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Abstract

Oxytocin and vasopressin systems have been studied separately in autism spectrum disorder 

(ASD). Here, we provide evidence from an evolutionary and neuroscience perspective about the 

shared mechanisms and the common roles in regulating social behaviors. We first discuss findings 

on the evolutionary history of oxytocin and vasopressin ligands and receptors that highlight 

their common origin and clarify the evolutionary background of the crosstalk between them. 

Second, we conducted a comprehensive review of the increasing evidence for the role of both 

neuropeptides in regulating social behaviors. Third, we reviewed the growing evidence on the 

associations between the oxytocin/vasopressin systems and ASD, which includes oxytocin and 

vasopressin dysfunction in animal models of autism and in human patients, and the impact of 

treatments targeting the oxytocin or the vasopressin systems in children and in adults. Here, we 

highlight the potential of targeting the oxytocin/vasopressin systems to improve social deficits 

observed in ASD and the need for further investigations on how to transfer these research 

innovations into clinical applications.

INTRODUCTION: OXYTOCIN AND VASOPRESSIN SYNTHESIS, GENE 

STRUCTURE, AND FUNCTION

Oxytocin (OT) and vasopressin (VP) are neuropeptides produced mainly in the supraoptic 

and the paraventricular nucleus (PVN) of the hypothalamus (Lucassen et al., 1997). They are 

released in the capillaries of the posterior pituitary and then distributed peripherally, acting 

as hormones, or to other brain regions, onto neurons containing their receptors, acting as 

neurotransmitters/neuromodulators (see Bakos et al., 2018 and references therein). Central 

release of OT and VP can occur through dendritic and axonal release. The dendritic release 

(Ludwig and Leng, 2006) is notably important to induce a positive feedback mechanism. 
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The axonal release was discovered 40 years ago when OT and VP synapses were observed in 

the limbic regions of the rat brain (Buijs and Swaab, 1979).

The recent use of an optogenetic technique to induce local activation of oxytocin or 

vasopressin fibers (Knobloch et al., 2012; Smith et al., 2016; Hung et al., 2017) supports 

the idea that these peptides can be locally released in the brain. Furthermore, retro dialysis 

studies performed mainly in rats demonstrated that oxytocin and vasopressin can be released 

locally in response to social stimuli (Veenema and Neumann, 2008): for example, oxytocin 

is released in the PVN but not the amygdala or the lateral septum (LS) of lactating females 

defending their nest (Bosch et al., 2004).

Both the oxytocin and vasopressin genes are comprised by three exons that give rise to 

a prepropeptide (Fig. 9.1). For oxytocin, the first exon encodes the signal peptide, the 

oxytocin hormone, the tripeptide processing signal (GKR), and the NH2-terminal residues 

of neurophysin I; the second exon encodes the central part of neurophysin I; and the third 

exon encodes the COOH-terminal region of neurophysin I. For vasopressin, the three exons 

also give rise to a prepropeptide: the first exon encodes a signal peptide, the vasopressin 

hormone, and the NH2-terminal region of neurophysin II; the second exon encodes the 

central region of neurophysin II; and the third exon encodes the COOH-terminal region 

of neurophysin II and the glycopeptide copeptin (Melmed, 2011). The products of these 

processes, OT and neurophysin I, on the one hand, and VP, copeptin, and neurophysin II, on 

the other, are packaged in granules for axonal transport to the posterior pituitary (Brownstein 

et al., 1980), until their release is elicited (Renaud and Bourquet, 1991).

OT and VP are involved in an array of functions that go beyond their traditional 

implication in uterine contractions (Magalhaes et al., 2009) and antidiuresis (Walter et al., 

1967), respectively. Based on our literature review for their functions in mammals, both 

neuropeptides are involved in grooming (Marroni et al., 2007; Nephew and Bridges, 2008), 

maternal behavior (Arthur et al., 2008; Leng et al., 2008; Nephew and Bridges, 2008), blood 

pressure regulation (Petersson et al., 1996; Pavan de Arruda Camargo et al., 2008), social 

behavior (Heinrichs and Domes, 2008; Lukas et al., 2011), and memory (Weingartner et 

al., 1981; Larrazolo-López et al., 2008), among other functions. Other prominent functions 

of OT in mammals are mating (Witt and Insel, 1994; Insel and Hulihan, 1995), sperm 

ejaculation (Filippi et al., 2003), lactation (Leng et al., 2008), heart development (Jankowski 

et al., 2004), ossification (Elabd et al., 2007), digestive system regulation (Wu et al., 2003), 

pain perception (Yang et al., 2007), estradiol response (Jirikowski et al., 1988), drinking 

and eating (Verty et al., 2004), and sensory perception (Marlin et al., 2015). VP is also 

involved in apoptosis regulation (Chen et al., 2008), locomotion (Schank, 2009), arterial, 

vasoconstriction regulation (Alonso et al., 2008), and thermoregulation (Richmond, 2003).

The diverse functions of OT and VP depend on the peripheral and brain synthesis sites, 

release sites, and the OT and VP receptors (OTR-VPRs) distribution. The OTR-VPRs 
are classical seven-transmembrane G protein-coupled receptors. When peptides bind to 

these receptors, they cause a series of signal transduction cascades with both excitatory or 

inhibitory actions on Ca2+ and other messengers and transcription of specific genes.
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EVOLUTIONARY HISTORY OF OXYTOCIN AND VASOPRESSIN LIGANDS 

AND RECEPTORS

OT and VP are adjacent paralogous genes, meaning that they are located next to each 

other in most vertebrate genomes (except in teleost fish) (Theofanopoulou et al., 2021), 

and that they likely resulted from a local duplication in the stem of vertebrates. Gwee et 

al. (2009) first hypothesized that since only VP is found in invertebrates and in the first 

vertebrates (e.g., lampreys), and OT is found for the first time in fishes (e.g., elephant 

sharks), it was VP that gave rise to OT, and not the other way around. Theofanopoulou et 

al. (2021) found evidence for this hypothesis, in that they traced DNA TEs around the OT 
region, but not around the VP (Fig. 9.1). TEs are known to drive gene duplications through 

their terminal inverted repeats, which have been found to transpose through a cut-and-paste 

mechanism creating an extra copy at the donor site (Wicker et al., 2007). In other words, the 

hypothesized ancestral VP copied and pasted itself, creating OT, and leaving TEs around it 

as a “remnant” of this process.

