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Abstract

OBJECTIVE—Develop and implement a machine learning algorithm to predict severe sepsis and 

septic shock and evaluate the impact on clinical practice and patient outcomes

DESIGN—Retrospective cohort for algorithm derivation and validation, pre-post impact 

evaluation

SETTING—Tertiary teaching hospital system in Philadelphia, PA

PATIENTS—All non-ICU admissions; algorithm derivation July 2011-June 2014 (n= 162,212); 

algorithm validation October-December 2015 (n=10,448); silent versus alert comparison January 

2016-February 2017 (silent n= 22,280; alert n= 32,184).

INTERVENTIONS—A random-forest classifier, derived and validated using electronic health 

record data, was deployed both silently and later with an alert to notify clinical teams of sepsis 

prediction.
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MEASUREMENT and MAIN RESULT—Patients identified for training the algorithm were 

required to have ICD9 codes for severe sepsis or septic shock and a positive blood culture 

during their hospital encounter with either a lactate > 2.2 mmol/L or a systolic blood pressure 

< 90 mm Hg. The algorithm demonstrated a sensitivity of 26% and specificity of 98%, with a 

positive predictive value of 29% and positive likelihood ratio of 13. The alert resulted in a small 

statistically significant increase in lactate testing and intravenous fluid administration. There was 

no significant difference in mortality, discharge disposition, or transfer to ICU, although there was 

a reduction in time-to-ICU transfer.

CONCLUSIONS—Our machine learning algorithm can predict, with low sensitivity but high 

specificity, the impending occurrence of severe sepsis and septic shock. Algorithm-generated 

predictive alerts modestly impacted clinical measures. Next steps include describing clinical 

perception of this tool, and optimizing algorithm design and delivery.
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INTRODUCTION

Sepsis continues to be a leading cause of death among hospitalized patients, affecting 

up to 6% of all admissions and conferring in-hospital mortality greater than 15% (1, 

2). Early detection of sepsis has the potential to reduce mortality by facilitating timely 

implementation of evidence-based interventions (3).

Many studies have used multivariate models based on electronic health record (EHR) data 

for detection of sepsis or clinical deterioration (4–8). Our team previously developed and 

implemented one such detection algorithm based on the systemic inflammatory response 

syndrome (SIRS) (7). In that study, a non-significant improvement in mortality and an 

increase in discharge to home was observed. More recently, our team as well as others 

have begun to use machine learning (ML) approaches (9) to improve the accuracy of sepsis 

detection and prediction, both in the emergency department (10–12) and the inpatient setting 

(13–15).

When applied to retrospective data, ML algorithms designed to predict sepsis have 

performed well (10, 14, 16, 17, 19). However, implementation has largely been focused 

on intensive care unit (ICU) populations, where robust staffing and a high index of suspicion 

already prompt early recognition of sepsis. For example, ML algorithms have been linked 

to decreased mortality and length of stay in a small ICU-based randomized trial (16) and 

decreased sepsis-related mortality at a small private hospital (18). However, to date, the 

large-scale application of ML algorithms to predict sepsis in the non-ICU inpatient setting 

has not been reported. Here, we describe the development of a machine learning algorithm 

and alert for prediction of severe sepsis and septic shock in hospitalized non-ICU patients, 

and the subsequent clinical impact of this tool when implemented across our multi-hospital 

healthcare system.
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METHODS

Setting and Data Sources

At the time of the study, the University of Pennsylvania Health System (UPHS) included 

three urban acute care hospitals with a capacity of over 1,500 beds and 70,000 annual 

admissions. All hospitals used the EHR Sunrise Clinical Manager version 5.5 (Allscripts, 

Chicago, Illinois). Data were retrieved from the Penn Data Store, which includes clinical 

data from our EHR and administrative data coded by clinical documentation specialists.

Algorithm Derivation and Validation

A cohort of all inpatients discharged between July 2011-June 2014 (n=162,212) from 

our three hospitals was used to train our algorithm. From this population, a total of 950 

inpatient encounters met “Sepsis Training Criteria,” which required: 1) ICD9 codes 995.92 

(severe sepsis) or 785.52 (septic shock), 2) a positive blood culture, and 3) a lactate > 

2.2 mmol/L or a systolic blood pressure <90, all occurring within a 1 hour window. The 

time of earliest measured elevated lactate or hypotension was considered “sepsis onset” 

for training purposes. These cases were used to train a random-forest classifier to predict 

severe sepsis and septic shock. The random forest approach has been described previously 

and used in similar studies (11). Our model considered a total of 587 features, consisting 

of demographics, vital signs, and lab results. For selected labs and vitals, we also derived 

time-series features, describing the minimum, maximum, mean, and rate of change over the 

preceding 24 hours. We used 100 estimators (trees) and gini criteria for splits.

