
gate the actual mortality of patients with K. oxytoca BSI.

Pneumonia

Amortality rate as high as 50% has been seen in pneumonia caused by Klebsiella spp. (71).
K. pneumoniae is the most common Klebsiella species causing both community-acquired pneu-
monia (CAP) and hospital-acquired pneumonia (HAP). K. oxytoca is also able to cause pneumo-
nia, especially HAP (34, 96, 98, 104, 105, 108, 111, 114–116, 122, 127, 128, 147, 175–186),
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although much less commonly than K. pneumoniae. One large-scale study in China has
reported that K. oxytoca constituted 3.6% (70/1,920) of bacterial isolates recovered from
patients with pneumonia (138). Another retrospective study has found that K. oxytoca
accounted for 10% of Klebsiella species causing acute respiratory tract infections in the
United Kingdom between 1979 and 1981 (176). In Nepal in 2018 and 2019, K. oxytoca
accounted for 2.86% of all Gram-negative bacteria causing lower respiratory tract infections
(177). K. oxytoca pneumonia appears to be more commonly seen in patients with underlying
respiratory diseases, including chronic bronchitis, small-cell carcinoma, chronic obstructive
pulmonary disease (COPD), endobronchial tuberculosis, asthma, and obstructive sleep apnea
(98, 108, 115, 128, 176, 186) (Table 5). Several studies have also shown that K. oxytoca is a rel-
atively common pathogen causing ventilator-associated pneumonia (VAP) in critically ill
patients with mechanical ventilation (116, 127, 186). A possible mechanism of VAP due to K.
oxytoca is respiratory colonization acquired from hospital staff or equipment surfaces and
then subsequent introduction into the lung via the tracheal tube. The prognosis of pneumo-
nia due to K. oxytoca appears to be poor, as 12 of the 25 patients with such infection died
(108, 176).

Intra-abdominal Infections

Intra-abdominal infections (IAI) are usually caused by E. coli and enterococci (187) but can
also be due to K. oxytoca in some cases (98, 104, 127, 181, 188–209). The proportion of K. oxy-
toca in all pathogens isolated from IAI in the SMART program was 2.0% (54/2,682) in Mexico,
1.7% (65/3,758) in China, 4.8% (69/1,429) in Spain, and 5.9% (209/3,633) in the United States
between 2009 and 2018 (137–140). In most cases, peritonitis and liver or spleen abscess due
to K. oxytoca are secondary to abdominal surgeries or are seen in patients with malignancies,
end-stage liver or renal diseases, or immunocompromised conditions, such as diabetes and re-
nal transplantation (189, 194, 208). However, pancreatic abscess due to K. oxytoca is seen only
in patients with pancreatitis (181, 200). Most patients with IAI due to K. oxytoca recovered after
a combination of antimicrobial agents and surgeries (194, 199, 206, 207).

Skin and Soft Tissue Infections

Skin and soft tissue infections (SSTIs) due to K. oxytoca can be classified into three major
types, i.e., wound infection, necrotizing fasciitis, and abscess (16, 96, 105, 108, 118, 128, 186,
210–220) (Table 5). Wound infection is usually secondary to surgeries (16, 96, 186), while
necrotizing fasciitis is seen in patients with malignancies or receiving organ transplantations
(118, 214, 215). Abscess mainly occurs in diabetic patients and may be due to skin damage
(212, 217, 220). Patients usually recover from SSTIs due to K. oxytoca, except for those with
other severe diseases (212, 214, 217, 219).

Other Infections

K. oxytoca has been found in central nervous system (CNS) infection (221–226), en-
docarditis (133, 173, 227–231), endophthalmitis (179, 232–237), septic arthritis (238–241),
and many other types of infections, such as plueral empyema (242), prostatic infection (243),
acute epididymitis (125), nonhemorrhagic diarrhea (244) or colitis (245), and malignant exter-
nal otitis (246). CNS infections due to K. oxytoca, including meningitis, ventriculitis, and brain
abscess, have been reported (221, 223–226), some of which are secondary to chronic otitis
media (223, 225, 226). Most cases of CNS infections have a good prognosis after antimicro-
bial therapy and surgical procedures (aspiration or excision) (224–226). In the literature, there
are seven cases of adults with endocarditis caused by K. oxytoca, six of whom recovered af-
ter antimicrobial treatment (133, 173, 227–231). Endophthalmitis, including keratitis, corneal
ulcer, and suture abscess, has been reported in six adults and two neonates, and almost all
of them recovered after topical antimicrobial drops (179, 232–237). Septic arthritis, an inflam-
mation of the joints secondary to an infectious etiology, is usually caused by Staphylococcus
aureus or Kingella kingae in children and S. aureus and Streptococcus pneumoniae in adults
(247). Four cases of K. oxytoca septic arthritis, in two infants and two adults, have been
reported (238–241), all of whom recovered after antimicrobial treatment. K. oxytoca was also
found to be associated with hydropneumothorax in a case report (248).
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Antimicrobial Treatment of Infections Due to the K. oxytoca Complex

Only few studies have specifically addressed the antimicrobial treatment in patients with
infections due to the K. oxytoca complex. AAHC due to the K. oxytoca complex usually resolves
spontaneously after withdrawal of antimicrobial agents that cause AAHC, and there is no
need for antimicrobial treatment for AAHC (84, 90). Otherwise, as it is a member of the order
Enterobacterales, antimicrobial treatment for infections due to the K. oxytoca complex is
essentially the same as that for infections due to other Enterobacterales species, such as K.
pneumoniae and E. coli. It is notable that rates of nonsusceptibility of the K. oxytoca complex
to commonly used antimicrobial agents such as ceftazidime, carbapenems, amikacin, and
levofloxacin are relatively low in surveillance programs such as SENTRY (see “Antimicrobial
Resistance and Determinants” for details) and published reports (137, 139, 249). Therefore,
many commonly used antimicrobial agents, including b-lactams (e.g., cephalosporins, carba-
penems, and piperacillin-tazobactam) and non-b-lactam agents (e.g., amikacin, colistin,
quinolones, tigecycline, and trimethoprim-sulfamethoxazole) could be therapeutic options
for infections due to the K. oxytoca complex according to patient factors such as the disease
severity, the immunity status, and the infection site (250). Strains of the complex share carba-
penem resistance mechanisms with other Enterobacterales species, in particular K. pneumo-
niae. Antimicrobial treatment for carbapenem-resistant strains of the complex is the same as
that for carbapenem-resistant Enterobacterales (CRE) (250–252). The antimicrobial options
against CRE are usually stratified by the infection site (UTI or infections outside the urinary
tract), the resistance profile (the susceptibility to meropenem in addition to resistance to erta-
penem), and the types of carbapenemases, i.e., serine b-lactamases (e.g., KPC or OXA-48) or
metallo-b-lactamases (MBLs, e.g., NDM). For infections outside the urinary tract, combina-
tions containing new non-b-lactam b-lactamase inhibitors, such as ceftazidime-avibactam,
meropenem-vaborbactam, and imipenem-relebactam, are usually recommended against
KPC-producing CRE, while cefiderocol (a novel siderophore cephalosporin) or ceftazidime-
avibactam plus aztreonam are the preferred choice against NDM-producing CRE (250).

For cases with endophthalmitis caused by the K. oxytoca complex, symptoms disappeared
after topical use of antimicrobial agents, including cefazolin, tobramycin, or fluoroquinolones,
in combination with dexamethasone when necessary (232, 235). In addition to antimicrobial
treatment, most patients with IAI, SSTI, or CNS infection caused by the K. oxytoca complex
recovered after undergoing surgeries (118, 194, 225).

