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Shape matters: morphological 
metrics of glioblastoma imaging 
abnormalities as biomarkers 
of prognosis
Lee Curtin1*, Paula Whitmire1, Haylye White1, Kamila M. Bond1,2, Maciej M. Mrugala3, 
Leland S. Hu4,5 & Kristin R. Swanson1,5

Lacunarity, a quantitative morphological measure of how shapes fill space, and fractal dimension, 
a morphological measure of the complexity of pixel arrangement, have shown relationships with 
outcome across a variety of cancers. However, the application of these metrics to glioblastoma (GBM), 
a very aggressive primary brain tumor, has not been fully explored. In this project, we computed 
lacunarity and fractal dimension values for GBM-induced abnormalities on clinically standard 
magnetic resonance imaging (MRI). In our patient cohort (n = 402), we connect these morphological 
metrics calculated on pretreatment MRI with the survival of patients with GBM. We calculated 
lacunarity and fractal dimension on necrotic regions (n = 390), all abnormalities present on T1Gd MRI 
(n = 402), and abnormalities present on T2/FLAIR MRI (n = 257). We also explored the relationship 
between these metrics and age at diagnosis, as well as abnormality volume. We found statistically 
significant relationships to outcome for all three imaging regions that we tested, with the shape of T2/
FLAIR abnormalities that are typically associated with edema showing the strongest relationship with 
overall survival. This link between morphological and survival metrics could be driven by underlying 
biological phenomena, tumor location or microenvironmental factors that should be further explored.

Abbreviations
GBM	� Glioblastoma
FD	� Fractal dimension
MRI	� Magnetic resonance imaging
FLAIR	� Fluid-attenuated inversion recovery
T1Gd	� Gadolinium-enhanced T1-weighted
OS	� Overall survival
PFS	� Progression free survival 
CPH	� Cox proportional hazard

Glioblastoma (GBM) is an aggressive and highly infiltrative primary brain tumor with a median survival of only 
15–16 months with standard-of-care treatment1–3. Due to the sensitive location of the tumor, opportunities for 
biopsies are limited and there is a heavy reliance on imaging, typically magnetic resonance imaging (MRI), to 
assess the severity and progression of the disease. Morphology has been connected to tumor diagnosis, aggres-
siveness and prognosis in a variety of cancers4–12. There remains a relative lack of studies on the prognostic 
implications of these shape metrics of GBM-induced abnormalities on MRI. There are three key GBM-associated 
regions detectable on standard-of-care MRI. The first is the enhancing region present on T1-weighted MRI with 
gadolinium contrast (T1Gd MRI), caused through leakage of gadolinium across disrupted vasculature13. This 
enhancement typically spatially correlates with the bulk of the tumor, particularly in a pretreatment setting14. The 
second region is necrosis, caused by a lack of sufficient nutrients and necrosis-inducing factors, typically present 
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as a central hypointense region on T1Gd MRI surrounded by enhancement. The third is the abnormal region 
present on both T2-weighted and fluid attenuated inversion recovery (FLAIR) MRIs that spatially correlates to 
edema and infiltrative tumor cells15.

In this work, we focus on the prognostic impact of two morphological metrics that quantify these GBM 
regions. The first is fractal dimension, a measure of the consistency of a shape with itself at varying spatial scales. 
If a shape is extremely self-consistent, it will have a high fractal dimension. Lacunarity is a quantifiable measure 
of how shapes fill space, and more generally considers heterogeneity. Higher lacunarity values occur in shapes 
that are disconnected and more heterogeneous. There are many examples of fractal dimension and lacunarity 
providing clinical insight in oncology. For example, fractal dimension and lacunarity have been shown as prog-
nostic markers for melanoma and laryngeal carcinoma16,17. Differences in fractal dimension between healthy 
and pathological tissue have been found in renal chromophobe carcinoma18. Fractal dimension has been shown 
to distinguish benign and malignant breast tumors in both digitized histology5 and ultrasound images19. There 
is also a wealth of morphological studies on lung cancers20. Within glioma, the lacunarity of T2-weighted MRI 
abnormalities has been shown to distinguish glioma grade21 and the fractal dimension of brain vasculature in 
susceptibility-weighted imaging has been shown to distinguish brain tumor grade22,23. A separate study of 95 
patients has found fractal dimension and lacunarity, applied to pretreatment necrotic regions present on T1Gd 
MRIs can distinguish overall survival (OS) and progression free survival (PFS) in GBM7. We seek to build on 
the results of this previous study on a larger cohort through the inclusion of analyses on other MRI abnormali-
ties. We will also look for correlations between these morphological metrics with patient age, patient sex and 
imaging abnormality volumes.