The resulting algorithm was retrospectively validated on hospitalized non-ICU patients from 

October 1 to December 1 2015 (n=10,448 discharges). A set point from the algorithm 

derivation AUC was selected to produce an average of 10 alerts per day across the three 

hospitals in our healthcare system. During the validation period, the algorithm identified 

347 patients predicted to develop severe sepsis or septic shock. The outcome of “Severe 

Sepsis” was defined as having: 1) >2 SIRS criteria, 2) lactate >2.2, and 3) positive blood 

or urine culture. The outcome of “Septic Shock” was defined as having “Severe Sepsis” 

plus a systolic blood pressure <90 mm Hg. These variables had to collectively occur within 

a one-hour time window. We will refer to patients who trigger the algorithm prediction as 

“screen positive”.

Area under the curve (AUC) with k-fold cross validation (k=10) was estimated using 

the derivation population. Test characteristics, including sensitivity, specificity, predictive 

values and likelihood ratios were estimated from the validation population. All model 

construction and analyses were conducted using the open source Python programming 

language and Scikit-learn v0.15.2 (http://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/

about.html#citing-scikit-learn).

Implementation of “Early Warning System 2.0”

As a successor to our prior SIRS-based sepsis detection tool, Early Warning System (EWS) 

1.0 (7), we named this new ML algorithm-based sepsis prediction tool “EWS 2.0”. After 

derivation and validation, EWS 2.0 was deployed in the production environment over a 
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14-month period. Patients eligible for algorithm screening included non-ICU inpatients who 

were in the hospital > 24 hours (which included any time spent in the ED). Patient data was 

resampled hourly, with new predictions made any time a new observation (data point) was 

recorded.

During an initial 6-month “silent period” (January 1 – June 15, 2016), process and outcome 

measures were collected on screen positive patients, but no accompanying alert was sent 

to the care team. For the subsequent 8-month “alert period” (June 16, 2016 – February 6, 

2017), the algorithm was paired with an automated alert sent to the covering care team. 

Alerts stated that EWS 2.0 had fired for a given patient, and included relevant recent 

laboratory data along with 48 hours of vital sign trends. Nurses received EHR-based alerts. 

Text messages were sent to providers and a rapid response coordinator (a critical-care 

nursing professional who monitors and responds to hospital emergencies 24-hours daily). 

The team was asked to perform a bedside assessment of the patient, but no specific 

interventions were required.

Clinical characteristics of screen positive patients were compared to those of a random 

population of screen negative non-ICU inpatients during the alert period. Hourly data 

following algorithm trigger for screen positive patients was compared to hourly data from 

screen negative patients following a randomly selected time. Process and outcome measures 

were collected for screen positive patients until discharge from the hospital during both 

implementation periods. Because one of our three hospitals transitioned to a new EHR 

during the intervention study period, it was excluded from implementation analysis; data 

from the two other hospitals in our system (including our flagship teaching hospital) was 

used for silent and alert period analyses.

To assess the alert’s impact on care, we estimated proportions with confidence intervals, 

means with standard deviations, and medians with interquartile ranges for descriptive 

characteristics, process measures, and clinical outcomes in the silent and alerted periods. 

Unadjusted analyses using the chi-square test for dichotomous variables and the Wilcoxon 

rank sum test for continuous variables compared demographics and process and outcome 

measures in all study populations, including training, validation, silent and alert periods. 

P-values <0.05 were considered significant.

To better assess the impact of the alert when the care team suspected sepsis, we also 

performed analyses stratified by “Suspected” versus “Unsuspected Sepsis”. “Suspected 

Sepsis” was defined by active orders for at least two of the following within 12 hours 

prior to the alert: broad-spectrum antibiotics, blood cultures, and/or lactate testing.