Outbreaks of Health Care-Associated Infections

To date, 15 outbreaks of health care-associated infections due to the K. oxytoca complex
have been reported (Table 6), ranging in severity from conjunctivitis to sepsis (50, 175), with
the number of cases ranging from 5 to 66 (105, 149). Most of these outbreaks occurred in
hospitalized patients mainly in NICUs and several other types of wards, including hematol-
ogy, neurology, and renal transplantation (40, 50, 97, 114, 115, 175). Microbiological source
tracing was performed in most studies; handwashing sinks, drainage systems, humidifiers,
blood gas analyzers, enteral feeding, and infusion preparation have been identified as likely
sources of the outbreaks (115, 127, 149, 179, 253). This suggests that the K. oxytoca complex
has environmental sources and may be well adapted to health care environments contain-
ing water, but studies examining the ability of the complex to survive and persist in relevant
environments are largely lacking. The likely source of some of the outbreaks could not be
identified, even though epidemiological and microbiological molecular screening methods
were employed (50). Fortunately, all outbreaks with outcomes being reported were con-
trolled by source control, such as sink modifications, and implementing bundles of infection
control measures. These measures usually include strengthening hand hygiene, enhancing
environment cleaning (particularly sinks and equipment), isolating infected patients, contact
precautions, antimicrobial stewardship programs, and performance improvement of stand-
ard procedures (38, 50, 97, 115, 175, 253). In addition, there are two studies that reported
clusters of NICU or pediatric ICU (PICU) patients with intestinal colonization of the K. oxytoca
complex but without developing infection (38, 40). The two clusters were controlled after
implementing bundles of infection control measures (38, 40).
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Strain Clonal Background

Very few studies have addressed the clonal background of K. oxytoca clinical isolates. A
multilocus sequencing typing (https://pubmlst.org/organisms/klebsiella-oxytoca) scheme has
been developed (254). Using this scheme, 74 isolates from clinical samples or asymptomatic
carriers were assigned to 60 sequence types (STs) (254), and in another study (13), 68 isolates
(from rectal swabs in hospitals across Europe and Israel) that were not susceptible to
expanded-spectrum cephalosporins were assigned to 34 STs. The studies suggest a hugely
diverse clonal background within the K. oxytoca complex. Among the 359 STs of the K. oxytoca
complex (https://pubmlst.org/organisms/klebsiella-oxytoca; accessed 1 April 2021), clonal com-
plex 2, comprising ST2, -9, -18, -19, -57, -58, -61, -63, -141, -154, -155, and -176 (13, 254, 255),
was the most common type, accounting for 32.4% of the 68 cephalosporin-nonsusceptible
carriage isolates (13), and was also the most prevalent type in infants (255). Isolates of clonal
complex 2 have been found in many countries in Europe and Israel (8, 13, 254) as well as
Australia, China (254), and Japan (114). Clonal complex 2 has also been associated with car-
bapenem resistance and has caused outbreaks of health care-associated infections. In a

TABLE 7 In vitro susceptibility of antimicrobial agents against isolates of the K. oxytoca complex in the SENTRY program and other available
large-scale ($100 isolates) national or regional surveillance data in the Asia-West Pacific region and Africa

Antimicrobial agent

% nonsusceptible (no. tested)a

SENTRY,b

2013–2019
(n = 5,724)

Japan,c

2019
(n = 10,551)

China,d

2019
(n = 30,781)

Thailand,e

2019
(n = 1,368)

Australia,f

2019
(n = 239)

Middle East and
Africa,g 2015–
2018 (n = 103)

Amikacin 0.2 (5,717) 0.1 2.1 (29,638) 2.4 (1,122) 0 (239) —
Gentamicin 3.5 (5,723) 1.2 11.9 (26,509) 13.5 (966) 0.4 (239) —
Tobramycin 3.7 (5,178) — — — 0.4 (239) —
Amoxicillin-clavulanate 7.5 (3,728) 11 24.9 (11,487) 17.7 (988) 9.3 (215) —
Ampicillin-sulbactam 51.2 (5,724) 29.1 43.5 (21,537) 33.9 (115) — —
Cefoperazone-sulbactam 12.1 (4,714) — 14.6 (14,697) 17.1 (615) — —
Ceftazidime-avibactam 1 (896) — — — — —
Ceftolozane-tazobactam 3.9 (894) — — — — —
Piperacillin-tazobactam 11 (5,716) 9.1 12.6 (29,731) 11.9 (986) 9.2 (239) 0 (103)
Doripenem 0.8 (4,827) — — — — —
Ertapenem 1.8 (2,107) — — 4.1 (917) — —
Imipenem 1.1 (5,723) — 6.4 (30,057) 6.1 (917) — —
Meropenem 0.9 (5,723) 0.2 5.5 (18,969) 4.5 (1,050) 0 (239) —
Cefepime 5.3 (5,723) 1.5 11.9 (29,433) 17.9 (380) 0.4 (239) 0 (103)
Cefoperazone 14.6 (1,368) — — — — —
Cefoxitin 5.1 (790) — 15.2 (12,083) 10.1 (513) — —
Ceftaroline 17.9 (5,667) — — — — 3.9 (103)
Ceftazidime 4.1 (5,724) 2.4 12.3 (27,814) 21.2 (1,132) 1.3 (239) —
Ceftriaxone 12.5 (5,724) 9 20.8 (24,645) 23.2 (858) 7.6 (239) —
Cefuroxime 28.9 (1,539) — 27.1 (17,327) — — —
Aztreonam 11.9 (5,723) 8.5 15.8 (22,996) — — 0 (103)
Trimethoprim-sulfamethoxazole 7.2 (5,717) 6.9 20.7 (28,690) — — —
Tigecycline 0.1 (5,724) — 3.3 (8,257) — — 0 (103)
Colistin 0.8 (5,656) — — — — —
Ciprofloxacin 7.1 (5,710) — 16.1 (25,604) 30.6 (1,032) 1.7 (239) —
Levofloxacin 5.4 (5,715) 5.3 12.9 (29,565) 23.4 (444) — 3.9 (103)
Moxifloxacin 10.7 (4,205) — — — — —
Doxycycline 7.6 (4,929) — — — — —
Minocycline 5.9 (4,971) — — — — —
Tetracycline 7.9 (4,976) — — — — —
aNonsusceptible, including intermediate and resistant, is defined using criteria of the Clinical and Laboratory Standards Institute (CLSI) (2019), except for colistin and
moxifloxacin, for which the term is defined using criteria of EUCAST (https://www.eucast.org) (2019). For each agent, the number of isolates tested varies and therefore is
shown in parentheses except the data from Japan, for which the number is not available.—, not available.

bThe SENTRY surveillance data are available at https://www.jmilabs.com/sentry-surveillance-program/.
cSource: Japan Surveillance for Infection Prevention and Healthcare Epidemiology (J-SIPHE) program, comprising 2,223 hospitals (https://j-siphe.ncgm.go.jp/en).
dSource: China Antimicrobial Resistance Surveillance System (CARSS), comprising 1,375 hospitals (http://www.carss.cn/).
eSource: National Antimicrobial Resistant Surveillance Center, comprising 92 hospitals (http://narst.dmsc.moph.go.th/).
fSource: Antimicrobial Use and Resistance in Australia (AURA) Surveillance System (https://www.safetyandquality.gov.au/). These isolates were collected from sepsis patients
only.
gSource: reference 256. These isolates were collected from patients with SSTI and respiratory tract infections.
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multicenter study in Spain, eight of the 12 representative strains of carbapenem-resistant
the K. oxytoca complex belonged to clonal complex 2 (96). In Japan, isolates of clonal com-
plex 2 (ST9) caused an outbreak of various health care-associated infections in a university
hospital (114). In the United Kingdom and Ireland, the rapid dissemination of isolates
belonging to clonal complex 2 (ST2) has been identified due to clonal expansion (8). In light
of the relatively high prevalence, the wide geographical distribution, and the association of
carbapenem resistance and outbreaks, clonal complex 2 may have the potential to become
a high-risk lineage for mediating the dissemination of antimicrobial resistance, and further
studies are warranted.

