Skip to main content
. 2021 Nov 18;12:773882. doi: 10.3389/fgene.2021.773882

TABLE 2.

Tenfold cross-validation performance comparison of four models based on three feature extraction methods on three benchmark data sets.

Data sets Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC
NH_990 CNN 67.96 68.09 67.86 0.36 0.737
CNN + Capsule 66.02 63.83 67.86 0.32 0.742
CNN + Attention 66.02 46.81 82.14 0.31 0.745
PseUdeep (CNN+ 66.99 74.47 60.71 0.35 0.746
+Capsule + Attention)
NS_627 CNN 69.71 70.59 68.75 0.39 0.728
CNN + Capsule 68.18 61.76 75.00 0.37 0.735
CNN + Attention 69.71 76.47 68.75 0.40 0.734
PseUdeep (CNN 72.73 61.75 78.13 0.45 0.737
+Capsule + Attention)
NM_944 CNN 70.41 57.78 86.79 0.41 0.741
CNN + Capsule 69.39 73.34 66.04 0.39 0.750
CNN + Attention 70.41 57.78 81.13 0.41 0.751
PseUdeep (CNN 72.45 66.70 77.36 0.44 0.756
+Capsule + Attention)

The bold value is the value with the best effect in the corresponding evaluation index.