Table 10.
GB | QDA | ET | DT | RF | LR | ANN | ELM | |
---|---|---|---|---|---|---|---|---|
Specificity | 0.6276 | 0.5586 | 0.7724 | 0.8276 | 0.8621 | 0.8345 | 0.5931 | 0.9034 |
Sensitivity | 0.9190 | 0.9467 | 0.7719 | 0.4670 | 0.7868 | 0.8102 | 0.9446 | 0.7655 |
Precision | 0.8887 | 0.8740 | 0.9165 | 0.8975 | 0.9486 | 0.9406 | 0.8825 | 0.9625 |
CV—Specificity | 0.6099 | 0.5768 | 0.7841 | 0.8445 | 0.8425 | 0.8362 | 0.5768 | 0.8861 |
Gradient Boosting (GB), Quadratic Discriminant Analysis (QDA), Extra Trees (ET), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), Artificial Neural Network (ANN), Ensemble Learning Model (ELM)