
REVIEW

Research in diagnostic radiology decision support has 
progressed rapidly because of the availability of large 

datasets, powerful machine learning (ML) techniques, and 
computers to efficiently run ML techniques (1–3). Ad-
vances in medical image analysis research include multiple 
systems that aim to help radiologists detect disease (4–7), 
identify disease progression (8), localize abnormalities (9), 
automate time-consuming tasks, and improve the radiol-
ogy workflow.

The performance of deep learning–based algorithms 
depends on the availability of large-scale annotated data 
(3,10,11). A large dataset with diverse, high-quality im-
ages curated from multiple institutions and different geo-
graphic areas is preferable to ensure the generalizability 
of a model for clinical use (12). However, curating large 
datasets is challenging because of their volume, limited ra-
diologist availability, and tedious annotation processes. It 
is particularly challenging to curate data for rare diseases. 
Additionally, many complexities are introduced in the data 
de-identification process to comply with patient privacy 
rules, institutional review board requirements, and local 
ethical committee protocols (13). If training data are lim-
ited, deep learning–based models may suffer from overfit-
ting, which results in poor generalizability.

Several reviews have described deep learning–based 
frameworks for medical imaging (2,3,14). We focus on 
model training strategies that boost neural network (NN) 
performance in limited-data scenarios. We discuss transfer 
learning, data augmentation, semisupervised training tech-
niques, efficient annotation strategies, federated learning, 
few-shot learning, and NN architectures to remedy data 
scarcity. We present use cases from the radiology research 
literature that use these strategies to improve model perfor-
mance. The Table summarizes the advantages and limita-
tions of the mentioned techniques.

Transfer Learning

Two-dimensional Transfer Learning
Although the Radiological Society of North America, 
several research institutions, and hospitals worldwide 
have released multiple radiologic datasets for medical im-
age analysis, the availability of large-scale medical images 
remains limited. Transfer learning is a common strategy 
to address limited data (10). In transfer learning, a NN is 
pretrained on a larger dataset (15), and learned features 
can be applied to the target domain with limited data 
(16). The underlying idea is that low-level features are 
common; therefore, they can be learned from the avail-
able large-scale dataset (17).

There are different types of transfer learning strategies, 
such as fixing the earlier layers, retraining only the higher 
layers (shallow tuning), or fine-tuning the whole architec-
ture (deep tuning). Fine-tuning is a type of transfer learn-
ing technique in which all or part of the pretrained model 
is retrained with the domain data with a low learning rate. 
This approach helps adapt the learned features to the transfer 
domain. The level of fine-tuning is a hyperparameter that 
can be optimized during the training. One factor that af-
fects fine-tuning performance is the domain similarity of 
the source and target datasets. If source and target domains 
are similar, fine-tuning of the final layers would be adequate 
to obtain accurate results. However, if the source and target 
domains are very different, fine-tuning of more layers pro-
vides better outcomes (10). The other factor is the amount 
of training data. If training data are limited, it would not 
be enough to fine-tune more layers. On the other hand, if 
there are adequate training data, even if the domains are 
similar, updating the weights of more layers to the new do-
main will help with convergence to a better solution (10). 
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Three-dimensional Transfer Learning
Transfer learning is easily applicable to two-dimensional (2D) 
images because of the abundance of pretrained models but is 
not widely used for three-dimensional (3D) modalities because 
there are not many established 3D pretrained models. It is also 
more challenging to curate a large-scale 3D medical dataset be-
cause of the laborious annotation process when including the 
third dimension. In addition, NNs that are developed for 3D 
analysis have a larger number of parameters (2); therefore, NNs 
that process volumes require larger-scale datasets to optimize 
the weights.