ANTIMICROBIAL RESISTANCE AND DETERMINANTS
In Vitro Antimicrobial Susceptibility of the K. oxytoca Complex

SENTRY (https://www.jmilabs.com/sentry-surveillance-program/) is a worldwide antimicro-
bial surveillance program and has in vitro susceptibility data for 5,724 clinical isolates of the K.
oxytoca complex from 2013 to 2019 (Table 7). In contrast, the K. oxytoca complex is not
included in other large-scale international or regional surveillance programs (e.g., European
Antimicrobial Resistance Surveillance System [EARSS]) or its overall in vitro susceptibility data
of all participated regions are not available (e.g., the Assessing Worldwide Antimicrobial
Resistance Evaluation [AWARE] global surveillance program and SMART). According to
SENTRY data, almost all isolates of the K. oxytoca complex are susceptible to tigecycline and
colistin, with a,1.0% nonsusceptibility rate, and the vast majority are also susceptible to ami-
noglycosides, with nonsusceptibility rates of 0.2 to 3.7%. The rates of nonsusceptibility to
third-generation cephalosporins ranged from 4.1% (to ceftazidime) to 14.6% (to cefoperazone),
while the carbapenem-nonsusceptible rate was 1.8% (to ertapenem) (Table 7). However, the
rates of nonsusceptibility of the K. oxytoca complex to carbapenems and cephalosporins have
been increasing during the past 7 years, although the rates of nonsusceptibility to aminoglyco-
sides and piperacillin-tazobactam have remained stable. The rate of nonsusceptibility of the K.
oxytoca complex to carbapenems varies across regions. The rate is higher in the Asia-West
Pacific region and Europe than in North America, while since 2018, Latin America has shown a
faster increase trend and a higher rate. For fluoroquinolones, the rates of nonsusceptibility to
levofloxacin, ciprofloxacin, and moxifloxacin were 4%, 7.1%, and 10.7%, respectively, and have
remained stable in the past 7 years.

TABLE 8 Antimicrobial resistance genes

Antimicrobial Antimicrobial resistance gene(s)a References
Carbapenems blaGES-5, blaGIM-1, blaIMP-1, -4, -6, -8, -28, -29, -34, blaKPC-2, -3,

blaNDM-1, -4, -5, blaOXA-48, -181, blaVIM-1, -2, -4

32, 34, 96, 104, 106, 119–121, 124, 150, 156, 158, 166, 183, 190, 213,
241, 244, 281, 285–287, 296, 299–303, 305–332, 393–398, 403–
416

Other b-lactams blaACC-1, blaACT-36, blaBEL-1, blaCARB-2, blaCMY-2, -4, -6, -31,
blaCTX-M-2, -3, -8, -9, -15, blaDHA-1, blaFOX-3, -5, blaGES-1,
blaLAP-2, blaOXA-1, -2, -4, -9, -10, blaSHV-2, -5, -11, -12, -46,
blaTEM-1, -15, -30, blaVEB

32, 34, 40, 96, 106, 119–121, 124, 150, 156, 166, 183, 281, 285–289,
292, 296–303, 309, 310, 316, 319, 322, 323, 337, 338, 354, 393,
397, 406, 411, 414, 415, 417–424

Colistin mcr-1, -9 335–338
Aminoglycosides aac(3)-I, -Ia, -Ib, -II, -IIa, -IId, -IIg, -IV, -IVa, aac(69)-30, -Ib, -Ib3,

-Ib-cr, -Ib-cr5, -II, -IIa, -IIc, aacA44, aadA1, aadA2, aadA5,
aadA13, aadB, ant(299)-Ia, ant(399)-Ia, aph(39)-Ia, -Ib, -Ic,
-VI, -XV, aph(399)-Ib, aph(6)-Id, armA, rmtC, sat2, strA, strB

31, 32, 40, 96, 119, 150, 166, 169, 213, 244, 286, 287, 292, 296–300,
318–320, 323, 337, 338, 354, 393, 397, 406, 407, 418–420, 425

Quinolones oqxA, oqxB, qnrA1, qnrB1, qnrB2, qnrB4, qnrB6, qnrB19, qnrB32,
qnrS1, qnrS2

31, 32, 34, 96, 119, 166, 169, 286, 287, 292, 296–298, 300, 306, 319,
323, 336–338, 388, 393, 397, 406, 413, 418, 425–430

Fosfomycin fosA3 34, 323, 337, 388, 393, 427
Sulfonamides sul1, sul2, sul3 32, 40, 96, 119, 166, 244, 286, 287, 292, 296–298, 300, 323, 337, 393,

397, 418–420
Trimethoprim dfrA1, dfrA12, dfrA14, dfrA16, dfrA17, dfrA19, dfrB1, dfrII, dfrIIIc 32, 96, 119, 156, 166, 169, 286, 292, 296, 297, 300, 319, 320, 323,

338, 393, 397, 418, 420
Chloramphenicol catA1, catA2, catB2, catB3, catB11, cmlA1 32, 34, 96, 119, 287, 292, 296–298, 300, 320, 323, 337, 338, 393, 397
Rifampin arr-3, arr-8 32, 156, 297, 298, 323, 337, 393
Tetracyclines tet(A), tet(B), tet(D) 34, 96, 166, 287, 296–298, 323, 338, 393, 418
Macrolides ere(A),mph(A),mph(E),msr(E) 96, 166, 292, 323, 337, 393, 397
aAll strains of the K. oxytoca complex also have intrinsic blaOXY genes.
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The vast majority of isolates (92.3%) of the K. oxytoca complex in the SENTRY program are
from North America (61.2%, n = 3,501) and Europe (31.1%, n = 1,783), while isolates from the
Asia-West Pacific region and Latin America accounted for only 4.4% (n = 257) and 3.2%
(n = 183), respectively, and no isolates were from Africa. In the Middle East and Africa, 103 iso-
lates of the K. oxytoca complex from patients with SSTI and respiratory tract infections between
2015 and 2018 were reported in the AWARE global surveillance program (256). All of the 103
isolates were susceptible to aztreonam, cefepime, piperacillin-tazobactam, and tigecycline, while
the rate of nonsusceptibility to ceftaroline and levofloxacin was 3.9% for both (Table 7) (256).

There are national or large-scale (with 100 or more isolates) surveillance systems,
which have reported susceptibility data for clinical isolates of the K. oxytoca complex, in several
countries (Australia, China, Japan, and Thailand) in the Asia-West Pacific region. In Japan, the
rates of nonsusceptibility of the 10,551 clinical isolates of the K. oxytoca complex to all tested
antimicrobial agents but amoxicillin-clavulanate (https://j-siphe.ncgm.go.jp/en) were lower
than those in SENTRY (Table 7). In contrast, clinical isolates of the K. oxytoca complex in China
(n = 30,781, from 1,375 hospitals in 2019; http://www.carss.cn/) and Thailand (n = 1,368, from
92 hospitals in 2019; http://narst.dmsc.moph.go.th/) had higher rates of nonsusceptibility to
most antimicrobial agents than those in SENTRY and Japan, in particular to carbapenems, cef-
tazidime, cefepime, and fluoroquinolones (Table 7). For instance, the rates of nonsusceptibility
to carbapenems were 6.4% in China and 6.1% in Thailand, which are higher than the 0.9% in
SENTRY and the 0.2% in Japan (Table 7). In Australia, 239 clinical isolates of the K. oxytoca com-
plex collected from sepsis patients in 2019 had lower rates of nonsusceptibility to almost all
tested agents than those in SENTRY and Japan (Table 7), and no carbapenem-nonsusceptible
isolates were identified (https://www.safetyandquality.gov.au/).

Antimicrobial Resistance Determinants

The K. oxytoca complex carries several intrinsic antimicrobial resistance genes, including
the b-lactamase-encoding blaOXY and efflux pump-encoding oqxA-oqxB, to mediate low-level
resistance to quinolones (52). However, we found that oqxA-oqxBwas absent from strains of K.
huaxiensis, K. spallanzanii, taxon 1, and taxon 3. In addition, we also found that the fosfomycin
resistance gene fosA (257) is intrinsic to the K. oxytoca complex. Many isolates of the complex
have also acquired genes mediating resistance to a variety of antimicrobial agents, including
b-lactams (e.g., penicillins, cephalosporins, and carbapenems), aminoglycosides, quinolones,
and colistin (258). These antimicrobial resistance genes are listed in Table 8.

