Table 3.
D-dimer in predicting AKI with two-piecewise linear regression model in non-RM and RM patients.
| Total | Non-RM | RM | |
|---|---|---|---|
| OR (95%CI) p-value | OR (95%CI) p-value | OR (95%CI) p-value | |
| Model I | |||
| One linear regression coefficient | 1.1 (1.1, 1.2) <0.001 | 1.1 (1.0, 1.1) 0.114 | 1.3 (1.1, 1.5) <0.001 |
| Model II | |||
| K | 10 | 1.3 | 0.4 |
| <K regression coefficient 1 | 1.3 (1.2, 1.5) <0.001 | 6.4 (1.7, 23.9) 0.005 | 0.0 (0.0, 50.7) 0.285 |
| >K regression coefficient 2 | 1.0 (1.0, 1.1) 0.849 | 1.0 (1.0, 1.1) 0.591 | 1.3 (1.1, 1.5) <0.001 |
| Difference between the regression coefficient 2 and 1 | 0.8 (0.7, 0.9) <0.001 | 0.2 (0.0, 0.6) 0.006 | 147.3 (0.0, 872159.1) 0.26 |
| Predicted value of Y at K | 1.5 (0.6, 2.4) | 0.3 (−0.5, 1.1) | −1.5 (−2.5, −0.6) |
| Logarithmic LR test | 0.002 | 0.004 | 0.267 |
K: Kurtosis; LR: logistic regression.