Several approaches have been proposed to process 3D radio-
logic volumes. Chen et al (21) built a large-scale 3D medical da-
taset containing various modalities, target organs, and pathologic 
conditions. The collected data were used to train the Med3D 
network that learned 3D features from large-scale radiologic data. 
Researchers transferred pretrained models to lung segmentation 
and pulmonary nodule classification. To our knowledge, there is 
not any other published research that curates large-scale 3D medi-
cal data and trains a deep network with it to serve as a base model. 
However, researchers have followed alternative strategies to process 
3D volumes. A few studies converted volumes to frames to use 
established 2D pretrained models. For instance, for automated 
plaque detection, the vessel volumes from CT sequences were pro-
jected onto frames, which contained vessel views from different 
angles (22). In another study (23), 3D data were sectioned into 
axial, coronal, and sagittal planes, and 2D pretrained models were 
applied to the planes. Although transfer learning has been success-
fully used from 2D to 3D space, projected views are sparse repre-
sentations of volumes, therefore containing less information than 
3D. An additional disadvantage of 2D CNNs is their inability 
to leverage context from adjacent sections. As in recurrent CNN 
(24), the approach needs additional mechanisms to preserve the 
sequential knowledge.

Transfer Learning with a Same-Modality Dataset
Pretrained models typically are trained with ImageNet (15), which 
consists of general nonmedical images. However, there is a sub-
stantial difference between general and medical images. The image 
contents and, therefore, histogram distributions of nonmedical 
and radiologic images are different. This difference may cause re-
dundant pretrained features and an excessive number of parame-
ters for the medical imaging domain (25). Additionally, the inten-
sity values, scale, and location of the region of interest (eg, lesion) 
have more meaning in the medical imaging domain. For instance, 
a CT pixel value denotes a quantifiable physical characteristic of a 
tissue or structure. Bright or dark spots on a dog would not affect 
its semantic classification, but how bright or dark a head CT lesion 
appears has a substantial impact on diagnosis. The size and the 
location of the detected lesion might be additional clues regarding 
the disease. Radiologic images typically are presented in a fixed, 
predetermined orientation, in contrast to objects on nonmedical 
images; orientation of the image can be crucial for some diagnoses, 
such as situs inversus on a chest radiograph.

The success of transfer learning depends on the similarity 
of the source and target domains (10,17). Several researchers 

Off-the-shelf features (19), which use the pretrained model as a 
feature extractor, tend to perform well with limited data because 
the framework uses traditional ML methods as classifiers instead of 
fully connected layers, therefore reducing the number of trainable 
parameters. This approach has the potential to minimize overfit-
ting while maintaining the discriminative power of deep features.

Transfer learning techniques are widely applicable to radiologic 
images. One of the earlier applications is a fine-tuned convolu-
tional NN (CNN) that processes the different views of mammo-
graphic images (18). The model performance was compared with 
training from scratch on a mammographic dataset, with and with-
out data augmentation. Researchers reported 5%–16% improve-
ment in the volume under the receiver operating characteristic 
surface metric (an extension of the area under the curve metric for 
multiclass tasks) with the pretrained multiview model. Tajbakhsh 
et al (10) thoroughly investigated the performance of pretrained 
CNNs, incremental fine-tuning, training from scratch, and the 
hand-crafted approaches for pulmonary embolism detection. The 
fine-tuned CNN outperformed the CNNs trained from scratch 
and with the hand-crafted method. A recent study (19) compared 
three deep learning approaches to distinguish among breast cancer 
subtypes on MR images: (a) using learning from scratch when 
only tumor patches were used for training, (b) using transfer learn-
ing when a pretrained network was fine-tuned by using tumor 
patches, and (c) using off-the-shelf deep features when a pretrained 
network was used as a feature extractor and the extracted features 
were trained with a support vector machine. The off-the-shelf fea-
tures approach achieved the highest area under the receiver op-
erating characteristic curve performance for distinguishing breast 
cancer subtypes. The techniques mentioned in this section are il-
lustrated in Figure 1. See the studies by Tajbakhsh et al (10) and 
Shin et al (20) for a comprehensive analysis of transfer learning in 
medical imaging.

Abbreviations
CNN = convolutional NN, GAN = generative adversarial network, 
ML = machine learning, NN = neural network, 3D = three dimen-
sional, 2D = two dimensional 

Summary
Model training strategies are described for use in scenarios in which 
there are limited datasets available.