Based on the common evolutionary origin of these genes, which is supported by extensive 

synteny and phylogenetic analyses’ data shown in Theofanopoulou et al. (2021), we second 

their proposal for a universal vertebrate nomenclature. So far, the use of different gene 

names for each of the ligands (and receptors) in different species or lineages has brought 

translation between experiments on different species at a standstill. All the following 

terms: oxytocin (mammals), mesotocin (birds, turtles, crocodiles, frogs, and some fish), 

isotocin (fish), glumitocin (fish), valitocin, and aspargtocin (fish) are being used to refer 

to the same gene that they propose we call “oxytocin” from now on; arginine vasopressin 

(mammals), lysine vasopressin (mammals), phenypressin (mammals), and vasotocin (VT) 

(birds, crocodiles, turtles, frogs, fish, sharks, lampreys, hagfishes) are being used to refer to 

the same gene that they propose we call “vasotocin” from now on. Naming them “vasotocin” 

and “oxytocin” portrays their evolutionary history, as is standard practice for other genes 

that are orthologous across species (e.g., FOXP1) and paralogous within species (e.g., 

FOXP2, FOXP3, FOXP4). According to this practice, these two peptides would be named 

vasopressin1 (AVP1) and vasopressin2 (AVP2), vasotocin1 (VT1) and vasotocin2 (VT2), or 

oxytocin1 (OT1) and oxytocin2 (OT2). Since this would be a far-reaching shift from the 

existing nomenclature, Theofanopoulou et al. (2021) propose that the common origin of 

these genes be portrayed through the shared ending name—tocin, and paralogy conveyed 

through different root names oxy- and vaso-. Vasotocin is a name already used by all 

nonmammalian scientific communities. Although we support this new nomenclature, we 

have not adopted it in this chapter to avoid confusion with the nomenclature used in the rest 

of the chapters. We followed a similar approach for the receptors.

Concerning their receptors, there are six major OTR-VPRs in vertebrates 

(OTR/OXTR/VT3/MesoR/ITR, VTR1A/AVPR1A/V1AR/VT4/VASR, VTR1B/AVPR1B/
AVPR3/V3, VTR2A/VT1/V2C/V2BR2/AVPR2.2, VTR2B/V2B/V2BR1/OTRL/AVPR2, and 

VTR2C/AVPR2/V2A2/AVPR2AA; for their nomenclature, we list the names proposed in 

Theofanopoulou et al. (2021) followed by other traditional names). While in invertebrates, 

there is only one receptor type (VTR), the invertebrate species have more than one receptor 
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that might have duplicated in a species-specific manner from the same receptor type 

(Theofanopoulou et al., 2021). Several scientists have hypothesized that the six receptors 

evolved through the traditional two rounds of whole-genome duplications (Ocampo Daza 

et al., 2012; Lagman et al., 2013), meaning that two initial ancestral receptors got 

duplicated twice, making eight receptors, with two of them having been fully lost from 

the vertebrate genomes. According to more recent hypotheses (Mayasich and Clarke, 

2016; Theofanopoulou et al., 2021), the receptors evolved through one round of whole­

genome duplication, followed by several segmental duplications, a scenario that is better 

parsimoniously explained in the context of vertebrate genome evolution (Smith and Keinath, 

2015; Theofanopoulou et al., 2021).

These evolutionary findings have direct repercussions on our understanding of the OT-VP 
system, which thus far has been mostly studied as two separate systems that show crosstalk. 

Specifically, the finding that the OTR evolved millions of years before the OT ligand 

suggests that the ancestral VP may have originally acted through the OTR before OT 
evolved. This suggestion is supported by findings that in some species OT and VP bind to 

the OTR at similar efficiencies; a greater response of OTR to OT over VP is found for the 

first time in teleost fish (Yamaguchi et al., 2012). Studying the OT-VP system as one and 

the same system, like for example, the dopamine system or the serotonin system, can frame 

studies showing crosstalk and interaction between OT, VP, and OTR-VPRs differently, as 

well as inform the design of new experiments targeting this system in social disorders, like 

autism spectrum disorders (ASD), which we discuss further.

OXYTOCIN AND VASOPRESSIN LIGAND AND RECEPTOR DISTRIBUTION 

IN THE HUMAN AND MOUSE BRAIN

We searched in the Human Protein Atlas (Thul et al., 2017) (http://www.proteinatlas.org) 

for brain gene expression patterns of the OT and VP ligands and the OTR-VPRs present in 

humans (Homo sapiens) and mice (Mus musculus) (OTR, AVPR1A, AVPR1B, AVPR2). For 

human data, we used the GTEx and FANTOM5 datasets. For mouse data, we used the HPA 

mouse brain RNA-Seq dataset. Overall, gene expression was similar in the brain tissues of 

both human and mice brains. An observation of their profiling combined can shed light to 

these genes’ expression in the mammalian brain.

High OT and VP expression was found in both the human and mouse hypothalamus. Other 

regions such as the basal ganglia and the amygdala show instead much less expression. 

This points to an almost exclusive gene expression in the hypothalamus and to the great 

reliance of the OT-VP system to the synaptic transmission of these products through neurons 

expressing their receptors, at least in the mammalian brain (Fig. 9.2).