In a retrospective cohort of 402 patients with primary GBM, we have calculated lacunarity and fractal dimen-
sion values of imaging abnormalities using T1Gd MRI and T2/FLAIR images. We find statistically significant 
relationships between these morphological metrics applied to imaging abnormalities and survival metrics in 
patients with GBM, both for OS and PFS.

Methodology
Patient cohort.  We queried our multi-institutional database of retrospective patient data for patients with 
first-diagnosed GBM. We required these patients to have available segmented pretreatment T1-weighted MRI 
with gadolinium contrast in our database, as well as age at diagnosis, sex and overall survival (confirmed death, 
alive, or lost to follow-up). We also required that these patients’ tumors did not contain a significant cystic com-
ponent, which typically presents as hypointense with surrounding enhancement and smooth on T2-weighted 
MRI. Cystic components are typically round and may provide a survival benefit to patients24, which may have 
interfered with relationships between morphological metrics and survival. Hypointense cystic fluid would also 
interfere with our ability to consistently capture necrotic regions, which are also hypointense. This resulted in 
a cohort of 402 patients. Where available, we also noted progression-free survival (n = 125), extent of resection 
(n = 274) and stored T2/FLAIR segmentations (n = 257). As many of our patients were diagnosed before the 
current standard of care (SOC) protocol was established, our cohort consists of a variety of treatment protocols. 
We have established a subcohort of 142 patients known to have received the current SOC, and refer to these as 
“current SOC patients”. See Table 1 for further breakdowns of cohort sizes across different imaging regions, and 
Supplement 1 for a sex-specific breakdown of these groups.

Biomedical imaging and ROI segmentation.  Using pretreatment T1Gd MRI, enhancing abnormalities 
were segmented by trained individuals and necrotic regions were segmented using the segmentations of T1Gd 
enhancement within an automated dilation erosion algorithm. T2/FLAIR abnormalities were also segmented 
by trained individuals. We use an in-house thresholding-based segmentation software to create segmentations. 
Segmentation regions were used alongside image dimensions to calculate imaging abnormality volumes (cm3). 
We also use segmented volumes to compute radii of equivalent spherical volumes (cm). The resolution of each 
image was stored. There are three different segmentations used in this analysis, the first is necrotic regions, the 
second is T1Gd enhancing regions with necrotic regions, and the third is abnormal regions on T2/FLAIR MRI 

Table 1.   Cohort of patients with known overall survival (OS) and progression free survival (PFS). This table 
shows the number of patients with available imaging ROIs and known OS and PFS, including the subsets 
known to have received the current standard of care (SOC). The discrepancy between patients with available 
necrosis ROIs and T1Gd enhancing ROIs is due to 12 patients with negligible necrosis that precluded addition 
of those tumors to the necrosis-specific analysis.

T1Gd MRI T2/FLAIR MRI

Necrosis Enhancement with necrosis Edema

All patients

OS 390 402 257

PFS 125 130 78

Current SOC

OS 135 142 92

PFS 86 89 56
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associated with edema. We chose to include the necrotic regions with the enhancement on T1Gd MRI to avoid 
the conflation of necrosis outlines that would otherwise be present in T1Gd-enhancing regions alone.