Essentials
 n Models developed with data-driven approaches have great poten-

tial to shape the future practice of radiology.
 n A wide variety of strategies are available to enhance the perfor-

mance of models in data-limited settings, including transfer learn-
ing, data augmentation, semisupervised training techniques, ef-
ficient annotation strategies, federated learning, few-shot learning, 
and different neural network architectures.

 n This review summarizes the model training strategies for radiologic 
image analysis in data-limited scenarios.

Keywords
Computer-aided Detection/Diagnosis, Transfer Learning, Limited 
Annotated Data, Augmentation, Synthetic Data, Semisupervised 
Learning, Federated Learning, Few-Shot Learning, Class Imbalance
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Efficient Usage of Data in Model Development

Data Augmentation
Data augmentation is the process of artificially increasing the 
number of training samples by altering the existing images or 
synthetically creating new images.

Alteration of Images
The standard augmentation technique is to alter the exist-
ing images in a dataset. Example alteration strategies are ran-
dom rotation, brightness variation, noise injection, contrast 

employed transfer learning in which the source and target 
domains had similar feature spaces. For instance, a 3D CNN 
trained to distinguish between MR images of patients with Al-
zheimer disease and MR images of healthy controls was later 
fine-tuned to differentiate between patients with mild cogni-
tive impairment and healthy controls, a more challenging sce-
nario (7). In another study, the kidney regions were delineated 
by using a 3D CNN pretrained with segmented hippocampus 
images (26). With the availability of large-scale chest radio-
graphic datasets, a NN pretrained with a large-scale radio-
graphic dataset was fine-tuned for cardiomegaly detection (27) 
and pneumonia prediction (4).

Advantages and Limitations of Model Performance Enhancement

Method Advantages Limitations

Transfer learning Reuse knowledge gained from larger-size datasets. The success depends on the similarity of source 
and target domains.

The method is widely explored, and researchers 
have proposed established techniques.

Not many established 3D pretrained models have 
been developed.

2D transfer learning can be used on 3D volumes 
when integrated with recurrent neural networks 
to account for the third dimension.

Data augmentation Artificially increasing the number of training samples 
reduces overfitting, improves convergence, and 
increases model prediction performance.

Excessive augmentation could introduce bias into 
the dataset and result in overfitting.

Introduces samples with slightly different 
appearances that make the algorithm more 
stable in relation to appearance variance.

Augmentation does not compensate for lack of 
diversity, especially for rare cases, and would 
not capture variants that may be found in a 
larger sample.

GAN is computationally expensive to 
obtain large-size high-resolution samples.

Potential unintended consequences of using data 
augmentation strategies in an algorithm’s 
performance have not been extensively studied.

Data annotation strategies Automated annotation frameworks facilitate rapid 
annotation and reduce the annotators’ work 
load.

Annotation is time-consuming and requires 
expertise in radiology.

PACSs that export the metadata from radiology 
reports or electronic health records could be useful 
for automated annotation.

Currently, automated annotation is less accurate 
than manual annotation, and therefore still 
needs expert validation to provide an error-free 
annotated dataset.

Semisupervised training Can leverage additional unlabeled data during 
training.

The sample size and quality of the initial annotated 
dataset are important to obtain better final 
performance.

Few-shot learning An algorithm can be trained with a very small  
training set and minimal annotation.

Currently, there are limited applications in the 
medical imaging domain.

Domain shift is common because the training data 
and test data have different distributions.

Biased decisions favoring the seen classes.
Federated learning The developed model learns the discriminative 

features of the objective medical image analysis 
problem from a more diverse set with a broader 
population, which strengths the model’s 
generalizability.

Federated learning is in its early phase and requires 
more consideration for effective use in clinical 
settings.

Requires local expertise and standardization of the 
annotation process, which can be laborious.

Note.—GAN = generative adversarial network, PACS = picture archiving and communication system, 3D = three dimensional, 2D = two 
dimensional.
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MRI data (2000 synthetic volumes), compared with the results 
obtained by using original data. More use cases are needed to 
assess whether synthesized images provide model training per-
formance that is similar to that provided by authentic images, 
especially when abnormalities are present (36).