Although OTR has a lower region specificity, it shows high expression in several brain 

regions. In humans, OTR is highly expressed in the midbrain, the basal ganglia, and the 

hypothalamus. In mice, OTR is highly expressed in the amygdala, the basal ganglia, and the 

hippocampus (Figs. 9.3 and 9.4). OTR in the hippocampus has been shown to be involved 

in social recognition and social memory (Raam et al., 2017), something that may point to a 

species-specific enhancement of such functions.

BORIE et al. Page 4

Handb Clin Neurol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.proteinatlas.org/


AVPR1A is overall less detected in the brain. It can be found in the mouse hypothalamus 

and basal ganglia. In humans and mice, it is expressed, although at low levels, in the 

amygdala, pons and medulla, and other areas (Figs. 9.3 and 9.4). AVPR1B is not enriched 

in any brain areas in humans. However, in humans, there are low expression levels in 

the cerebellum, and even lower in the amygdala, basal ganglia, and hypothalamus. In 

mice, AVPR1B expression is the highest in the pituitary gland of the hypothalamus 

with some expression in the hippocampus (Figs. 9.3 and 9.4). AVPR1B’s expression 

in the hypothalamus has been suggested to have specific functions in the regulation of 

stress, aggressive, and social behaviors, possibly through interaction with the adrenal axis 

(Stevenson and Caldwell, 2012).

The less studied AVPR2 is enriched in the cerebellum of both species. Its functional role is 

unknown. Some early study in rats (Kato et al., 1995) showed that AVPR2 is constitutively 

expressed in the granular layer of the cerebellum throughout brain development, concluding 

that since the granular layer sends output signals to the Purkinje cells, it is possible that 

AVPR2 could have an important role in regulating Purkinje cells (Figs. 9.2 and 9.3).

OXYTOCIN AND VASOPRESSIN REGULATE SOCIAL BEHAVIORS

Gene blockade and activation studies (knockout, pharmacological, chemogenetic, 
optogenetic)

To investigate the potential role of OT and VP in social behavior, scientists generated mice 

lacking OT, VP or lacking their receptors. More than 20 years ago, transgenic OT knockouts 

(KO) were shown to display social memory deficits that could be reversed by exogeneous 

administration of oxytocin (Ferguson et al., 2000). Interestingly, OTR-KO mice also present 

a wide range of social deficits with decreased ultrasonic vocalizations and mobility in pups, 

social discrimination deficits, and increased aggressivity in adults, as well as an alteration of 

maternal behavior (Takayanagi et al., 2005). The negative social impact of OTR deficiency 

is not limited to mice. OTR-KO prairie voles present both decreased interest for social 

novelty and exaggerated repeated behaviors (Horie et al., 2018), two symptoms that are 

reminiscent of the deficits observed in ASD. Interestingly, mice lacking only one copy of the 

OTR gene also display decreased sociability, indicating that even a partial decrease of OTR 
expression alters social behavior (Sala et al., 2011). Altogether, these results demonstrate 

that the activity of the OT system is necessary for social behavior.

One naturally occurring deficiency can be found in the Brattleboro strain of rats that have 

lost their ability to produce VP due to a genetic mutation. This strain has been extensively 

studied and has revealed social discrimination deficits, compared to other strains, which 

could be restored by intraseptal administration of VP (Engelmann and Landgraf, 1994). 

Similarly, mice lacking the AVPR1A present social discrimination deficits that are rescued 

by restoring AVPR1A expression in the LS using a viral strategy (Bielsky et al., 2005). 

Furthermore, mice lacking AVPR1B also show social discrimination deficits (Wersinger 

et al., 2002), suggesting that some aspects of social behaviors depend on the coordinated 

activity of different OTR-VPRs.
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Other evidence for the role of OT and VP in regulating social behaviors come from 

pharmacological experiments. Pharmacological blockade of the AVPR1A in the LS 

impairs social discrimination, while the administration of exogenous VP extends social 

discrimination in rats (Veenema et al., 2012). The same manipulations also influence 

juvenile rat play behavior (Veenema et al., 2013) and pair bond formation in prairie voles 

(Liu et al., 2001). Studies also showed that OTR antagonist impairs social recognition in 

mice when administered in the medial amygdala (Ferguson et al., 2001) and impedes pair 

bond formation in socially monogamous species, such as zebra finches (Klatt and Goodson, 

2013) and prairie voles (Liu and Wang, 2003). In the prairie vole, OTR activation is involved 

in mating-induced increase of correlated activity between the nodes of the social brain 

neural network (Johnson et al., 2016), as well as in consolation behavior (Burkett et al., 

2016). Interestingly, OT has other central functions such as regulation of metabolism and 

feeding (reviewed in Spetter and Hallschmid, 2017). Recent studies suggest that OT impact 

on eating behavior may depend on its psychosocial function as social cues modulate the 

effect of oxytocin on feeding (Olszewski et al., 2016).

Similarly, studies taking advantage of chemogenomic techniques to manipulate the activity 

of endogeneous OT demonstrated that stimulating OT neurons is sufficient to promote social 

motivation and to reduce anxiety (Grund et al., 2019). It is also sufficient to socially transmit 

fear in mice (Pisansky et al., 2017). Inhibition of OT activity increased fear response in 

lactating mice (Menon et al., 2018). One recent study in mice used a chemogenetic strategy 

to specifically inhibit the activity of PVN OT neurons projecting to either the amygdala, 

the nucleus accumbens, or the prefrontal cortex and showed that only the inhibition of 

neurons projecting to the amygdala does impair emotion recognition (Ferretti et al., 2019). 

This shows that different OT neurons may project to different brain areas and thus regulate 

specific aspects of social behavior. It also suggests that the OT projections from PVN to 

amygdala are essential for emotional processes.