Resistance to b-lactams in the Enterobacteriaceae is mainly due to the production
of b-lactamases. A large number of b-lactamases have been reported and can be di-
vided into four classes, i.e., class A, B, C, and D, according to the molecular structure
(259). Narrow-spectrum b-lactamases are able to hydrolyze commonly prescribed pen-
icillins, while broad-spectrum b-lactamases are also capable of hydrolyzing first- and
second-generation cephalosporins (260–262). However, it is worth noting that the
boundary between narrow- and broad-spectrum b-lactamases is often blurred in the
literature and the same b-lactamase may be referred to as either type in different pub-
lications. ESBLs have the ability to hydrolyze monobactams (e.g., aztreonam) and the
oxyiminocephalosporins (e.g., cefotaxime, ceftazidime, and cefepime) (263). Compared
to ESBLs, AmpC-type cephalosporinases are also able to hydrolyze cephamycins (e.g.,
cefoxitin) but not cefepime, and their hydrolysis mechanism is typically resistance to
the inhibition by b-lactam-type b-lactamase inhibitors (clavulanate, sulbactam, and
tazobactam) (264). Carbapenemases further extend the hydrolysis spectrum to carba-
penems while typically retaining the activities of ESBLs and AmpC. ESBLs are of either
class A or D, and AmpC belongs to class C, while carbapenemases can belong to class
A, B, or D. In addition, some class A b-lactamases are also resistant to the inhibition of
b-lactam-type b-lactamase inhibitors and are called inhibitor-resistant b-lactamases
(261).

blaOXY. The K. oxytoca complex has an intrinsic blaOXY gene encoding the chromo-
somal class A b-lactamase OXY, which is typically produced at a low level to confer resist-
ance to aminopenicillins (ampicillin and amoxicillin), carboxypenicillins (carbenicillin and
ticarcillin), and other penicillins (265, 266). Mutations in the promoter sequences of blaOXY have

Klebsiella oxytoca Complex Clinical Microbiology Reviews

January 2022 Volume 35 Issue 1 e00006-21 cmr.asm.org 17

https://j-siphe.ncgm.go.jp/en
http://www.carss.cn/
http://narst.dmsc.moph.go.th/
https://www.safetyandquality.gov.au/
https://cmr.asm.org


been observed in 10% to 20% of clinical isolates (266–269) and can lead to overexpression of
this gene by 73- to 223-fold (268). Five point mutations in the promoter have been mentioned
in the literature: four in the210 consensus sequence (G to T at the first base, G to A at the fifth
base, G to A at the eighth base, and G to T at the twelfth base) and a T-to-A mutation at the
fourth base of the235 sequence (267, 270). Compared to the G-to-A mutation at the fifth base
(the210 consensus sequence) and the T-to-A mutation at the fourth base (the235 sequence),
the G-to-T mutation at the first base (the 210 sequence) leads to a stronger promoter (268).
blaOXY overexpression confers resistance to penicillins and some extended-spectrum b-lactams,
especially aztreonam (265, 269–271), and leads to hydrolysis of ceftriaxone to a greater extent
than cefotaxime but typically does not confer resistance to ceftazidime (269–272). Mutations in
blaOXY may also extend the resistance spectrum to aztreonam and oxyimino-cephalosporins.
The proline-to-serine substitution at Ambler position 167 enhances the ability to hydrolyze cefta-
zidime (243). At Ambler position 237, the alanine-to-threonine substitution confers resistance to
cefotaxime (273), while the alanine-to-glycine substitution increases the hydrolysis of aztreonam
and ceftriaxone and increases resistance to the inhibition of clavulanate but decreases the ability
to hydrolyze benzylpenicillin, cephaloridine, and cefamandole (274). Amino acid substitutions at
Ambler position 237 also reduce susceptibility to ceftazidime (275). Compared with OXY-2-2,
OXY-2-15 has a deletion of two amino acids at Ambler positions 168 and 169 and acquires the
ability to hydrolyze ceftazidime (201). Some mutations in blaOXY, such as the mutation resulting
in a serine-to-glycine substitution at Ambler position 130 of OXY-2, generate an inhibitor-resist-
ant b-lactamase (276). Typically, blaOXY is located on the chromosome of the K. oxytoca complex.
However, plasmid-borne blaOXY has also been found in certain strains of the complex with the
potential to be further transferred to other species, such as K. pneumoniae (136).

Class A noncarbapenemase b-lactamase-encoding genes. blaTEM-1 appears to be
the most common blaTEM variant in the K. oxytoca complex and encodes TEM-1, a broad-

FIG 2 Worldwide distribution of CRKO strains and their carbapenemase types. nd, not determined. The number of carbapenemase variants that have been
reported in a given country is indicated by color gradients.
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spectrum b-lactamase. Several other blaTEM variants have also been found in the K. oxytoca
complex (Table 8). These variants encode either ESBLs, including TEM-3, TEM-15, TEM-26, and
TEM-116 (263, 277), or the inhibitor-resistant b-lactamase TEM-30 (278). blaSHV is intrinsic to K.
pneumoniae but not K. oxytoca (279). Nonetheless, blaSHV variants encoding SHV-2, 25, 27,
211,212,214,230, and246 have been found in the K. oxytoca complex (Table 8). Among
these SHV enzymes, all but SHV-11 are ESBLs (263, 280, 281), while SHV-11 is a broad-spec-
trum b-lactamase (282). CTX-M enzymes are almost always ESBLs (283), and a few blaCTX-M var-
iants have been found in the K. oxytoca complex (Table 8). Of note, the presence of OXY b-lac-
tamases may cause false-positive detection of CTX-M by immunological panels (284). Genes
encoding other class A b-lactamases, including GES-1 and VEB (the exact variant was not
specified), have also been sporadically reported (285).

ampC genes. Unlike many other Enterobacteriaceae (such as Citrobacter spp.,
Enterobacter spp., and E. coli), the K. oxytoca complex has no chromosomal ampC genes
encoding AmpC b-lactamases. Nonetheless, plasmid-borne ampC genes, including blaACC
(286), blaACT (287), blaCMY (106, 121, 288), blaDHA (289, 290), and blaFOX (291, 292), have been
found in the K. oxytoca complex (Table 8).

Class D noncarbapenemase blaOXA genes. To date, five blaOXA genes encoding
OXA-1, OXA-2, OXA-4, OXA-9, and OXA-10, all of which are narrow-spectrum b-lactamases
(293–295), have been sporadically found in the K. oxytoca complex (96, 119, 150, 286, 296–
303). The five OXA b-lactamases can be assigned to four subfamilies, i.e., OXA-1 (OXA-1 and
OXA-4), OXA-2, OXA-9, and OXA-10 (295). Of note, OXA-2 and OXA-10 have weak activity
against carbapenems (304).

Carbapenemase-encoding genes. Carbapenem-resistant K. oxytoca (CRKO) was
first reported in 2003, with the strain being isolated from human urine in New York,
USA, in 1998 (281). Since then, CRKO carrying a variety of carbapenemase genes has
been identified all around the world (Table 8 and Fig. 2). It is worth noting that CRKO
strains in most studies were not identified to the precise species level and that “K. oxytoca”
in these studies could refer to any species of the complex. Therefore, in the following text,
CRKO refers to all species within the K. oxytoca complex unless otherwise indicated.