Institutional Review

This study received expedited approval, HIPAA waiver, and informed consent waiver from 

the University of Pennsylvania Institutional Review Board (protocol number 826028).
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RESULTS

Algorithm Derivation and Validation

Demographics of the derivation, validation, and implementation period populations were 

clinically similar (Supplemental Table 1, Table 2). During algorithm derivation, the 

estimated AUC for the study outcomes of Severe Sepsis or Septic Shock was 0.88 (SD +/− 

0.03) following k-fold validation (k=10). Test characteristics estimated with the validation 

cohort demonstrated sensitivity of 26% and specificity of 98%. Positive and negative 

predictive values were 29% and 97%, respectively. Positive and negative likelihood ratios 

were 13 and 0.75, respectively. The clinical variables with the greatest contribution to the 

algorithm predictions are shown in Table 1 (see Supplemental Table 2 for a full list of 

included variables). SIRS criteria and markers of end-organ dysfunction contributed most to 

the prediction, consistent with recent sepsis consensus guidelines and definitions (20).

Algorithm and Alert Implementation

Clinical Characteristics of Screen Positive Patients—Demographics of the total 

study population in the silent and alert periods were clinically similar, as were the 

characteristics of screen positive patients from each group (Table 2). EWS 2.0 triggered 

for 7.4% of admissions (n=1,540) during the silent period and 7.1% of admissions (n=2,137) 

during the alert period. During the silent period, the tool triggered a median of 6 hours 

and 34 minutes (IQR: 0hrs:50min-53hrs:19min) prior to the onset of severe sepsis or septic 

shock. This was similar to the alert period (median of 5 hours and 25 minutes (IQR: 

0hrs:45min-45hrs:0min). Almost 60% of screen positive patients met two of four SIRS 

criteria at the time of alert, increasing to 84% by 48-hours post-alert (Figure 1). Only 11% 

of patients met study criteria for the outcomes of severe sepsis or septic shock at time of 

alert. By 48-hours after the alert, 30% of screen positive patients met study criteria for the 

outcomes of severe sepsis or septic shock. Screen positive patients demonstrated marked 

abnormalities in vital signs and laboratory data compared to those who did not trigger EWS 

2.0 (Supplemental Figure 1).

Process Measures—The alert prompted a modest but statistically significant increase 

in lactate testing, administration of IV fluid boluses, and CBC or BMP testing within 

three hours following the alert (Table 3). Increases in lactate testing and IV fluid bolus 

administration were sustained at six hours post-alert, but only lactate testing remained 

significantly increased at the 48-hour mark (Supplemental Table 3). Transfusion of 

packed red blood cells was also significantly increased in the first 6 hours post-alert 

(Supplemental Table 3). Frequency of blood cultures or initiation of antibiotics did not 

significantly differ between the silent and alert periods (Supplemental Table 3). Time 

to administration of broad-spectrum sepsis antibiotics also did not differ significantly 

(silent period: median 11hrs:12min, IQR 2hrs:27min-36hrs:34min; alert period: median 

9hrs:47min, IQR 2hrs:37min-35hrs:39min; p=0.59).

In the alert period, 27% of screen positive patients met criteria for Suspected Sepsis. 

Post-alert increases in lactate testing were significant in both the Suspected and Unsuspected 

Sepsis groups (Supplemental Tables 4 and 5). Increases in IV fluid bolus administration, 
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telemetry and lab testing were primarily observed in Unsuspected Sepsis (Supplemental 

Table 5). Antibiotic initiation did not significantly differ for either group.

Outcome Measures—Compared to screen positive patients during the silent period, 

screen positive patients during the alert period had a statistically significant decrease in time 

to ICU transfer, but no significant change in the frequency of ICU transfer or median length 

of stay in the ICU (Table 4). There were also no statistically significant differences in the 

development of severe sepsis or septic shock, all-cause mortality, or discharge disposition.

The observed decrease in median time-to-ICU-transfer among patients in the alert group was 

primarily driven by the Unsuspected Sepsis cohort (24 (IQR 3–117) hours vs. 8 (IQR 2–73) 

hours, p<0.01) (Supplemental Tables 6 and 7). There was no significant change observed for 

the Suspected Sepsis cohort (Supplemental Table 6). Neither cohort had post-alert changes 

in frequency of ICU transfer, median length of stay in ICU, or mortality; however, we 

did observe increased frequency of discharge to inpatient hospice among patients with 

Suspected Sepsis at the time of the alert (3.0% vs. 5.9%, p = 0.04) (Supplemental Table 6).