Other studies used optogenetic techniques to specifically manipulate the activity of 

endogenous OT or VP systems in specific brain areas that are part of the social or reward 

brain network. Knobloch et al. (2012) showed that optogenetic stimulation of oxytocinergic 

fibers in the amygdala attenuates fear response, while optogenetic stimulation of OT-PVN 

neurons increased social exploration and social memory in rats (Oettl et al., 2016). 

Optogenetic inhibition of OT fibers in the ventral tegmental area decreases sociability, 

while their stimulation gives rise to the opposite effect (Hung et al., 2017). Optogenetic 

stimulation of OT fibers in the auditory cortex of naïve virgin mice increased their pup 

retrieval behavior (Marlin et al., 2015), while stimulation of VP fibers in hippocampal CA2 

enhanced social memory (Smith et al., 2016). Lastly, optogenetic inhibition of OT or VP 
fibers in the LS impairs social discrimination in mice (Borie et al., 2019). Interestingly in 

this study, the authors describe a population of neurons in the LS inhibited by OT only if 

previously exposed to VP. This reveals that these two neuropeptides can have a coordinated 

action and while most studies investigate one or the other, considering both OT and VP 
together would broaden our understanding of their function in the regulation of social 

behaviors (Borie et al., 2019).
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Overall, these studies suggest that oxytocin and vasopressin play a key role in the regulation 

of social behavior. Their role is both necessary (blockade studies) and sufficient (activation 

studies) to regulate social behavior in general, while the localization and action of specific 

ligands and receptors in specific brain regions mediate different aspects of this umbrella 

term (social behavior) that includes behaviors like social recognition, social memory, social 

discrimination, among others.

Oxytocin/vasopressin concentration and administration studies

Several studies have measured OT-VP concentration, in an attempt to evaluate whether 

variation in the concentration correlates with variability in different social tasks. Although 

the methodology of concentration measurements in different sites (blood vs cerebrospinal 

fluid (CSF)) is still under debate (Lefevre et al., 2017), there is a general consensus that both 

OT and VP show a covariation with an array of social behaviors, like parenting (Apter-Levi 

et al., 2014) and interpersonal relationships (Gouin et al., 2012). Low oxytocin levels were 

also associated with introverted personalities and increased volume in the amygdala (Andari 

et al., 2014).

Beyond merely correlative results, studies have also investigated brain activity and 

behavioral changes induced by exogeneous administrations of OT and VP, mostly with 

an intranasal administration. Intranasal administration of these neuropeptides is the most 

efficient way of administration given that the spray penetrates the brain and does not 

affect peripheral organs the same way as peripheral injections would (Quintana et al., 

2015). Several studies have shown that intranasal administration of OT does increase CSF 

concentration of OT in macaque (Dal Monte et al., 2014; Freeman et al., 2016), in oxytocin 

knockout mice (Smith et al., 2019), in rats and in mice (Neumann et al., 2013), and in 

humans (Born et al., 2002; Striepens et al., 2013), indicating that this route of administration 

is efficient in influencing central pathways. In addition, researchers have developed a 

sensitive and specific quantitative mass spectrometry assay that can distinguish a labeled 

OT from endogenous OT (Lee et al., 2018) and found that an intranasal labeled OT reaches 

the CSF and did not affect the endogenous release of OT.

A 24 International Units (IU) of OT-intranasal administration was found to increase the 

time of eye fixation (Guastella et al., 2008), suggesting an important involvement of OT 
in the social attention and emotion recognition mechanisms. Vasopressin plays a role in 

sociosexual cue recognition. Twenty IU of intranasal VP administration increased the speed 

at which men detected sexual words over other types of words (Guastella et al., 2011), 

while it also increased the memory for happy and angry but not neutral faces (Guastella 

et al., 2010b). An important series of results were obtained by studying the response 

to the “prisoner’s dilemma” and its neural correlates in after intranasal administration 

of OT (24UI) or VP (20UI). The prisoner’s dilemma is a standard example of a game 

where two individuals should testify either by betraying the other or remaining silent. 

First studies were performed in males and showed that both OT and VP administration 

increased the functional connectivity between the amygdala and the anterior insula, both 

being important components of the decision-making neural network. OT administration 

increases the response of the caudate nucleus in response to unreciprocated cooperation and, 
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behaviorally, it induces an increased rate of cooperation following noncooperative moves 

(Rilling et al., 2012). In a replication study involving males and females, they found that 

while OT induces an increase of the activity of the caudate/putamen in males, it induces 

a decrease of such activity in females when both partners were cooperative. In the same 

conditions, the intranasal administration of VP increased activity in the insula in males, 

but decreased it in females (Feng et al., 2015). Further studies confirmed that the neural 

correlates of OT administration are sex dependent, with OT playing a critical role in the 

regulation of the activity of the social brain network in this social game, since it significantly 

changes its nodes’ functional connectivity (nucleus accumbens, amygdala, insula, septum, 

ventral tegmental area, orbitofrontal cortex) (Rilling et al., 2018).

Epigenetic studies

Studies on epigenetic modifications of our genes of interest can shed light on the specific 

impact these genes might have. DNA methylation patterns have been extensively studied on 

the OTR since it can provide a window for the outcomes of OTR transcription repression 

(Mamrut et al., 2013; Harony-Nicolas et al., 2014). High levels of OTR methylation have 

been associated with a decreased neural response in regions supporting social perception 

and emotion processing, such as the amygdala or the insula, but also with a decrease in the 

functional coupling between the amygdala and brain areas involved in emotion regulation 

(Puglia et al., 2015, 2018). This suggests that the oxytocin system may be involved in the 

attenuation of fear response and that variation in the methylation of the OTR could partially 

account for the natural variability in emotion processing (Krol et al., 2019). An increase in 

DNA methylation of the OTR was more generally associated with impairments in social, 

cognitive, and emotional cognition (Maud et al., 2018). Interestingly, epigenetic markers on 

the OTR could be modulated by environmental factors (Kumsta et al., 2013).

