Skip to main content
. 2021 Nov 18;12:711868. doi: 10.3389/fpsyt.2021.711868

Table 4.

The prediction results of 10 algorithms in the test cohort.

Model R2 MAE MSE RMSE Accuracy of the predicted TDM within ±30% of the actual TDM
XGBoost 0.512 10.97 198.55 14.09 54.82%
LightGBM 0.269 12.85 297.52 17.25 47.72%
CatBoost 0.403 11.55 242.88 15.58 51.78%
AdaBoost 0.344 13.13 267.07 16.34 45.18%
Random forest 0.487 11.17 208.69 14.45 52.82%
SVM 0.486 10.60 209.39 14.47 53.81%
KNN 0.181 13.76 333.38 18.26 48.22%
Linear regression 0.482 11.18 210.98 14.53 54.31%
Lasso regression 0.482 11.19 210.97 14.52 54.31%
Ridge regression 0.482 11.19 210.99 14.53 54.31%

XGBoost, Extreme Gradient Boosting; SVM, support vector machine; KNN, k-Nearest Neighbor; MSE, Mean Square Error; RMSE, Root Mean Square Error; MAE, Mean Absolute Error. Bold values mean the best prediction performance among ten models.