Lacunarity and fractal dimension.  We used the FracLac plugin for ImageJ to calculate lacunarity and 
fractal dimension values for each 2D segmentation25,26. Image slices with segmentations totaling 5 pixels or less 
were excluded. The FracLac software uses a box-counting algorithm to compute lacunarity and fractal dimen-
sion; we used a minimum of 2 pixels and a maximum of 45% of each MRI slice for these box sizes. To compute 
fractal dimension, grids with varying box sizes are placed over a region, and the number of boxes needed to 
cover the region in question is recorded for each grid. The log of this number is then plotted against the log 
reciprocal of the length of each box and the gradient of the regression line for this plot is the fractal dimension. 
For lacunarity, a similar process is undertaken with the numbers of pixels in each box recorded as a distribution 
for each box length, with standard deviation σ and mean μ. Lacunarity is then the mean over all box sizes of 
(σ/μ)2. Due to the dependency of fractal dimension and lacunarity on grid placement, we used a mean fractal 
dimension and a mean lacunarity calculated over 12 grid placements for each 2D segmentation. We then stored 
the following metrics for both fractal dimension and lacunarity across MRI slices, to give one value of each per 
pretreatment MRI: the median value, the mean value, the range of values and the variance of values. Although 
previous work by others has shown survival differences with mean values7, we saw clearer signals with median 
values, as these were less impacted by outliers. We present results of mean values in Supplement 2 to compare 
more closely to previously published work7. In Fig. 1A, we present a schematic of how we compute lacunar-
ity and fractal dimension values. For a subset of images with multiple segmentations available (necrosis = 201, 
enhancement with necrosis = 211, edema = 136), we tested the intraclass coefficients (ICCs) of lacunarity and 
fractal dimension and found very good agreement between segmentations (lowest ICC 0.898). We present 
details of this analysis in Supplement 3.

Statistical analyses.  We used log-rank tests to ascertain the significance in overall survival and progres-
sion-free survival differences in our cohort; we use Kaplan–Meier curves to visualize these differences. All the 
analysis presented here was carried out in R27–31. Throughout this work, we set a p-value threshold of 0.05, below 
which we consider our results to be statistically significant. As this work uses multiple comparisons, we have 
used the maxstat package in R to adjust our p-values appropriately32. Namely, we have implemented the adjust-
ment method first presented by Lausen and Schumacher33. We use the chosen threshold to divide our cohorts 
into two groups: the first consists of patients with values lower or equal to the threshold and the second consists 
of patients above the chosen threshold. Only thresholds that split the cohort into groups larger than 10% of the 
cohort size were tested. We present an example schematic of this process to test the significance of lacunarity 
and fractal dimension in Fig. 1B. We present adjusted and unadjusted p-values within this work, and will clearly 
state when each is used.

Cox proportional hazard (CPH) models have been used predictors of survival in univariate and multivariate 
analyses against values that exist within all patients such as age at diagnosis and tumor radius. We used Pearson 
correlation coefficient tests to determine the significance and strength of correlations between variables. We used 
Welch’s t-tests to determine the significance between means of different groups.

Figure 1.   Computing lacunarity and fractal dimension (FD) and testing the statistical significance of these 
against patient survival data. (A) As an example, lacunarity and FD are computed on each slice of T1Gd necrosis 
segmentations. The median of these values is stored, giving one value of lacunarity and FD for each patient. 
We do the same for T1Gd enhancement with necrosis, and T2/FLAIR edematous regions. (B) Individual 
median values are collated into a cohort analysis. Each median value that does not split the cohort into groups 
of less than 10% of the cohort size is then tested as a cutoff to distinguish either overall survival or progression 
free survival. A log-rank test provides a significance value for each potential cutoff and a log-rank statistic is 
calculated alongside a separate significance threshold that accounts for multiple comparisons. The maximal log-
rank statistic is chosen as this maximally distinguishes the two groups. This is carried out for lacunarity and FD, 
across necrosis, enhancement with necrosis, and edema regions.
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Ethical approval.  All procedures performed in the studies involving human participants were in accord-
ance with the ethical standards of the institutional and/or national research committee and with the 1964 
Helsinki declaration and its later amendments or comparable ethical standards. Our de-identified data repos-
itory of patients with brain cancer includes retrospective data collected from medical records and prospec-
tive data collection. Research conduct on the data repository is approved by Mayo Clinic Institutional Review 
Board (IRB# 17-009688). Retrospective inclusion as well as informed consent was obtained for all prospectively 
enrolled participants in the repository as approved by Mayo Clinic Institutional Review Board (IRB# 17-009682).

Results
Whole cohort.  Necrotic regions.  We found that lacunarity significantly distinguished overall survival with 
the group of lower lacunarity values showing benefit, but this result did not hold while adjusting for multiple 
comparisons (unadjusted p = 0.012, adjusted p = 0.07541, n = 390). We also found that lacunarity significantly 
distinguished progression free survival. Lacunarity could still significantly distinguish PFS while accounting for 
multiple comparisons (adjusted p = 0.0051, n = 125).

