TABLE 2.
Summary of the discriminator.
| Layer | Method | Parameter | Value |
| InputLayer_1 | Label input | Shape | (None, One-hot label) |
| Dense_1 | — | Units | Window |
| Activation | LeakyReLU | ||
| Reshape_1 | — | Output | (None, Window, 1) |
| InputLayer_2 | Mixed EEGs input | Shape | (None, Window, Channels) |
| Concatenate_1 | Reshape_1 & InputLayer_2 | Axis | 2 |
| Conv1D_1 | Temporal dimension | Filters | 16 |
| Kernel Size | 32 | ||
| Stride | 1 | ||
| Activation | LeakyReLU | ||
| Conv1D_2 | Temporal dimension | Filters | 8 |
| Kernel Size | 16 | ||
| Stride | 1 | ||
| Activation | LeakyReLU | ||
| Conv1D_3 | Temporal dimension | Filters | 4 |
| Kernel Size | 8 | ||
| Stride | 1 | ||
| Activation | LeakyReLU | ||
| Conv1D_4 | Temporal dimension | Filters | 2 |
| Kernel Size | 4 | ||
| Stride | 1 | ||
| Activation | LeakyReLU | ||
| Flatten_1 | — | — | — |
| Dropout_1 | — | Value | 0.4 |
| Dense_2 | — | Units | 1 |
| Activation | sigmoid | ||
| Loss Function | Binary Cross entropy | — | — |
| Optimizer | RMSprop | Learning rate | 0.0008 |
| Clip value | 1.0 | ||
| Decay | 1e-8 | ||
| Activation | Tanh |