DISCUSSION

We developed a machine learning algorithm to predict severe sepsis and septic shock and 

implemented the tool on non-ICU services across our multi-hospital healthcare system. 

Here, we confirmed the feasibility of widespread implementation of a machine learning 

predictive alert, but observed a limited impact on clinical practice and outcomes.

Algorithm Design

To train our algorithm, we sought to identify patients with unequivocal sepsis physiology. 

Our selected Sepsis Training Criteria included hypotension and lactic acidosis as markers 

of impaired perfusion and shock (20) and a positive blood culture as a specific marker of 

infection. Though recent sepsis definitions do not include bacteremia, and in fact up to 50% 

of sepsis cases have no confirmed source of infection, we used narrower criteria to improve 

the specificity and predictive value of our resulting algorithm. SIRS criteria and clinical data 

related to end-organ dysfunction were heavily weighted in the algorithm, thus supporting our 

approach to algorithm development. However, this study’s results may be limited by our use 

of more specific sepsis definitions that have not been externally validated.

The resulting algorithm accurately identified hospitalized patients at risk for developing 

severe sepsis or septic shock, despite the inherent limitations of EHR data, which can 

be plagued by missingness, inaccuracies, and changes in practice patterns over time. 

Importantly, the sensitivity of the tool was limited to minimize alert fatigue given that 

hospital providers are estimated to receive greater than 50 EHR alerts on average per day 

(21), leading to providers declining, ignoring or deferring a majority of the alerts they 

encounter (22). Our lower sensitivity resulted in higher specificity and an excellent positive 

likelihood ratio.
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Alert Impact

Ultimately, EWS 2.0 did not significantly improve our main outcome measures. We 

hypothesize that the alert’s impact on clinical processes and patient outcomes was limited 

by multiple factors, including a lack of pre-specified interventions, limited alert format, long 

alert lead-times, and perhaps most importantly, minimal predictive value beyond predictions 

already made by the clinical teams.

Clinician Response

Despite good predictive values, in many cases, the post-alert bedside evaluation resulted in 

minimal changes to clinical care or outcomes. Ambiguity may have arisen about how to 

manage patients in the setting of a positive screen but apparent clinical stability. Prior to 

apparent disease, the utility of further laboratory testing, fluid administration and empiric 

antibiotics is unclear. This may contribute to the low level of practice change following the 

alert. In addition, our study is limited in that we did not evaluate whether observed practice 

changes were appropriate for the clinical context of each patient.

We previously reported that with our prior alert system, EWS 1.0, clinical teams already 

strongly suspected sepsis in >50% of cases (23). A survey administered to alerted providers 

and nurses during the alert period of this current study revealed a similar sentiment (24). 

However, in the subgroup analysis of patients who were not suspected of having sepsis at 

the time of alert, there was a statistically significant decrease in time to ICU transfer. On 

the other hand, there was an increase in referral to inpatient hospice for patients already 

suspected of sepsis. Thus, it appears that the algorithm may have provided information that 

supported either escalating care for those not suspected of having sepsis, or adjusting overall 

goals of care for those initially suspected of having sepsis.

Intervention Format

The format of our intervention, as a one-time alert, may have affected the alert’s impact 

on clinical care and outcomes. There may be multiple critical opportunities for clinical 

teams to integrate clinical information with a sepsis risk assessment. Yet, we did not require 

re-evaluation of alerted patients at later time-points, even though in many cases our one-time 

alert triggered hours prior to the onset of sepsis physiology. For these cases, the lead-time 

of the alert and evaluation prior to clinically overt disease may have been too long. The 

question remains as to whether alerts are the most effective method of communicating 

real-time predictive information, or whether a continuous score may more dynamically 

support clinical decision-making. Moreover, while some clinical data were reported with the 

alerts, the variables and logic leading to alert trigger were not clearly delineated, creating 

what has been referred to as a machine learning “block box model” (25). This lack of 

transparency may have reduced overall trust in the algorithm and may have affected the 

clinician perception of the reliability of the prediction.