Enhancement with necrotic regions.  In T1Gd contrast with necrosis, we observe a lacunarity threshold of 
0.3074 that significantly distinguishes groups for overall survival with the group of lower lacunarity values sur-
viving longer (adjusted p = 0.012, n = 402), see Fig. 2A. We also saw that lacunarity distinguished PFS (unad-
justed p = 0.015), but this did not remain significant when adjusting for multiple comparisons (adjusted p = 0.10).

Edema regions.  In T2/FLAIR edema abnormalities, lower lacunarity (Lac ≤ 0.4817, adjusted p = 0.0269) and 
higher fractal dimension values (FD > 1.6543, adjusted p < 0.0001) were associated with significantly improved 
overall survival (n = 257), see Fig. 2B,C. We show examples of edema, and enhancement with necrosis for patients 
with a shorter and longer survival in Fig. 2D and E, respectively.

Figure 2.   Results amongst all patients that remained significant with adjustment (A) The group of lower 
median lacunarity values of enhancement with necrosis (Lac ≤ 0.3074) were associated with prolonged overall 
survival. (B) The group of lower median lacunarity values of edema were associated with longer overall survival 
(Lac ≤ 0.4817). (C) The group of higher median fractal dimension values of edema were associated with longer 
overall survival (FD > 1.6543). (D) An example patient with lower overall survival of 193 days who consistently 
fell into the short overall survival groups of subpanels A-C. Example MRI slices shown with translucent 
segmentation overlays. (E) An example patient with longer overall survival of 900 days, who consistently fell into 
the longer overall survival groups of subpanels A-C. Example MRI slices shown with translucent segmentation 
overlays.
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Current standard of care.  We implemented the same analyses within a sub-cohort of patients known 
to have been treated with the current standard of care, the so called Stupp Protocol which includes surgical 
resection to the maximal possible extent, combination radio-chemotherapy followed by adjuvant temozolomide 
chemotherapy1,2. Significant survival differences present in the whole cohort may not be reflected in this section 
due to a reduction in sample size leading to a reduction in statistical power.

Necrotic regions.  In this subcohort of patients who received the current standard-of-care, we find that lacunar-
ity and fractal dimension significantly distinguish overall survival and progression free survival. Lacunarity can 
distinguish progression-free survival while adjusting for multiple comparisons (adjusted p = 0.017, n = 86), with 
the same threshold chosen to separate the groups as was chosen in the whole cohort (Figs. 2A and 3). We also see 
that the fractal dimension of necrosis can significantly distinguish overall survival (adjusted p = 0.012, n = 135) 
and progression free survival (adjusted p = 0.018, n = 86) (Fig. 3) while accounting for multiple comparisons, 
with lower values conferring the survival benefit.

Enhancement with necrotic regions.  Although no results held in this subcohort after adjusting for multiple 
comparisons, we did observe lacunarity thresholds that distinguished both overall and progression free survival 
with unadjusted significance (OS: p = 0.043, adjusted p = 0.31, PFS: p = 0.016, adjusted p = 0.091).

Edema regions.  Although no results held when adjusting for multiple comparisons in this subcohort, we did 
observe similar optimal cutoffs to those found in the larger cohort for both lacunarity and fractal dimension that 
significantly distinguished overall survival without adjustment (lacunarity p = 0.019, FD p = 0.020), see Table 2. 
We also note that the optimal cutoff for fractal dimension distinguished progression free survival, but this result 
did not hold after adjustment for multiple comparisons (p = 0.013).

We present a summary of the cutoffs that were found to be significant in either an unadjusted log-rank test or 
with adjustment (as described in Lausen and Schumacher33) in Table 2. We also present sex-specific breakdowns 
of these analyses in Supplement 1.