Single-nucleotide polymorphism (SNP) studies

Another naturally occurring source of variability in the activity of the OT-VP system 

are single-nucleotide polymorphisms. Different polymorphisms in the OTR have been 

associated with reduced plasma oxytocin levels and a low parental contact (Feldman et al., 

2012), or on the contrary, with positive parenting and increased activity in the orbitofrontal 

and anterior cingulate cortex (Michalska et al., 2014), empathy (Wu et al., 2012), reaction 

to betrayal (Tabak et al., 2014), and trust (Nishina et al., 2015). Interestingly, OTR SNPs 

have also been associated with interindividual variability in OTR expression in specific brain 

areas, such as the nucleus accumbens in prairie voles (King et al., 2016).

Polymorphisms in the AVPRs are linked to variability in social behavior. Variation in the 

promotor region of the AVPR1A was shown to be associated with variation in the mating 

system of voles. Prairie voles or pine voles, which are socially monogamous, present a 

repetitive sequence of DNA in 5′ UTR of the AVPR1A, while this sequence is absent in the 

promiscuous montane vole and meadow vole (Hammock and Young, 2002). Interestingly, 

this variation is also associated with a different pattern of AVPR1A brain expression, 

specifically with an increase in the ventral pallidum, an increase that was also induced 

in a transgenic mouse that was carrying the 5′ UTR repetitive sequence (Young et al., 1999). 

Another repetitive sequence in 5′ UTR of AVPR1A, called RS3, has been associated with 

BORIE et al. Page 8

Handb Clin Neurol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chimpanzee personality variation: the long form of the gene has been linked to dominance 

and conscientiousness (Hopkins et al., 2012), while the short form to a higher level of 

extraversion (Wilson et al., 2017); its influence on personality traits has been similarly 

reported for bonobo (Staes et al., 2016). Interestingly, a variation of a similar microsatellite 

region correlates with levels of AVPR1A binding in some brain areas of the prairie vole 

(Hammock et al., 2005). Furthermore, in human, the long RS3 repeat was associated with 

higher levels of AVPR1A RNA in the hippocampus and the length of this region is also 

associated with levels of altruistic behavior (Knafo et al., 2008).

In humans, polymorphisms in the AVPR1A have also been associated with trust and 

reciprocity (Nishina et al., 2019), and polymorphisms in the AVPR1B receptor gene have 

been associated with levels of aggressivity in children (Luppino et al., 2014) or empathy and 

prosociality in adults (Wu et al., 2015) (see also Theofanopoulou et al., 2018).

OXYTOCINERGIC AND VASOPRESSINERGIC SYSTEMS ARE IMPAIRED IN 

ASD AND RELATED ANIMAL MODELS

Nonhuman animal models

In order to understand the pathophysiology underlying deficits observed in ASDs, animal 

models aiming at recapitulating the main features of ASD have been developed. An ideal 

animal model would respond to three criteria: construct validity (causes of the pathology 

are the same in the model and the pathology), face validity (symptoms are similar to the 

disease), and predictive validity (treatments effective in the models and in the pathology 

would match). Since the etiology of ASD is not fully understood yet and in the absence of 

a solid treatment, the second criterion remains the most confident. Indeed, the three aspects 

of ASD-related deficits are considered to define a good model of ASD: deficits of social 

interaction, communication, and exaggerated repetitive behaviors.

When it comes to etiology, we can segregate the models into three categories (Bey and 

Jiang, 2014): genetics (modification of genes or group of genes known for their involvement 

in ASD), environmental, and naturally occurring strains’ variations. Interestingly, while most 

of these models initially do not directly target the OT or VP systems, alterations in these 

systems have often been observed (Peñagarikano, 2017). For example, loss of function of the 

FRM1 gene (causing fragile X syndrome in humans; one of the most common genetic form 

of autism) in mice induces a reduction of social approach, an alteration of communication, 

and repeated behaviors (Kazdoba et al., 2014), but also a decrease in OT and VP expression 

in the PVN (Francis et al., 2014). A reduction of OT immunoreactivity in the supraoptic 

nucleus and of the circulating OT levels have also been observed in rats subjected to a 

neonatal treatment with valproic acid (Dai et al., 2018), a treatment known to induce social 

behavior deficits relevant to ASD. Furthermore, as previously mentioned, mice lack one 

(Sala et al., 2013) or both alleles (Sala et al., 2011; Pobbe et al., 2012) of the OTR present 

social behavior deficits, patterns of repeated behavior, and neuronal hyperexcitability, all 

being features that make them up as a good model of ASD.
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Human patients

OT and VP have been investigated as potential biomarkers for autism. More than 20 years 

ago, a first study revealed that plasma OT levels were lower in ASD children than in age­

matched controls (Modahl et al., 1998). This result was since replicated in a small cohort 

(Andari et al., 2010), and in a cohort of more than 80 ASD children and 80 age-matched 

controls which also showed that in the ASD population, the higher the OT concentration, 

the less the impairment of verbal communication (Zhang et al., 2016), suggesting a role of 

oxytocin in vocal aspects of communication (Theofanopoulou et al., 2017). Nevertheless, 

other studies did not find differences in plasma OT levels between ASD and controls, 

suggesting that the OT system may actually play more of a regulatory role in both the 

physiology and the pathology (Parker et al., 2014). Lastly, OT concentration in saliva 

was positively correlated with secure attachment in ASD patients, which might be due to 

differential functional coupling between the amygdala and the hippocampus (Alaerts et al., 

2019).