The extent to which data augmentation can adversely affect 
algorithm performance is difficult to quantify. The potential, 
unintended algorithm-performance consequences of using data 
augmentation strategies have not been extensively studied.

Efficient Usage of Data in Model Evaluation: 
Cross-Validation
Splitting the size-limited dataset into training, validation, 
and test sets further reduces the amount of data that is avail-
able for model training and reliable performance validation. 
Evaluation of a model with a small, nonrepresentative test set 
causes unreliable generalization results (37). Cross-validation is 
a resampling evaluation approach to provide a more accurate 
estimation of generalization error (38). In one such technique, 

changes, blurring, cropping, and mirroring. Obtaining new 
samples increases the amount of data and introduces samples 
with slightly different appearances that make the algorithm 
more stable in relation to appearance variance. The augmenta-
tion strategy should be carefully designed. Excessive augmenta-
tion of training data could introduce bias into the dataset and 
result in overfitting. Additionally, the distinctive features of a 
disease should not be distorted during the augmentation. For 
instance, the organ ratios at chest radiography are important 
features in cardiomegaly prediction. In Candemir et al (27), 
limited augmentation was applied to chest radiographs to pre-
serve the ratios. In Esmaeilzadeh et al (7), the researchers only 
applied flipping to the MRI sequences to not distort the shapes 
of brain structures.

Synthetic Data Augmentation
Another strategy to increase sample size is to generate synthetic 
samples by using a generative adversarial network (GAN) (28). A 
GAN consists of two networks: a generator and a discriminator. 
The generator produces synthetic samples with a similar distri-
bution of the existing images; the discriminator predicts whether 
the instance is original or synthesized. The discriminator forces 
the generator to create realistic samples until the discriminator 
can no longer differentiate between actual and synthetic samples.

In radiology, GANs have been used to synthesize medical im-
ages such as chest radiographs (6), liver lesion samples (29), CT 
scans with lung nodules (30), and images from brain MRI se-
quences (31). These studies reported improved NN performance 
with additional synthetic data. For instance, for liver lesions on 
CT images (29), with the alteration of the images, a NN achieved 
78.6% sensitivity and 88.4% specificity. Incrementally adding 
synthetic samples in the threefold cross-validation process im-
proved model performance as the number of training examples 
increased, with saturation occurring at 5000 samples per fold. 
The system’s classification performance increased to 85.7% sen-
sitivity and 92.4% specificity with additional synthetic samples. 
Synthetic data augmentation is an active research area. A com-
prehensive review of data augmentation can be found in Shorten 
et al (32). GAN usage for data augmentation is reviewed in Yi et 
al (33) and Salimans et al (34).

Limitations of Data Augmentation
Artificially increasing the number of training samples reduces 
overfitting, improves convergence, and increases model predic-
tion performance. However, augmentation adds slight vari-
ability by altering the existing data or producing new samples 
derived from the available data distribution. Some instances in 
the data might be poorly represented or unrepresented. Aug-
mentation does not compensate for a lack of diversity in bio-
logic variability, especially for rare cases, and would not capture 
variants that may be found in a larger sample.

GANs have limitations. They require a substantial amount 
of annotated data to synthesize realistic samples (34). It is also 
computationally expensive to obtain large-sized, high-resolution 
samples. One recent study (35) reported similar false-positive and 
sensitivity results when a GAN was trained only with synthetic 

Figure 1: Training from scratch: only the data in the target domain is used 
for training. Transfer learning: the weights of a pretrained network at the source 
domain (Ds) are fine-tuned with the target domain data (Dt). Off-the-shelf deep 
features: the pretrained network is used as a feature extractor on the target domain 
data, and a traditional machine learning algorithm such as support vector machine 
(SVM) uses the extracted features to classify the imaging findings. CXRs = chest 
radiographs, FC = fully connected layer.
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preprocessors identifying and measuring lesions following cross-
sectional anatomy training (49) and the use of automated tools 
having already been incorporated in some picture archiving and 
communication systems in advance of radiologists opening the 
examinations. Integration of artificial intelligence tools within 
the picture archiving and communication system will eventually 
help radiologists to identify and measure lesions, identify inci-
dental findings, and facilitate earlier notification and will save 
radiologists’ time for time-consuming tasks.