Univariate and multivariate Cox proportional hazard models.  We implemented univariate and 
multivariate Cox proportional hazard (CPH) models against overall survival and progression free survival. For 
overall survival, we present the univariate CPH models for the necrosis, T1Gd, and T2/FLAIR regions for age 
at diagnosis, fractal dimension, lacunarity, and tumor radius at presentation in Fig. 4 (across the entire cohort). 
Multivariate CPH models assessing the relationship between overall survival and lacunarity, age at diagnosis, and 
tumor radius are on the left panel of Fig. 5 and multivariate analyses of fractal dimension, age at diagnosis and 
tumor radius are on the right panel of Fig. 5. We find that lacunarity and fractal dimension values of T2/FLAIR 
regions are the most commonly significant in univariate and multivariate analyses. The values found in Figs. 4 
and 5 are presented in tables in Supplement 4. We chose to run two separate multivariate CPH models, one with 
fractal dimension and another with lacunarity, to test their independent ability as prognostic indicators against 
other factors. We present the equivalent results amongst patients known to have received the current SOC in 
Supplement 5, which also show significance of both fractal dimension and lacunarity of T2/FLAIR for overall 
survival. We found that in a multivariate CPH analysis for progression-free survival of lacunarity of necrosis, 

Figure 3.   Fractal dimension and lacunarity cutoffs that significantly distinguish survival amongst patients 
confirmed to have received the current standard of care. (A) Fractal dimension of necrosis regions significantly 
distinguished OS. (B) Fractal dimension of necrosis regions significantly distinguished PFS. (C) Lacunarity 
significantly distinguished PFS. All three results remained significant with adjustment. Adjusted p values shown 
in bold.
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necrosis radius, and age at diagnosis (across the entire cohort), that lacunarity and radius were both significant. 
No other variables were found to be significant for progression-free survival in either univariate or multivariate 
CPH analyses for any regions. We present plots of these results in Supplement 6. For a subset of patients with 
available extent of resection (necrosis n=263, enhancement with necrosis n=274, edema n=155), we present the 
analogous multivariate CPH analyses in Supplement 7. All significant necrosis and edema results pertaining to 
morphology persist in this reduced cohort setting, while enhancement with necrosis results did not.

Correlations with other variables.  We see significant negative correlations between lacunarity and frac-
tal dimension within all of the imaging abnormalities tested (necrosis R = − 0.55 p < 0.0001, enhancement with 
necrosis R = − 0.45, p < 0.0001, edema R = − 0.55, p < 0.0001). Except for lacunarity of enhancement with necrosis 
(p = 0.08), both lacunarity and fractal dimension are consistently significantly positively correlated with their 
corresponding volumes (all tests p < 0.001).

Table 2.   Median lacunarity and fractal dimension (FD) tests that showed at least one significant cutoff that 
distinguishes survival. We show both overall survival (OS) and progression free survival (PFS) with those 
that were significant (unadjusted p < 0.05) in italics. The results that remained significant while adjusting for 
multiple comparisons are shown in bold (adjusted p < 0.05). The numerical value in the cell represents the 
optimal threshold of analyses that reached a level of significance. Results that did not show significance are 
indicated by "n.s" to represent "not significant".

T1Gd T2/FLAIR

Necrosis Enhancement with necrosis Edema

Lacunarity FD Lacunarity FD Lacunarity FD

All patients

OS 0.27915 n.s. 0.3074 n.s. 0.4817 1.6543

PFS 0.6136 1.31265 0.3900 n.s. n.s. n.s.

Current SOC

OS 0.28125 1.31265 0.3980 n.s. 0.456 1.6621

PFS 0.6136 1.31265 0.3923 n.s.  n.s. 1.5202

Figure 4.   Univariate Cox proportional hazard models for age at diagnosis, fractal dimension, lacunarity and 
tumor radius, across all three regions (necrosis n = 390, enhancement with necrosis n = 402, edema n = 257). 
Both fractal dimension and lacunarity of edema-related abnormalities are significant prognostic indicators 
of overall survival. Age at diagnosis was significant for all three regions, while radius was significant for both 
necrosis and enhancement with necrosis. Values of these tests can be found in Supplement 4.
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Within the cohort of patients for which we have all three regions available (n = 250), we observe significant 
positive correlations between both lacunarity and fractal dimension values of necrotic regions and enhancement 
with necrosis (both tests p < 0.0001 Pearson). Significant positive correlations are also present between these 
metrics calculated on enhancement with necrosis and edema regions (lacunarity p = 0.009 and FD p = 0.018). 
We did not observe significant correlations between these metrics calculated on necrotic regions and edema 
regions (lacunarity p = 0.185 and FD p = 0.339).