Class A carbapenemases KPC-2, KPC-3, and GES-5 have been found in CRKO, includ-
ing K. grimontii (34), K. michiganensis (166, 190), and K. oxytoca (96, 119, 156, 183, 244,
281, 287, 299, 300, 302, 305–315). KPC-2 appears to be the most common carbapene-
mase in CRKO strains, and KPC-2-positive CRKO has been identified from patients and
clinical environment settings in Brazil (156), China (34, 119, 244, 305, 306, 310),
Germany (302), Spain (96), the United States (190, 281, 312), and Venezuela (183), from
rivers in Spain (299) and Italy (300), and from a wild bird in Tunisia (287). KPC-3-positive
CRKO is usually isolated from patients (166, 190, 314), while GES-5-positive CRKO has
been found only in water samples so far (300, 316, 317).

Currently, genes encoding four types of class B MBLs, i.e., GIM, IMP, NDM, and VIM,
have been found in CRKO including K. grimontii, K. michiganensis, and K. oxytoca. The
first MBL gene reported in CRKO was blaVIM-2, which was found in four isolates from
blood cultures of neonates in Portugal in 2005 (150). However, blaVIM-1 is the most com-
mon blaVIM variant in CRKO, and blaVIM-1-positive CRKO has been widely reported across
Europe (96, 286, 299, 318–320) and in Egypt (321). blaIMP is another relatively common
MBL gene in CRKO. Seven IMP enzymes encoded by blaIMP genes have been found in
CRKO (Table 8), and IMP-4 is the most common one. Three blaNDM variants encoding
NDM-1, NDM-4, and NDM-5 have been found in CRKO, including K. michiganensis and
K. oxytoca. In particular, blaNDM-1-positive CRKO has been reported multiple times and
all isolates were from patients or hospital environments (32, 96, 244, 296, 305, 322–
326). In contrast, blaNDM-4 (301) and blaNDM-5 (244) have been found only in single iso-
lates. blaGIM-1 was originally found in Pseudomonas aeruginosa in Germany in 2002 and has
been found in one CRKO strain in the United Kingdom recovered in 2010 (327).

blaOXA-48 and the closely related blaOXA-181 are the two class D carbapenemase-
encoding genes that have been found in CRKO, including K. michiganensis and K. oxy-
toca. blaOXA-48-positive CRKO has been found in hospital environments in Israel (328),
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Mexico (329), Morocco (120), Spain (96), and Turkey (285), from patients in Colombia
(330) and Tunisia (104), and from companion animals in Germany (331). blaOXA-181 has
been reported only in K. michiganensis in South Africa from urban hospital effluent
(332) and a cancer patient (32).

The coexistence of two or three carbapenemase genes, in particular blaNDM-1 plus ei-
ther blaKPC-2 (119, 244, 305), blaIMP-4 (119), blaNDM-5 (244), or blaOXA-181 (32), in the same
CRKO strain has also been reported. Other coexistences in the same CRKO strain are
blaKPC-2 plus either blaIMP-4 (119, 305) or blaIMP-8 (310).

Plasmid-borne colistin resistance genes. Colistin resistance in the K. oxytoca
complex is commonly due to the interruption of mgrB (158, 333), a negative regulator
of the PhoP-PhoQ two-component system (334), or altered expression of this gene
(211). Nonetheless, plasmid-borne colistin resistance genes, including mcr-1 (335, 336)
and mcr-9 (337, 338), have also been seen in the complex. Plasmid-borne mcr-1 has
been found in K. oxytoca from the superficial skin swab of a patient in South Africa
(335) and from a lake in China (336). Plasmid-borne mcr-9 has been reported in K. oxy-
toca strains which were recovered from a rectal swab of a patient from Qatar (337) and
from horses in Sweden (338).

Other resistance genes. Genes mediating resistance to aminoglycosides, chloram-
phenicol, fosfomycin, macrolides, quinolones, rifampin, sulfonamides, tetracyclines, and tri-
methoprim are listed in Table 8. Aminoglycoside resistance in the K. oxytoca complex is
mainly due to modifications, including acetylation (aac and sat genes) (339), adenylylation
(ant and aad genes) (339), and phosphorylation (aph and str genes) (339). Genes (armA and
rmtC) encoding 16S rRNA methylases that confer high-level resistance to all aminoglycosides
that are commonly used in clinical settings, including amikacin, gentamicin, and tobramycin,
have also been found in the K. oxytoca complex (340, 341). Acquired quinolone resistance in
the K. oxytoca complex is due to plasmid-borne qnr genes (qnrA, qnrB, and qnrS). qnr genes
encode pentapeptide repeat proteins to protect bacterial DNA gyrase and topoisomerase IV
from inhibition by quinolones and result in low-level quinolone resistance (342). The sulfona-
mide resistance genes sul1, sul2, and sul3, encoding dihydropteroate synthases, which are
able to catalyze the condensation of para-aminobenzoate with 6-hydroxymethyl-7,8-dihy-
dropterin diphosphate (343), are seen in many isolates of the K. oxytoca complex. A number
of variants of dfr trimethoprim resistance genes, which encode dihydrofolate reductases
(343), are found in the K. oxytoca complex (Table 8). Chloramphenicol resistance in the K.
oxytoca complex is mainly caused by acetylation of the drug via different types of cat-encod-
ing chloramphenicol acetyltransferases (344). In addition, a specific exporter encoded by
cmlA1 also confers chloramphenicol resistance (344) and has been found in the K. oxytoca
complex. The rifampin resistance gene arr encodes ADP-ribosyl transferases able to inacti-
vate rifampin (345) and is also found in the K. oxytoca complex. tet genes encode energy-de-
pendent membrane-associated proteins to export tetracycline out of bacterial cells (346),
and several tet genes have been identified in the complex. Macrolide resistance genes seen
in the K. oxytoca complex include ere(A), mph(A), mph(E), and msr(E). ere(A) encodes a mac-
rolide esterase, and mph genes encode macrolide phosphotransferases, while msr encodes
an efflux pump able to reduce the intracellular concentration of macrolides (347).

Chromosomal Point Mutation-Associated Antimicrobial Resistance

In addition to intrinsic and acquired antimicrobial genes, nonsynonymous muta-
tions in some chromosomal genes, including gyrA, mgrB, and parC, can also mediate
resistance to quinolones (gyrA and parC) or colistin (mgrB).

gyrA and parC encode DNA topoisomerase II (gyrase) subunit A (GyrA) and DNA topoisom-
erase IV subunit A, respectively. Amino acid substitutions in GyrA at positions 83 and 87 and
in ParC at position 80 are associated with reduced binding of quinolones to the topoisomer-
ase-DNA complex and lead to quinolone resistance in the Enterobacteriaceae (348–350). In the
K. oxytoca complex, amino acid substitutions of GyrA at position 83 (T83I) or 87 (D87G) and
those of ParC at position 80 (S80R or S80I) have been reported to confer quinolone resistance
(18, 107, 351–353). In addition, the D87N substitution in GyrA (354) and M157L in ParC (298,
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351) have also been found in quinolone-resistant isolates of the K. oxytoca complex, but
whether these substitutions confer quinolone resistance has yet to be verified.

mgrB is a negative regulator of the PhoP-PhoQ two-component system (334). It has
been found that interruption of mgrB by insertion sequences (158, 333), altered expres-
sion of mgrB (211), or the C28Y amino acid substitution in MgrB (333, 355) is able to
mediate colistin resistance in the K. oxytoca complex.

VIRULENCE FACTORS
Cytotoxins Causing AAHC

K. oxytoca is a well-characterized causative agent of AAHC, caused by the production of
cytotoxins. K. oxytoca-specific cytotoxin was initially described in 1989 and was thought to
be present only in clinical isolates (356). An early study demonstrated that the cytotoxin pro-
duced by K. oxytoca from an AAHC patient was able to cause fluid accumulation in the ileal
and colonic loops and severe ileal mucosal hemorrhage with erosion in rabbits (357). The
right-side colon was found to be the main target of K. oxytoca using a rat model involving
inoculation with K. oxytoca or the administration of amoxicillin-clavulanate (6). This finding is
consistent with a case report regarding infection sites (86). AAHC associated with K. oxytoca
happens as a result of the administration of antimicrobial agents, especially penicillins (6, 81,
86), which disturb the normal intestinal microflora, contributing to favorable conditions for
the overgrowth of K. oxytoca (94). Although K. oxytoca also exists in other body sites, such as
skin, mouth, upper respiratory tract, and urinary tract, the cytotoxin-producing isolates are
more prevalent in the intestinal tract (16, 94). One study reported that 46% (6/13) of isolates
from the stool of the asymptomatic carriers exhibited cytotoxicity, while none from the uri-
nary tract (n = 10) or respiratory tract (n = 16) displayed cytotoxicity (94).