When it comes to VP, plasma levels are in many studies similar in children with and without 

ASD (Carson et al., 2015; Zhang et al., 2016), but according to Shou et al. (2017), plasma 

levels of VP positively correlate with brain morphological alterations in ASD patients, such 

as increased left amygdala and hippocampal volume, and decreased bilateral hypothalamus 

volume association between blood VP concentrations and behavioral phenotypes in ASD 

has also been demonstrated: VP levels negatively correlated with the visual and listening 

response score of CARS (Shou et al., 2017) and positively correlated with the theory of 

mind scores (Carson et al., 2015). To summarize, the association between OT and VP 
circulating levels and the diagnosis of autism is still unclear, but in autistic populations, 

the levels of circulating hormones are predictive of symptoms’ severity more often than 

not. Two studies found decreased CSF VP levels in autistic children, compared to controls 

(Oztan et al., 2018; Parker et al., 2018), something not observed in the case of OT (Oztan et 

al., 2018).

As it follows from our review of SNP studies with respect to social behavior, ASD 

patients have been shown to present specific variants, compared to controls, in the OTR, 

AVPR1A, and AVPR1B genes (Yang et al., 2010; Di Napoli et al., 2014; Francis et al., 

2016; Uzefovsky et al., 2019). Similarly, specific methylation patterns are present in ASD 

population with specific behavioral phenotypes. Earlier, in a pilot study, Gregory et al. 

(2009) found an increased methylation of the OTR in ASD patients hand in hand with 

decreased OTR mRNA levels in the temporal cortex of postmortem tissues (Gregory et 

al., 2009). In a recent functional magnetic resonance imaging (fMRI) study, it has been 

shown that adults with ASD have a higher level of methylation in the first intron of OTR, 

which was associated with hypoconnectivity between cortical areas implicated in theory of 

mind and self-awareness deficits in ASD (Andari et al., 2020). Also, the study showed, 

for the first time, that a variation in a CpG site (not hypermethylated in ASD) in the 

exon area of OTR is associated with ASD symptom severity in social responsiveness, and 

with a hyperconnectivity between brain networks involved in reward processing (such as 

the ventral striatum and the ventromedial prefrontal cortex) (Andari et al., 2020). This 

hyperconnectivity was associated with a subtype of ASD that have restricted patterns of 
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interests (such as computer, programming, astrophysics). DNA methylation of the OTR 
can become indeed a promising biomarker for ASD and for moderating the effects of OT 
treatment efficacy. More studies are needed to confirm this hypothesis.

TREATMENTS FOR ASD TARGETING THE OXYTOCINERGIC AND 

VASOPRESSINERGIC SYSTEMS

Treatments targeting the oxytocin system in adults

IN NONHUMAN ANIMAL MODELS—Oxytocin treatments administered to mouse models of 

ASD improve their social deficits. Mice lacking the CNTNAP2 gene, whose mutation 

causes cortical dysplasia and focal epilepsy syndrome with 70% of ASDs comorbidity, 

present stereotypic movements, behavioral inflexibility, communication and social behavior 

abnormalities (Peñagarikano et al., 2011), but also a decreased number of OT neurons 

in the PVN (Peñagarikano et al., 2015). In these animals, juvenile social interaction 

and social preference were improved by OT intraperitoneal or intranasal administrations 

by a mechanism depending on the activation of the OTR itself (Peñagarikano et al., 

2015). Interestingly, melanocortin four receptor agonists, which activate paraventricular 

oxytocinergic neurons and induce central OT release (Sabatier, 2006), can also improve 

the social deficits of CNTNAP2 deficient mice, suggesting that inducing an endogenous 

release of OT can be an efficient strategy. Acute or subchronic OT treatment was reported 

to be efficient in improving the deficits of social interactions in different models of ASD 

(Peñagarikano, 2017), including SHANK3 deficient rats (Harony-Nicolas et al., 2017), the 

prenatal valproic acid-induced mouse model of autism (Hara et al., 2017), or mouse lines 

that naturally present phenotypes relevant to core ASD symptoms, such as BALB/cByJ and 

C58/J lines (Teng et al., 2013).

IN HUMAN PATIENTS—As early as 2003, the potential impact of OT to improve deficits 

observed in ASD patients was evaluated. In a cohort of 15 adults with Asperger Syndrome, 

4h of continuous synthetic OT infusion decreased repetitive behaviors (Hollander et al., 

2003). A few years later, the same group showed that intravenous OT administration 

improved the ability of patients to assign emotional significance to speech intonation 

(Hollander et al., 2007). Acute intranasal OT administration to adults with high functioning 

autism was found to increase eye fixation, cooperative interaction, and trust during social 

ball games (Andari et al., 2010). This result suggests that OT could improve both attention 

to social cues and social cognition in people with ASD. Also, Andari et al. (2016) found 

that intranasal administration of OT enhances the blood–oxygen level-dependent (BOLD) 

activity of early visual areas during the perception of facial stimuli in adults with ASD. 

The authors also found that the treatment modulates the BOLD activity of the amygdala 

during a social ball-game in a context-dependent manner (Andari et al., 2016). The treatment 

enhances the activity of reward areas in response to positive stimuli (good player’s face) 

and insula area in response to negative stimuli (bad player’s face) (Andari et al., 2016). 

Since these pioneering studies, more studies have followed investigating the potential of 

OT treatment in ASD, with several replications (Guastella et al., 2010a; Watanabe et al., 

2014; Auyeung et al., 2015). Long-term administration of OT in ASD improves clinical 

symptoms based on the oxytocin dosage and genetic background of the OTR (Kosaka et 
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al., 2016). However, continuous administration of OT has some contradictory results in the 

literature (Ooi et al., 2017), with some showing no significant effects of OT on primary 

measures (Anagnostou et al., 2012; Dadds et al., 2014), and others showing improvements 

in secondary measures (such as RMET) (Anagnostou et al., 2012) and primary measures 

(Watanabe et al., 2015). Few issues need to be resolved before assessing the true clinical 

effects of OT in ASD. There is a considerable lack of reliable and sensitive clinical measures 

that can detect changes over time of the core symptoms of ASD. The ability to measure the 

effects of drugs on objective and quantitative assessments is needed. Also, deciding on the 

dose and duration of treatment is crucial for enhancing OT treatment effects. Also, using 

a precision medicine approach and targeting specific subtypes of ASD who can benefit the 

most from OT treatment can be essential.