We see significantly lower fractal dimension values in necrosis-related abnormalities compared with their 
counterparts with enhancement (p < 0.0001 t-test) and edema (p < 0.001 t-test). No significant difference is 
observed in the fractal dimension between enhancement with necrosis and edema (p = 0.49, t-test). We see sig-
nificance between all three regions in lacunarity. Lacunarity is significantly higher in edema than enhancement 
with necrosis (p < 0.001, t-test), and necrosis is significantly higher than regions of edema (p < 0.001, t-test). 
Figure 6 shows boxplots of these values with their significant relationships highlighted.

We found that lacunarity was significantly associated with image resolution across all three abnormalities 
tested, while fractal dimension was associated with both enhancement with necrosis, and regions of edema. We 
present details of this analysis in Supplement 8. Although we see these significant relationships, lacunarity and 
fractal dimension results of analyses presented in Fig. 5 were unaffected by the inclusion of image resolution 
(Supplement 8).

We note significant correlations of both morphological metrics with age at diagnosis. We observe a weak 
negative significant correlation between lacunarity and age at diagnosis in enhancement with necrosis (p = 0.0217, 
R = -0.11 Pearson) but a positive significant correlation in edema regions (p = 0.0035, R = 0.18, Pearson). In 
contrast to this, we note a significant positive correlation between fractal dimension and age at diagnosis in 
enhancement with necrosis (p < 0.001, R = 0.19, Pearson) and a significant negative correlation in edema regions 
(p < 0.001, R = -0.21, Pearson). We do not observe significant correlations within necrotic regions of lacunarity 
or fractal dimension with age at diagnosis. These results are shown in Fig. 7.

Discussion
Although clinical care teams holistically consider multiple factors to determine the best course of action for 
each patient with GBM, they are somewhat limited in the computational tools and prognostic indicators that 
are readily available to them. The limited opportunities for tissue collection leads to a clinical reliance on imag-
ing to make these decisions and an opportunity to maximize the utility of this information through prognostic 
imaging-derived biomarkers. Through a multi-institutional retrospective cohort, we present highly reliable (Sup-
plement 3) imaging metrics that suggest the shape of GBM has prognostic value at presentation. In contrast to 
the previous publication on this topic7, we see some opposing relationships with these morphological metrics 

Figure 5.   (Left) Multivariate CPH models of lacunarity, age at diagnosis, and abnormality radius for necrosis 
(n = 390), enhancement with necrosis (n = 402), and edema regions (n = 257). Lacunarity of both edema and 
enhancement with necrosis were significant predictors of overall survival in their respective models (p = 0.0007 
and p = 0.042, respectively). Age at diagnosis, as expected, was consistently significant for survival. Radius was a 
significant predictor for regions of necrosis and enhancement with necrosis (p = 0.036). (Right) Corresponding 
Cox proportional hazard model of fractal dimension, age at diagnosis, and abnormality radii for necrosis, 
enhancement with necrosis, and edematous regions. Fractal dimension values of both edema and enhancement 
with necrosis were significant predictors of overall survival in their respective CPH models (p < 0.0001 and 
p = 0.0003, respectively). Age at diagnosis was consistently significant across all CPH models, while only 
enhancement with necrosis, and necrosis radii were significant (p = 0.0018 and p = 0.028, respectively). For a 
complete table including confidence intervals and significance values, see Supplement 4.
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and patient survival for necrotic regions, in that our results generally show a low fractal dimension (less circular, 
patchier) in necrotic regions is better for patient survival. To compare more closely with the previous publication7, 
we also ran survival analyses for the mean lacunarity and fractal dimension values on necrotic regions. These 
metrics did not significantly distinguish overall survival and progression free survival in as many instances as 
the median (Supplement 2).

Figure 6.   Significant differences in lacunarity and fractal dimension between regions of interest. (Left) We note 
significant differences in lacunarity values across all three regions of interest, with necrosis the highest, followed 
by edema, followed by enhancement with necrosis (all comparisons p < 0.001). (Right) Fractal dimension values 
are significantly higher in edema and enhancement with necrosis when compared with necrosis (p < 0.001), but 
we did not observe significant differences in fractal dimension between edema and enhancement with necrosis 
(p = 0.49).

