Table 4.
Model | R2 | MAE | MSE | RMSE | Accuracy of the predicted TDM within ±30% of the actual TDM |
---|---|---|---|---|---|
XGBoost | 0.512 | 10.97 | 198.55 | 14.09 | 54.82% |
LightGBM | 0.269 | 12.85 | 297.52 | 17.25 | 47.72% |
CatBoost | 0.403 | 11.55 | 242.88 | 15.58 | 51.78% |
AdaBoost | 0.344 | 13.13 | 267.07 | 16.34 | 45.18% |
Random forest | 0.487 | 11.17 | 208.69 | 14.45 | 52.82% |
SVM | 0.486 | 10.60 | 209.39 | 14.47 | 53.81% |
KNN | 0.181 | 13.76 | 333.38 | 18.26 | 48.22% |
Linear regression | 0.482 | 11.18 | 210.98 | 14.53 | 54.31% |
Lasso regression | 0.482 | 11.19 | 210.97 | 14.52 | 54.31% |
Ridge regression | 0.482 | 11.19 | 210.99 | 14.53 | 54.31% |
XGBoost, Extreme Gradient Boosting; SVM, support vector machine; KNN, k-Nearest Neighbor; MSE, Mean Square Error; RMSE, Root Mean Square Error; MAE, Mean Absolute Error. Bold values mean the best prediction performance among ten models.