Treatments targeting the oxytocin system during development

IN NONHUMAN ANIMAL MODELS—OT has an important function in mammals, which is related 

to birth. Indeed, in mammals, birth is a stressful experience which carries high risks for the 

brain of the infants because it requires a change in the oxygenation mode. While in adults, 

GABA is known as the main inhibitory neurotransmitter, during fetal and early postnatal 

development, it has a depolarizing action and is the main source of excitatory inputs to 

immature neurons. On the day that precedes birth in rats, the number of cells excited by 

GABA decreases due to OT activity (Tyzio et al., 2006). Interestingly, in two animal models 

of ASD (rats exposed to valproate in utero and mice carrying the fragile X mutation), this 

transient switch of GABA is not observed indicating that such abnormality might be due to 

early alterations in the OT system (Tyzio et al., 2014).

Interestingly, early life experiences shape the OT system and perinatal manipulation of OT 
has long-term consequences. Neonatal manipulation of male prairie voles on the day of birth 

can induce a decrease of OT immunoreactivity in the paraventricular and supraoptic nuclei 

and changes in OTR binding in the bed nucleus of the stria terminalis or LS. Injection of 

OT on postnatal day 1 can alter anxiety, alloparental behavior, pair bond formation, and 

OT immunoreactivity in the PVN in adults (Carter et al., 2009). Furthermore, a single 

intraperitoneal administration of an OTR antagonist on the first day of life induces a 

decrease of AVPR1A binding sites in brain areas such as the preoptic area, the bed nucleus 

of the stria terminalis, and the LS (Bales et al., 2007) and an increase of immunoreactivity to 

VP in the PVN, confirming that there is crosstalk between the different types of ligands and 

receptors.

Scientists investigated the potential of a transient OT treatment in early life on the 

improvement of social behavior deficits of mouse models of autism or other related 

neurodevelopmental disorders. In CNTNAP2 deficient mice, while OT treatments had an 

acute impact on social deficits, a daily intranasal OT treatment performed from postnatal day 

7–21 improved social preference even 9 days after the end of the treatment, an improvement 

that was associated with a normalization of OT immunoreactivity in the PVN (Peñagarikano 

et al., 2015). A study performed on MAGEL2 KO mice, a mouse model of Prader–Willi 

syndrome (PWS) that has an increased prevalence in autism (Schaaf et al., 2013), showed 

that intranasal OT administration during the seven first postnatal days was sufficient to 

BORIE et al. Page 12

Handb Clin Neurol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prevent the social and learning deficits normally developed in adult MAGEL2 KO mice. In 

this study, the impact of the treatment was evaluated in adults, 3–4 months after the end 

of the treatment (Meziane et al., 2015). This treatment also normalized some aspects of the 

oxytocin system such as OT binding in the LS and OT immunoreactivity in the amygdala, 

dorso-vagal complex, and LS. Similar results were recently obtained in the valproic acid rat 

model, where a treatment during the seven first postnatal days restored communication at 

the end of the treatment and social preference and self-grooming in young adults, with these 

effects being associated with a restoration of OT immunoreactivity in the paraventricular and 

supraoptic nuclei (Dai et al., 2018).

IN HUMAN PATIENTS—Early-life treatment of ASD is challenging because the diagnosis of 

ASD is usually not performed before 2 years. Nevertheless, some neurodevelopmental 

disorders that are caused by genetic alterations can be diagnosed close to birth. It is the case 

of PWS, a hypothalamic disorder that is characterized by intellectual disabilities, repeated 

and compulsive behaviors and hyperphagia, and some comorbidities with autism (Dykens 

et al., 2011). An early study indicated that OT may play a role in the disease as it found a 

42% decrease in the density of PVN OT neurons in postmortem tissue from PWS patients 

(Swaab et al., 1995). Furthermore, it was recently shown that 7 days of treatment with 

intranasal OT in PWS infants under 6 months of age improved both feeding and social skills 

and increased the connectivity in the right superior orbitofrontal area (Tauber et al., 2017). 

The treated infants were followed for 2 years after the treatment and when compared with 

age-matched nontreated PWS patients, they displayed higher social skills and engagement 

in relationships. Interestingly, another study performed on PWS indicates that the beneficial 

impact of OT treatment on social and food-related behavior was dependent on the age of the 

patients, with the beneficial impact being limited to children less than 11 years old (Kuppens 

et al., 2016).

In autism patients aged 12–19 years old, a single intranasal OT administration enhanced 

performance in the “reading the mind in the eyes” test, suggesting an acute improvement 

of emotion recognition (Guastella et al., 2010a). In a study of long-tern administration 

(7 months) of intranasal OT, improvement of both communication and social interaction 

skills was detected (Tachibana et al., 2013). Furthermore, one study performed in children 

aged between 12 and 18 years old did not report beneficial effects on primary outcomes 

(Guastella et al., 2015). Studies involving fMRI provide a structural and functional support 

for these beneficial effects: studies showed that OT increases the activity of areas involved 

in social reward processing and theory of mind (i.e., striatum, nucleus accumbens, left 

posterior superior temporal sulcus, and left premotor cortex) when ASD children were 

presented with pictures of faces, but decreased it when presented with pictures of nonsocial 

objects (Gordon et al., 2013), suggesting a selective social effect of OT. More studies are 

needed to better understand the chronic effects of OT on the brain and behavior in order 

to maximize treatment efficacy. Also, targeting the endogenous OT system with other drugs 

can be a promising avenue.
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Treatments targeting the vasopressin system

IN NONHUMAN ANIMAL MODELS—In animal models of autism, VP treatments have been less 

investigated than OT treatments. In the CNTNAP2 deficient mice, VP treatment was found 

to improve the social deficits, but this effect was mainly mediated by the OTR, as its 

blockade abolished the improvement induced by VP treatment (Peñagarikano et al., 2015). 