There are two distinct cytotoxins produced by K. oxytoca, tilimycin (also known as
kleboxymycin or carbinolamine) and tilivalline (generated by nucleophilic attack of free
indole on tilimycin [358, 359]), which lead to the pathological changes seen in AAHC (359,
360). Both tilivalline and tilimycin are pyrrolobenzodiazepine (PBD) metabolites and are gen-
erated from a bimodular nonribosomal peptide synthetase (NRPS) pathway (359, 360). The
kleboxymycin-biosynthetic gene cluster for tilimycin and tilivalline contains the regulators
npsC and marR, an NRPS operon, an aroX operon, mfsX (encoding a multidrug efflux MFS
transporter), and uvrX (encoding the excinuclease ABC subunit UvrA) (358, 361, 362). The
NRPS operon consists of npsA (encoding an amino acid adenylation domain-containing pro-
tein), thdA (encoding an acyl carrier protein), and npsB (encoding a nonribosomal peptide
synthetase). The aroX operon comprises five genes, aroX, dhbX, icmX, adsX, and hmoX,
encoding a 3-deoxy-7-phosphoheptulonate synthase, a 2,3-dihydro-2,3-dihydroxybenzoate
dehydrogenase, an isochorismatase, a 2-amino-2-deoxy-isochorismate synthase, and a 4-
hydroxyphenyl acetate-3-monooxygenase, respectively (358, 361, 362).

PBDs are commonly produced by the actinobacteria, and therefore, it is suspected
that the gene cluster encoding both toxins in K. oxytoca was acquired through horizontal
gene transfer (359, 363). In a recent study of 7,170 Klebsiella genomes, including 178 belonging
to the K. oxytoca complex (76 K. michiganensis, 66 K. oxytoca, 24 K. grimontii, 6 K. pasteurii, 5 K.
huaxiensis, and 1 K. spallanzanii genome), the complete kleboxymycin gene cluster was found
only in K. grimontii, K. michiganensis, K. oxytoca, and K. pasteurii (364). As K. grimontii, K. michiga-
nensis, K. oxytoca, and K. pasteurii phylogenetically cluster as a lineage separated from other
species of the K. oxytoca complex (Fig. 1), it is likely that the kleboxymycin gene cluster was
acquired in this lineage before species divergence. However, the gene cluster has not been
found to be plasmid borne (254).

Tilivalline was the first cytotoxin characterized in detail (360). It has been demon-
strated that tilivalline suppresses microtubule-dependent processes in A549 lung carci-
noma cells and HT-29 colon cancer cells by binding tubulin directly, making the micro-
tubules stable and resulting in mitotic arrest (361). Tilimycin, also called kleboxymycin,
exhibits at least 9-fold-higher toxicity than tilivalline in a cell culture assay based on
MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole] and
leads to increased virulence in the presence of glucose and lactose (359). Tilimycin is a
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genotoxin interacting with double-stranded DNA, inducing cellular DNA damage in
host cells in vitro and in vivo and causing a more serious lesion in cecal enterocytes of
colonized mice than in healthy controls (361). Both tilimycin and tilivalline were found
to be related to perturbations of the intestinal barrier by decreasing the expression of
claudin-1, a barrier-forming tight junction protein, in T84 monolayers (365). However,
in the absence of the two toxins, the intestinal barrier damage can also be triggered by
reducing the expression of claudin-5 and 28 in K. oxytoca in T84 monolayers (365).

CPS and LPS

Capsular polysaccharide (CPS; K antigen) and LPS (containing O antigen) are common
virulence factors of K. pneumoniae (366–369). Compared to K. pneumoniae, K and O antigens
of the K. oxytoca complex are less studied. Nonetheless, a few K types, including K6, K9, K15,
K21, K23, K26, K29, K31, K41, K43, K47, K55, K61, K66, K68, K70, K74, and K79, have been
identified in the K. oxytoca complex (370–376). In a study containing 150 strains of the K.
oxytoca complex, K68 was the most prevalent type in human stool samples (371). Currently,
no published reports of the O antigen in the K. oxytoca complex are available.

Other Virulence Factors in the Literature

Other than AAHC-associated cytotoxins, there are only a limited number of studies
addressing virulence factors of the K. oxytoca complex, partially due to the fact that
most members of the K. oxytoca complex were identified in recent years. Nonetheless,
a number of K. pneumoniae virulence factors have also been reported in the K. oxytoca
complex, including genes encoding capsules (matB) (48, 377, 378), adhesins or biofilm
formation (cf29a, fimA, fimH, mrkABCDF, and pilQ) (48, 377–382), iron uptake (kfuBC)
(379), and urease (ureA) (379, 383). Among these genes, very few have been experi-
mentally tested to explore their association with virulence in the K. oxytoca complex.
The mrk gene cluster (mrkABCDF) encodes the mannose-resistant Klebsiella-like hemag-
glutinins (the type 3 fimbriae), allowing attachment to surfaces and thus formation of
biofilms in Klebsiella spp. (381, 382, 384–386). This operon has been detected in two of
100 K. oxytoca isolates (380). The two mrk-positive K. oxytoca isolates were able to
cause type 3 fimbria-specific agglutination in testing on tannic acid-treated red blood
cells, but attempts to prove that the expression of type 3 fimbriae leads to the coloni-
zation of the mouse urinary tract failed (380). In a study, 70% (35/50) of K. oxytoca iso-
lates from AAHC patients produced moderate levels of biofilm with higher expression
of fimA (encoding a type 1 fimbrial protein facilitating colonization of the epithelium),
pilQ (encoding type IV pilus biogenesis and competence protein) and mrkA than the
biofilm-free strains (49). In another study, 78% (156/200) of K. oxytoca isolates from
patients with colorectal cancer generated moderate levels of biofilm production (377).
Virulence genes found in other enteric pathogens, such as Citrobacter freundii, E. coli,
and Vibrio cholerae (genes encoding type IV and type VI secretion systems and proteins
with partial homology to the cholera toxin), have also been reported in K. oxytoca, but
their association with virulence in the complex has not been determined (8, 360).

PLASMIDS FOUND IN THE COMPLEX
Replicon Types of Plasmids in the K. oxytoca Complex

Plasmids are mobile genetic elements which can replicate independently of the
chromosome (387), and many carry genes encoding beneficial phenotypes for the survival
of host strains, such as antimicrobial resistance and virulence. A variety of plasmids have
been reported in the K. oxytoca complex (32, 35, 96, 156, 244, 296, 388, 389). Plasmids seen
in the complex belong to various replicon types, but none is specific to the complex.