Future Algorithm Optimization

Considerations must also be made for optimizing algorithm design. Recent studies have 

shown that machine learning predictions in sepsis and critical care may be strengthened by 

incorporating free text from provider documentation using natural language processing (10, 
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26, 27). Importantly, we derived our algorithm using criteria that although guided by sepsis 

consensus guidelines, were defined by the study team, and not externally validated. While 

we prioritized specificity, a more sensitive algorithm may pick up subtle clinical trends for 

patients who are less likely to be captured by clinician’s usual risk assessments (though 

at the risk of alert fatigue). Additionally, the most actionable moment in the course of a 

patient’s sepsis trajectory may be the time just prior to, or during, the onset of clinical 

change. In this case, our alert frequently fired at a time when the patient appeared clinically 

well, sometimes many hours ahead of later decompensation. Finally, severe sepsis and septic 

shock may not be the most relevant outcomes to target when predicting unsuspected active 

clinical deterioration requiring a response from frontline providers. Algorithms trained for 

general decline, which may predict ICU transfer (17) or even mortality (28), might be more 

impactful with respect to changing process and outcome measures, and preventing these 

critical events.

CONCLUSIONS

This study demonstrates the feasibility of implementing a machine learning algorithm for 

real-time analysis of EHR data to accurately predict the development of severe sepsis or 

septic shock. We have also shown the potential implications of alerting clinicians to this 

prediction throughout a multi-hospital healthcare system. In this study, the alert did not 

significantly alter clinical practice or outcomes. Training the algorithm on more traditional 

definitions of clinical deterioration, enhancing ML algorithms through incorporation of 

natural language processing, and effectively communicating risk while avoiding alerts in 

patients already suspected of clinical deterioration, represent potential opportunities to 

improve the impact of sepsis prediction on clinical care outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Proportion of Screen Positive Patients Meeting Systemic Inflammatory Response Syndrome 

(SIRS) Criteria in the Hours Following Algorithm Detection, Compared with Controls

SIRS (Systemic Inflammatory Response Syndrome) Criteria include:

(1) Temp >38°C (100.4°F) or < 36°C (96.8°F)

(2) Heart rate > 90

(3) Respiratory rate > 20 or PaCO2 < 32 mm Hg

(4) WBC > 12,000/mm3, < 4,000/mm3, or > 10% bands

Criteria for Severe Sepsis: >2 SIRS and positive blood or urine culture and lactate >2.2; 

Septic Shock: Severe Sepsis AND systolic blood pressure <90 mm Hg
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Table 1:

Top Twenty Variables Contributing to Algorithm Prediction and Corresponding Weight

Variable Time Variation Weight

BP Noninvasive Diastolic (mm Hg) Most Recent 0.01624320

BP Noninvasive Systolic (mm Hg) 24hr Minimum 0.01606099

Pulmonary Service N/A 0.01554681

Heart Rate (beats/min) 24hr Rate of Change 0.01455791

Blood Urea Nitrogen Most Recent 0.01372632

BP Noninvasive Systolic (mm Hg) 24hr Variation from the Mean 0.01370169

Temperature Most Recent 0.01358034

Temperature 24hr Maximum 0.01325225

% Monocytes Most Recent 0.01315597

Temperature 24hr Variation 0.01266883

Blood Urea Nitrogen 24hr Mean 0.01264225

Heart Rate (beats/min) Most Recent 0.01182879

Blood Urea Nitrogen 24hr Minimum 0.01165007

Blood Urea Nitrogen 24hr Maximum 0.01141574

Age Most Recent 0.01108977

BP Noninvasive Diastolic (mm Hg) 24hr Minimum 0.01092703

Carbon Dioxide Most Recent 0.01057971

Creatinine Most Recent 0.01047186

Absolute Lymphocyte Count Most Recent 0.01046288

Temperature (degrees F) 24hr Variation from the Mean 0.00959570

BP = blood pressure, F = Fahrenheit, mm Hg = millimeters of mercury, min = minute, hr = hour.
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Table 2:

Demographics of Intervention Population

Total Intervention Population Screen Positive Population

Demographic Silent Period 
(n=22,280)

Alert Period 
(n=32,184)

P-value Silent Period 
(n=1,540)

Alert Period 
(n=2,137)

P-value

Age, mean, yr 58.5 58.7 0.22 61.3 62.5 0.02

Female, % 48.7 49.0 0.60 47.7 47.4 0.88

BMI, mean 29.0 28.8 0.07 27.9 28.0 0.93

Race/Ethnicity, n (%) <0.01 0.66

 White 11,802 (53.0) 16,987 (52.8) 825 (53.6) 1,186 (55.5)