This is probably due to the important promiscuity of the OT and VP systems (Song and 

Albers, 2017). Similarly, in the OTR deficient mice, both OT and VP treatment were found 

to have a beneficial impact on the social deficits. This is due, in both cases, to the activation 

of AVPR1A (Sala et al., 2011), indicating that when the oxytocin system is impaired, it is 

possible that the VP system takes over to make up for the impairment. It is thus possible that 

the impact of OT treatment partly relies on its binding to VPRs. In a recent study performed 

in MAGEL2 KO mice, it was found that stimulation of VP but not OT fibers in the LS could 

restore social behavior in a social habituation–dishabituation task, suggesting that VP also 

plays a role by itself (Borie et al., 2019).

IN HUMAN SUBJECTS—In recent studies, the vasopressinergic system was targeted in order to 

improve the social symptoms of ASDs. A 4-week intranasal VP administration in children 

with ASD (6–13 years old) improved social abilities in the social responsiveness scale 

and decreased anxiety and some repetitive behaviors (Parker et al., 2019). Balovaptan, 

a AVPR1A antagonist that can be administered orally, improved socialization and 

communication scores in high functioning men with ASD (Bolognani et al., 2019) after 

a 12-week treatment. Interestingly, both agonists and antagonists of VPRs showed the 

beneficial impact. It is nevertheless important to note that the age of the patients differs in 

the two cohorts and that more studies are necessary to fully understand how and when to 

target the vasopressinergic system to improve the phenotype of ASD.

OXYTOCIN AND BEHAVIORAL THERAPIES—Studies indicate that cognitive behavioral therapy can 

improve behavioral phenotypes in children with ASD (Remington et al., 2007; Kurz et al., 

2018). In a mouse model of autism with blunted reward processing, a behavioral therapy 

based on the association of positive reinforcement to social interaction rescued mice’ social 

preference behaviors. Interestingly, this behavioral therapy normalized OT and VP systems 

in the reward and social circuitry, suggesting that such a behavioral therapy could indirectly 

modulate the activity of OT and VP (Pujol et al., 2018). In humans, it has been shown that 

endogenous OT release can occur in response to social interaction. For example, according 

to a pilot study, a daily 20 min massage performed by the mother of children with ASD was 

sufficient to increase salivary OT concentration in both the children and their mothers (Tsuji 

et al., 2015). The possibility of shaping the OT and VP release systems through behavioral 

therapies alone, or in combination with exogenous treatments, opens a new field of research 

that is bound to give informative results in the close future.

CONCLUSION

In this chapter, we have reviewed findings on the evolutionary history of oxytocin 

and vasopressin ligands and receptors that highlight their common origin and clarify 

the evolutionary background of the crosstalk between them. Understanding both 
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neuroendocrine systems, although named differently, but evolutionary derived from the 

same “vasotocinergic” system, helps decipher the neurobiology of social functioning and the 

establishment of promising treatments. Additionally, we have reviewed the evidence on the 

brain distribution of the ligands and the receptors in humans and mice, which has shown 

that they are expressed in regions that have been associated with social behaviors. We have 

then reviewed studies exhaustively in humans and nonhuman animal models showing how 

oxytocin and vasopressin regulate social behaviors, including gene blockade and activation 

studies, studies on their concentration centrally and peripherally, as well administration, 

epigenetic, and variation studies. We lastly reviewed the literature targeting the involvement/

impairment of OT, VP, and OTR-VPRs in ASD, as well as ASD treatments involving 

these molecules. We conclude that the OT/VP system is one of the most promising systems 

to uncover treatments for social disorders given its pivotal role in social cognition and 

emotional processing.
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Fig. 9.1. 
Oxytocin (OT) and vasopressin (VP) gene structure and synthesis. Local chromosomal 

organization of the OT-VP region. Representation of OT and VP genes (exons + introns) in 

human chromosome 12, DNA transposable elements (TE; pink arrows), and orientation (+, 

−). Each exon links with dashed lines to the gene products it encodes. GKR, glycine–lysine–

arginine. Gene length scale: 100 bases.
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Fig. 9.2. 
OT and VP gene expression in brain regions of the human (top) and mouse (bottom) brains. 

Color coding is based on brain region, and the bar shows the highest expression among 

the subregions included. Consensus normalized expression (NX) levels were created for 

the brain regions by combining the data from two transcriptomics datasets (GTEx and 

FANTOM5) in human and pTPM (protein-coding transcripts per million) of the individual 

HPA mouse dataset samples in mouse.
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Fig. 9.3. 
OTR, AVPR1A, AVPR1B, and AVPR2 gene expression in the brain regions of the human 

brain. Color coding is based on brain region and the bar shows the highest expression among 

the subregions included. Consensus normalized expression (NX) levels were created for the 

brain regions for OTR, AVPR1A, and AVPR1B expression by combining the data from 

two transcriptomics datasets (GTEx and FANTOM5); pTPM (protein-coding transcripts 

per million) levels, corresponding to mean values of the different individual samples for 

respective subregions generated by GTEx were created for AVPR2.
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Fig. 9.4. 
OTR, AVPR1A, AVPR1B, and AVPR2 gene expression in the brain regions of the mouse 

brain. Color coding is based on brain region and the bar shows the highest expression among 

the subregions included. Consensus normalized expression (NX) levels were created for the 

brain regions by pTPM (protein-coding transcripts per million) of the individual HPA Mouse 

dataset samples in mouse.
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