Plasmids Carrying Carbapenemase-Encoding Genes

No known carbapenemase-encoding genes have originated from the K. oxytoca complex,
and therefore, plasmids play a pivotal role in introducing carbapenem resistance into the com-
plex. Forty-three plasmids carrying genes encoding class A carbapenemases have been
reported in the literature or have been deposited in NCBI (Table 9), most of which carry blaKPC-2.
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TABLE 9 Plasmids carrying carbapenemase genes in the K. oxytoca complexa

Plasmidb Gene Replicon typec Country Yr Host speciesd Accession no. and/or reference
pJF-789 blaGES-5 Q NA NA Ko KX912254
pJF-707 blaGES-5 Q UK 2014–2016 Ko KX946994 (391)
pKPC-4b66 blaKPC-2 FIA(HI1), N (ST6) USA 2015 Km CP026274
pK516_KPC blaKPC-2 FIA, FII(p14) China 2016 Km CP022349 (244)
pK518_KPC blaKPC-2 FIA, FII(p14) China 2017 Km CP023186
pKPC2_020121 blaKPC-2 FII(p14), FII(Yp) China 2017 Kg MH192342 (34)
pKPC-f607 blaKPC-2 FII(pKP91) USA 2015 Km CP026272
pKPC-55bf blaKPC-2 FII(pKP91) USA 2015 Km CP026280
pKPC-727 blaKPC-2 FII(pKP91), FII(Yp) USA 2012 Km CP008791
pKPC_CAV1099 blaKPC-2 FII(S), FII(SARC14) USA 2009 Ko CP011595
pKPC_CAV1335 blaKPC-2 FII(S), FII(SARC14) USA 2010 Ko CP011615
pKPC_UVA02 blaKPC-2 FII(S), FII(SARC14) USA 2007 Ko CP017929 (313)
— blaKPC-2 FIIK/FIB Poland 2008–2009 Ko 311
pKPC_CAV1374 blaKPC-2 HI1A(NDM-CIT), HI1B(pNDM-CIT) USA 2010 Km CP011635
pKO13459-1_KPC2 blaKPC-2 N (ST15) Germany 2017 Km VKMF01000347
pKO17045_KPC2 blaKPC-2 N (ST15) Germany 2014 Km VKNC01000072
pKO16290_KPC2 blaKPC-2 N (ST15) Germany 2014 Km VKND01000090
pKO16162_KPC2 blaKPC-2 N (ST15) Germany 2014 Km VKNM01000153
pKO14657_KPC2 blaKPC-2 N (ST15) Germany 2014 Km VKNN01000158
pKO14641_KPC2 blaKPC-2 N (ST15) Germany 2014 Km VKNO01000140
pKO13137_KPC2 blaKPC-2 N (ST15) Germany 2014 Km VKNP01000116
pKO13048_KPC2 blaKPC-2 N (ST15) Germany 2014 Km VKNQ01000128
pKO13047_KPC2 blaKPC-2 N (ST15) Germany 2014 Km VKNR01000115
pKPC-8bc0 blaKPC-2 N (ST6) USA 2015 Km CP026277
pKm38_N blaKPC-2 N (ST6) USA 1997 Ko KY128483
pKm58_N blaKPC-2 N (ST6) USA 1997 Km KY128484
— blaKPC-2 N Germany 2016 Ko 302
(RK 171170-1) blaKPC-2 N Germany 2016 Ko 302
(131SC04) blaKPC-2 N Spain 2013 Ko 390
(YDC736-2) blaKPC-2 N USA 2015 Km 190
(121SC72) blaKPC-2 P6 Spain 2012 Ko 390
(121SC85) blaKPC-2 P6 Spain 2012 Ko 390
(121SC07) blaKPC-2 P6 Spain 2012 Ko 390
p5-KPC blaKPC-2 P6 China 2013 Ko KY913901 (119)
pKPC-cd17 blaKPC-2 P6 Spain 2016–2017 Ko CP026224 (96)
(KPN106) blaKPC-2 W Brazil 2008 Ko 156
(131SC24) blaKPC-2 X3 Spain 2013 Ko 390
pLSCH-KOX18040 blaKPC-2 NA NA NA Ko MN401418
(8-CAR) blaKPC-2, blaVIM-1 N Spain 2014 Ko 299
pCR14_3 blaKPC-3 FIB Spain 2016–2017 Ko CP015395 (96)
pKMISG1 blaKPC-3 FIB(pQil), FII(pKP91) Switzerland 2017 Km CM011641 (166)
unitig_2 blaKPC-3 FII(p14) NA NA Km CP020359
(YD358) blaKPC-3 N USA 2009 Km 190
p7121-IMP blaIMP-1 N (ST ua) China 2014 Ko KX784502 (395)
pKOI-34 blaIMP-34 M Japan NA Ko AB715422 (394)
p4-IPM blaIMP-4 N (ST20) China 2013 Ko KY913900 (119)
pC52_003 blaIMP-4 N (ST ua) Australia 2014 Km CP042548
pKOX7525_1 blaIMP-4, blaNDM-1 FIA(HI1), R China 2020 Km CP065475
(THC5) blaIMP-6 N Japan 2011 Ko 124
pMRY14-187KOX_2 blaIMP-6 N (ST5), R Japan 2013 Ko AP019199–AP019209 (396)
pMRY14-192KOX_2 blaIMP-6 N (ST5), R Japan 2013 Ko AP019216–AP019229 (396)
pMRY14-247KOX_2 blaIMP-6 N (ST5), R Japan 2014 Ko AP019274–AP019290 (396)
(8-CAR) blaKPC-2, blaVIM-1 N Spain 2014 Ko 299
(K310) blaNDM X3 India 2011–2013 Ko 303
(K3682) blaNDM X3 India 2011–2013 Ko 303
(K3739) blaNDM, blaVIM X3 India 2011–2013 Ko 303
(IR5344) blaNDM-1 A/C China 2014 Ko 326
unnamed5 (K9455) blaNDM-1 A/C2 Spain 2016–2017 Ko CP029118 (96)
(AMA942) blaNDM-1 A/C2 Denmark 2015 Ko 296
pK516_NDM1 blaNDM-1 FIB(pB171), FII(Yp) China 2016 Ko CP022350 (244)
pK518_NDM1 blaNDM-1 FIB(pB171), FII(Yp) China 2017 Km CP023187
pKOX_NDM1 blaNDM-1 FIB(pB171), FII(Yp) China: Taiwan 2010 Ko JQ314407 (323, 393)

(Continued on next page)
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These blaKPC-2-carrying plasmids belong to various replicon types, including IncF, IncHI, IncN,
IncP, IncW, and IncX. Among the plasmids, IncN appears to be particularly common and could
be further assigned to plasmid sequence types using the plasmid multilocus sequence typing
(pMLST) scheme (https://cge.cbs.dtu.dk/services/pMLST/). In particular, 9 ST15 IncN blaKPC-2-car-
rying plasmids were identified in Germany in 2014 or 2017, but unfortunately, no epidemiologi-
cal information is available for these plasmids to determine whether there was an outbreak
due to plasmid-mediated carbapenem resistance. Four ST6 IncN blaKPC-2-carrying plasmids were
found in the United States in 1997 and 2015 (Table 9), while the remaining four IncN plasmids
were reported in the United States in 2015 (190), Germany in 2016 (302), or Spain in 2013
(390), but their sequences are not available to determine the STs. A variety of IncF blaKPC-2-carry-
ing plasmids have also been seen in the complex (34, 244, 313), but it appears that no particu-
lar IncF plasmids dominate (Table 9). Other blaKPC-2-carrying plasmids belong to IncHI1, IncP6
(96, 119, 390), IncW (156), or IncX3 (390). There were four blaKPC-3-carrying plasmids of either
IncF or IncN in the United States in 2009 (190), Spain in 2016 to 2017 (96), and Switzerland in
2017 (166). blaGES-5 was found on two IncQ plasmids, one of which (pJF707; accession no.
KX946994) has also been found to be widespread across other species and genera of the
Enterobacteriaceae in multiple hospitals in the United Kingdom (391).

Thirty-three plasmids carrying class B MBL genes in the K. oxytoca complex have
been reported in the literature or have been deposited in NCBI (Table 9). In the com-
plex, most blaNDM-carrying plasmids belong to IncX3 (32, 119, 244, 303), which is well
known to mediate the inter- and intraspecies transfer of blaNDM genes in the
Enterobacteriaceae (392). blaNDM-carrying plasmids of IncA/C (96, 296, 326), IncF (244,
323, 393), or IncHI have also been reported in the complex. blaIMP-carrying plasmids in
the complex belong to IncF, IncHI, IncL/M (394), IncN (119, 124, 395, 396), and IncR
(124, 396), with IncN plasmids being relatively common and generally also containing
an additional IncR replicon. blaVIM-carrying plasmids belong to IncA/C (121, 397), IncHI
(96), IncL (96), IncN (96, 319), and IncW (398).