Figure 7.   Significant relationships between morphology and age reversed between enhancement with necrosis 
and edematous regions. (Top row) We see a weak significantly negative correlation between lacunarity and 
age at diagnosis in enhancement with necrosis ROIs (p = 0.0217, R = − 0.11) and a weak significantly positive 
correlation within edema ROIs (p = 0.0035, R = 0.18). (Bottom row) We see weak significant relationships 
between fractal dimension and age at diagnosis within enhancement with necrosis (p < 0.001, R = 0.19) and 
edema ROIs (p < 0.001, R = − 0.21), respectively. Fractal dimension of enhancement with necrosis is positively 
correlated with age at diagnosis whereas the fractal dimension of edema ROIs has a negative correlation. Trend 
lines are shown for significant correlations.
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Within necrotic regions, we see more significant relationships between these morphological metrics and 
patient survival within those who received the current standard of care (Fig. 3). In this setting, fractal dimen-
sion can distinguish overall survival and progression free survival (Fig. 3A,B), and lacunarity can distinguish 
progression free survival while adjusting for multiple comparisons (Fig. 3C). Lacunarity also significantly dis-
tinguished overall survival, but this result did not hold when adjusting for multiple comparisons. These results 
suggest that less connected and more heterogeneous necrosis indicates longer PFS and OS for patients with GBM 
receiving the current standard of care. Patchier and less-connected necrosis may indicate that the necrosis is 
less well established.

The lacunarity of pretreatment lesions present on T2 MRI has previously been shown to distinguish glioma 
grade21. We have extended on this result to suggest that the shape of these regions also contain information on 
patient survival within GBM. Notably, in our cohort, we observe a benefit to OS of lower edema lacunarity values 
and high edema fractal dimension values, both within our optimal threshold analysis and as continuous vari-
ables in univariate and multivariate CPH analyses. These results suggest that patchier and more heterogeneous 
edematous regions provide a worse prognosis. Within patients receiving the current standard of care, we also 
see that lacunarity and fractal dimension of edema-related abnormalities act as independent prognostic vari-
ables against age at diagnosis and the T2/FLAIR abnormality radius. These results suggest meaningful clinical 
insights may come from quantifying the morphological appearance of GBMs. Future work may connect these 
imaging metrics with biological drivers of clinical aggressiveness through molecular and histological analysis 
of tissue specimens.

We tested regional volumes as they relate to outcome, but these did not subsume results of lacunarity and 
fractal dimension; this was particularly clear for edema. Rather unexpectedly, we also note that lacunarity and 
fractal dimension weakly correlate with patient age for enhancement with necrosis and edematous regions. 
Machine learning has been used to reliably predict patient age from brain MRI of healthy adults34, but to our 
knowledge no work has noted relationships between patient age and brain tumor shape. Further, the connection 
between these morphological metrics and age also suggests that tumors that develop in aged brains may have 
different biological aggressiveness. Notably, the fact that age and these morphological metrics retain independ-
ent prognostic value suggests that although increasingly aggressive appearing tumors are increasingly common 
with age, there are additional insights to be found in the morphology.

It is important to note that a lack of statistical significance in survival analyses does not necessarily mean a 
lack of signal. In stratifying our patient cohorts, our statistical power to observe potential differences decreases. 
We chose to present optimal thresholds that did not remain significant while adjusting for multiple comparisons 
to show that we do see some signal with these morphological metrics in most cases. We hope that in the future 
these optimal thresholds will be tested in an independent patient cohort to validate the results presented here.

We computed 2D lacunarity and fractal dimension values of each MRI slice (and averaged these for each 
patient) rather than computing 3D values. Although of course tumors develop in 3D space, the resolution of 
MRI is typically lower between slices than within slices, which limits our ability to ascertain accurate lacunarity 
and fractal dimension values in 3D space.

There has been some recent research showing that GBM location within the brain can impact outcome35,36. A 
future direction may explore lacunarity and fractal dimension against the tumor location, to determine whether 
location compliments or drives prognostic signals of lacunarity and fractal dimension that we have observed 
here. Further work may also explore the dynamics of these morphological markers throughout treatment and 
tumor progression.

Throughout this work, we have found relationships between the shape of segmented tumor regions and 
survival metrics. We found lacunarity and fractal dimension thresholds that significantly distinguish patient 
overall survival and progression-free survival in our cohort, and showed that these act as continuous predic-
tors of survival in some cases. These results warrant further investigation into the biological and genetic drivers 
behind the morphological presentation of GBM in a pretreatment setting.
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