 Black 8,664 (38.9) 12,234 (38.0) 551 (35.8) 739 (34.6)

 Other 492 (2.2) 679 (2.1) 51 (3.3) 62 (2.9)

 Unknown 1,322 (5.9) 2,284 (7.1) 113 (7.3) 150 (7.0)

Hospital, n (%) 0.03 0.67

 HUP 13,990 (62.8) 19,918 (61.9) 1,189 (77.2) 1,636 (76.6)

 PPMC 8,290 (37.2) 12,266 (38.1) 351 (22.8) 501 (23.4)

Admission Type, n (%) <0.01 0.02

 Elective 8,560 (38.4) 12,086 (37.6) 433 (28.1) 515 (24.1)

 Emergency 9,583 (43.0) 13,750 (42.7) 831 (54.0) 1,197 (56.0)

 Transfer 3,963 (17.8) 6,336 (19.7) 275 (17.9) 424 (19.8)

Hosp LOS, median (IQR), 
d 4 (2–7) 4 (2–7) <0.01 9 (5–18) 9 (5–18) 0.39

DRG Weight, median 
(IQR) 1.45 (0.97–2.23) 1.48 (0.97–2.20) 0.27 1.88 (1.35–4.23) 1.79 (1.38–3.49) 0.05

BMI = body mass index, d = days, DRG = diagnosis related group, HUP = Hospital of the University of Pennsylvania, IQR = interquartile range, 
Hosp LOS = hospital length of stay, PPMC = Penn Presbyterian Medical Center, yr = years.
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Table 3:

Clinical Process Measures in Screen Positive Patients Within Three Hours of Alert

Process Measure, % Silent (n=1,540) Alert (n=2,137) P-value

CBC or BMP 46.9 51.0 0.01

IV Fluid Bolus 21.7 25.5 <0.01

Any antibiotic 17.3 16.9 0.76

Sepsis Antibiotic(s)
a 15.6 15.2 0.76

Blood Cultures 14.0 15.7 0.18

Telemetry or ECG 12.8 14.5 0.15

Chest Radiograph 9.4 10.0 0.62

Lactate 8.0 11.7 <0.01

CT Imaging
b 5.3 4.6 0.38

RBC Transfusion 3.8 4.2 0.67

Diuretic 3.2 3.8 0.43

AV Nodal Blockade 2.9 3.4 0.39

Arterial Blood Gas 2.8 3.5 0.29

Vasopressors 2.2 2.8 0.30

Naloxone 0.1 0.2 0.40

AV = atrioventricular, BMP = basic metabolic panel, CBC = complete blood count, CT = computed tomography, ECG = electrocardiogram, IV = 
intravenous, RBC = red blood cell.

See Supplemental Table 3 for process measures at 3, 6, and 48-hour time intervals.

a
List available in Supplemental Table 8.

b
Includes CT chest, head, or abdomen.
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Table 4:

Outcomes in Screen Positive Patients

Outcome Measure Silent (n=1,540) Alert (n=2,137) P-value

Hospital Length of Stay, median (IQR), d 9 (5–18) 9 (5–18) 0.39

ICU Transfer < 6 hours After Alert, % 9.2 12.0 0.14

ICU Transfer < 24 hours After Alert, % 14.4 16.8 0.19

ICU Transfer < 48 hours After Alert, % 16.4 18.9 0.20

ICU Transfer Any Time After Alert, % 25.6 26.1 0.80

Time to ICU Transfer After Alert, median (IQR), h 16 (2–108) 8 (2–62) <0.01

ICU Length of Stay, median (IQR), h 71 (38–163) 85 (43–179) 0.11

Mortality ≤ 30 days After Trigger, % 9.8 9.4 0.81

In-hospital Mortality, % 10.6 10.3 0.88

Discharged to Home, % 59.9 58.4 0.42

Discharged to Nursing Facility, % 15.3 15.2 0.93

Discharged to Inpatient Hospice, % 3.4 4.6 0.51

Severe Sepsis or Septic Shock
a, % 20.5 18.6 0.32

ICU = intensive care unit, IQR = interquartile range.

a
Severe Sepsis: >2 SIRS and positive blood or urine culture and lactate >2.2; Septic Shock: Severe Sepsis AND systolic blood pressure <90 mm 

Hg.
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