Semisupervised Training
If curated unlabeled data are abundant, but the labeled portion 
is insufficient, the semisupervised technique can be employed. 
This strategy combines labeled and unlabeled data to train a 
classifier. One popular approach is predicting pseudolabels  
(Fig 2) (50). An initial model (teacher) is trained with the avail-
able labeled images. The teacher model then predicts the labels 
for unlabeled data. The confident predictions are considered 
pseudolabels (51). The training process continues using labeled 
and predicted pseudolabeled datasets and iteratively repeats 
this process until a predetermined termination condition.

Semisupervised learning embraces the heterogeneity of a pa-
tient population. Some diseases progress in a continuous manner 
or in small increments without a clear method for diagnosing 
the disease’s incremental stages. Therefore, semisupervised learn-
ing could add finer granularity to a labeled dataset by detecting 
homogeneous subpopulations within a heterogeneous dataset. A 
semisupervised method based on the clustering technique has 
been applied to brain MRI (52). The authors employed a da-
taset from the Baltimore Longitudinal Study of Aging, which 
had labels of normal or mild cognitive impairment. However, 
they used clustering for fine-tuned detection of more subtle 
cognitive differences within each broad classification to detect 
brain regions involved in predicting cognitive stability or decline 
within these populations. A recent study used the teacher–stu-
dent method for COVID-19 severity prediction (53). A teacher 
model was trained initially with limited COVID-19 cases with 
corresponding severity labels and was then used to predict pseu-
dolabels for unlabeled data. Incorporating unlabeled data into 
the training process tends to improve model performance. An-
other study on chest radiographic disease classification described 
a semisupervised approach in which radiologists annotated the 
location of disease by using bounding boxes on a small subset 
of the data, resulting in improvement in both classification and 
localization performance (54).

The semisupervised strategy helps to improve performance 
when annotation is limited; however, large numbers of unanno-
tated images are still needed (55,56). The sample size and quality 
of the initial annotated dataset are also important to obtain bet-
ter final performance. See the detailed review of semisupervised 
approaches in medical image analysis in Cheplygina et al (57).

Few-Shot Learning
In few-shot learning, the classification task is posed as an im-
age-matching problem (58,59). Therefore, the training process 
turns into building a model that learns the similarity between 

the k-fold strategy, the training and validation are repeated k 
times. The average validation errors obtained from k iterations 
provide more reliable results because all data have been used for 
prediction. The leave-one-out technique is recommended for 
small or imbalanced datasets (39): for each case in the dataset, 
train the model with the other n − 1 cases and test on that 
single case.

Data Annotation Strategies
Image annotation is the process of labeling images with identi-
fiers (eg, class labels as a benign or malignant tumor; the de-
lineated boundary of a tumor region) (12,13). It is a time-con-
suming process and requires expertise in radiology. For general 
applications, such as labeling photographs of natural scenes, 
crowd-sourcing over the Web can be used to collect annota-
tions from nonexperts. However, reference standards for medi-
cal images need to be decided by domain experts. Additionally, 
it is important to determine the intra- and interrater variability 
when dealing with multiple annotators, as poorer performance 
has been observed for models trained on datasets with lower 
interrater agreement (40).

Recent efforts have focused on automatically assigning anno-
tations from available information. For instance, metadata from 
radiology reports or electronic health records can be useful for 
automated annotation (41). Structured information and disease 
labels can be extracted by using natural language processing (42). 
The diseased regions on the images can be highlighted by ex-
tracting the medical subject headings from the radiology reports 
(43). A recent study integrated eye-tracking and speech recog-
nition algorithms to annotate MRI brain lesions automatically 
(44) by matching the time of spoken keywords with the time of 
gaze points. The study reports 92% accuracy for extracting the 
lesion locations. Although automated annotation frameworks 
facilitate rapid annotation and reduce the annotators’ workload, 
they are currently less accurate than manual annotation (42). 
Therefore, automated annotation methods still need expert vali-
dation to provide an error-free annotated dataset. The iterative 
labeling strategies such as active learning or self-training can be 
employed for automated labeling (45). A radiologist can validate 
the automated labels and provide annotations only for the wrong 
annotation predictions. The model training can be repeated with 
corrected annotations.