A total of 8 blaOXA-48-carrying plasmids have been found in the complex (Table
9), all of which belong to IncL/M and were isolated in Europe (Germany and
Spain) (96, 331) and North Africa (Morocco and Tunisia) (104, 120). No plasmid
MLST scheme is available for IncL/M plasmids at present, and further analysis of

TABLE 9 (Continued)

Plasmidb Gene Replicon typec Country Yr Host speciesd Accession no. and/or reference
pKOX_NDM blaNDM-1 FIB(pB171), FII(Yp) Romania 2013 Km MF042355
pNDM-TJ11 blaNDM-1 FIB(pNDM-Mar), HI1B(pNDM-MAR) NA NA Ko MG845200
(A105R1B5) blaNDM-1 X3 South Africa NA Km 32
p3-NDM blaNDM-1 X3 China 2013 Ko KY913899 (119)
pK516_NDM5 blaNDM-5 X3 China 2016 Ko CP022351 (244)
pK518_NDM5 blaNDM-5 X3 China 2017 Km CP023188
pKlox-45574cz blaNDM-5 X3 NA NA Ko MG833406
pFDL-VIM blaVIM-1 A/C Italy 2019 Ko MN783744 (397)
pSE15-SA01028 blaVIM-1 HI2 Spain 2016–2017 Ko CP026661 (96)
pKp1050-3 blaVIM-1 L Spain 2016–2017 Ko CP023419 (96)
pKOX105(K9534) blaVIM-1 N (ST7) Spain 2016–2017 Ko NC_014208 (96)
pKOX105 blaVIM-1 N (ST7) Italy 2008 Ko HM126016 (319)
(E912) blaVIM-1 W Greece 2007 Ko 398
— blaVIM-4 A/C Italy 2013 Ko 121
— blaOXA-48 L Tunisia 2013–2016 Ko 104
— blaOXA-48 L Morocco 2010 Ko 120
p211DT2019_2 blaOXA-48 L NA 2019 Km JACYGO010000003
pA6sk3_4 blaOXA-48 L NA 2019 Km JACYGP010000006
— blaOXA-48 L NA NA Ko MK249860
pKp_Goe_414-5 blaOXA-48 L Spain 2016–2017 Ko CP018342 (96)
pKp_Goe_588-2 blaOXA-48 L Spain 2016–2017 Ko CP018694 (96)
pKPoxa-48N1 blaOXA-48 L Germany 2012 Ko NC_021488 (331)
aNA, not available.
bNames in parentheses are host strains of unnamed plasmids.—, unnamed.
cThe sequence type of IncN plasmids is shown in parentheses. ua, novel, unassigned ST in the pMLST scheme (https://cge.cbs.dtu.dk/services/pMLST/) for IncN plasmids.
dKg, K. grimontii; Km, K. michiganensis; Ko, K. oxytoca.
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these IncL/M blaOXA-48-carrying plasmids is warranted to investigate whether there
is one or several common plasmids mediating the dissemination of blaOXA-48

across different geographic locations.

Plasmids Carryingmcr or Virulence Genes in the Complex

Among mcr genes identified in the complex, six plasmids, all of which carried mcr-9,
have been found in the K. oxytoca complex and belong to either IncFIB(K) or IncHI (337, 338)
(GenBank accession no. CP011596, CP011617, and CP017930), while an mcr-1-carrying plas-
mid has been identified in the complex but its plasmid replicon type is unknown (336). As
for virulence, genes encoding tilivalline and tilimycin associated with AAHC are chromoso-
mally located in the K. oxytoca complex.

CONCLUDING REMARKS

The K. oxytoca complex comprises 6 known species—K. oxytoca, K. michiganensis, K.
grimontii, K. huaxiensis, K. pasteurii, and K. spallanzanii—and three new unnamed spe-
cies. These species are closely related and are difficult, if not impossible, to differentiate on the
basis of phenotypic characteristics. Precise species identification relies on genome sequencing
and analysis. blaOXY is characteristic of and omnipresent in the K. oxytoca complex. The gene
can be assigned to 12 genotypes, i.e., blaOXY-1 to blaOXY-12, the carriage of which corresponds to
species designation within the complex. The K. oxytoca complex is part of the human com-
mensal microflora in the skin, mouth, gut, and respiratory system and is also an important
pathogen causing AAHC and a number of other infections, but it is much less prevalent than
K. pneumoniae. Two cytotoxins, tilivalline and tilimycin, cause the pathological changes of
AAHC. The K. oxytoca complex has also been responsible for many outbreaks of health care-
associated infections worldwide, many of which likely stem from water sources, such as sinks
and humidifiers. The clonal background of K. oxytoca clinical isolates remains poorly under-
stood, but isolates of clonal complex 2 appear to be widely distributed and have been associ-
ated with carbapenem resistance and outbreaks. In the worldwide bacterial collection of
SENTRY, the rates of nonsusceptibility of the 5,724 clinical isolates of the K. oxytoca complex to
carbapenems, ceftriaxone, ciprofloxacin, colistin, and tigecycline were 1.8%, 12.5%, 7.1%, 0.8%,
and 0.1%, respectively. The rates of nonsusceptibility to carbapenems and cephalosporins
have increased during the past 7 years. In addition to the intrinsic blaOXY, a number of genes
encoding b-lactamases with various hydrolysis spectra, including the carbapenemases GES-5,
GIM, IMP, KPC, NDM, OXA-48, and VIM and ESBLs such as a few CTX-M variants and several
TEM and SHV variants, have been found in the complex. blaKPC-2 appears to be the most com-
mon carbapenemase gene and is mainly seen on IncN or IncF plasmids. The likelihood of
being well adapted to health care environments, the flexibility to acquire antimicrobial resist-
ance, and the presence of diverse virulence genes may help the K. oxytoca complex to
become a major threat to human health. If not carefully monitored, it could easily go on to
impose much greater challenges for therapy and infection control in the future, akin to those
currently presented by K. pneumoniae.

There are a number of notable research gaps in our knowledge of the K. oxytoca
complex. First, the three novel species of the K. oxytoca complex defined here by genome-
based analysis warrant further investigation using phenotypic methods to establish their spe-
cies status and to propose appropriate species names under the current code for prokaryotes
(25). Second, the clinical significance of each species of the K. oxytoca complex, including the
colonization incidence in patients, their prevalence as pathogens in various infections, and the
disease spectrum, manifestation, severity, and prognosis, remains largely unknown. In other
words, whether precise species identification within the K. oxytoca complex has implications
for patient treatment and prognosis prediction as well as epidemiological surveillance and
infection control is yet to be elucidated. Unless such clinical significance of each species has
been demonstrated, we believe that the precise species identification within the K. oxytoca
complex is required for research purposes but may not be necessary for routine clinical prac-
tice at present. Third, virulence factors crucial to the K. oxytoca complex causing infections
other than AAHC are largely not understood. Fourth, the ability of the K. oxytoca complex to
survive and persist in health care environments, in particular water-containing ones such as
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sinks, needs to be fully characterized. Fifth, more surveillance of the antimicrobial susceptibility
of the K. oxytoca complex clinical isolates in international or regional collections is required, in
particular isolates from Africa, Asia, and South America, to provide a comprehensive view of
the current status and changing trend of antimicrobial resistance. Sixth, the population struc-
ture and global epidemiology of the K. oxytoca complex isolates are understudied. Whether
there are certain high-risk clones of the K. oxytoca complex mediating resistance to key antimi-
crobial agents, particularly carbapenems, across different geographic locations remains to be
determined. Seventh, more studies of plasmids in the complex are needed to explore whether
there are particular plasmids mediating the wide dissemination of important antimicrobial re-
sistance genes, such as blaKPC-2.
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