Radiologists have been more frequently connecting reports 
to stored radiologic images with their annotations, particularly 
in clinical trials that require measurements of target lesions. This 
“interactive content” reporting has been used clinically since 
2015 (46); in this type of reporting, radiologists automatically 
create hyperlinked texts imported from the annotated images in 
x, y image space and with z table space acting as 3D expert label-
ing. Hyperlinking annotations within reports (47) have the po-
tential to increase the amount of labeled data for model training, 
which would help improve federated learning strategies (13). 
Hyperlinked annotations have been made publicly available (48) 
with this technology, in which the measurements are easily con-
verted to bounding boxes. Last, some researchers have leveraged 
simulated artificial intelligence workflows (41), with radiologic 
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images instead of learning the specific features of objects. Few-
shot learning uses a large-scale dataset as a source domain and 
trains the model for class similarities (Fig 3). The trained model 
is then applied to a query image whose class is unknown and 
may not necessarily be one of the trained classes. As the model 
learns the similarities between images, running the model on 
a query requires a comparison set, considered prior knowledge 
for the objective problem. The limited data in the target do-
main are used as an annotated comparison set. The model then 
predicts the object class for the query image by comparing it 
with the images in the comparison set. The highest similarity 
class label is associated with the query. If the comparison set 
contains n instances for each class, it is called the n shot. In a 
one-shot learning setup (59,60), the comparison set contains 
a single image representing the classes. The literature has lim-
ited applications of few-shot learning in the medical imaging 
domain. For instance, healthy and tumoral tissues of the co-
lon, breast, and lung were classified by using a few-shot learn-
ing strategy (61) with the Siamese NN (59). The researchers 
trained the architecture with histopathologic images to learn 
class distances. Few-shot learning was then applied in the target 
domain with healthy and tumoral samples of tissues.

The other limited-shot learning paradigm is zero-shot learning, 
which aims to recognize new categories whose instances may not 
have been seen during training. The method compensates for the 
lack of labeled data for the new categories with auxiliary infor-
mation, which is composed of the semantic descriptions of the 
images. The semantic descriptions are one-shot–encoded, distin-
guishing the descriptive attributes of classes. The training process 
involves learning a function from the image space and applying it 
to the semantic space by using the seen data with the correspond-
ing semantic descriptions. Zero-shot learning has recently been 
applied to radiology for chest radiographic classification (62). The 
study constructed three semantic spaces containing disease-specific 
auxiliary information. One challenge of the method is extracting 
accurate auxiliary semantic descriptions from the unstructured 
text found in most radiology reports. Chen et al (63) summarized 
the free-text analysis problem in radiology reports, provided a 
CNN-based method for free-text analysis, and compared it with 
conventional natural language processing approaches. The other 
important limitation of zero-shot learning is the domain shift, as 
the training and test data have different distributions. Biased de-
cisions favoring the seen classes is another limitation due to the 
same problem. The transductive zero shot, which incorporates the 
unseen images into the training process, may mitigate the domain 
shift and bias.

Concept of Learning the Normal
In a curated dataset, positive cases are generally scarce. One 
alternative method that uses data with limited positive but 
abundant negative samples is the concept of learning the nor-
mal. In this approach, the classifier is trained only with nor-
mal images to learn the representative normal features to sub-
sequently distinguish abnormal from normal findings on the 
basis of deviations of features from the learned representation 
of the normal class (57). In Wong et al (9), researchers trained 

a CNN by using CT scans with normal heart anatomy. The 
feature maps of the trained model provide information on 
the learned relationship between imaging data and semantic 
labels to detect deviations from normal anatomy. This infor-
mation can be transferred to pericardial effusion and cardiac 
septal defect classifiers to improve the detection performance 
on limited positive samples. In another study, the researchers 
trained an autoencoder only with negative patches extracted 
from mammographic images to detect microcalcifications 
(5). The test images were fed into the trained autoencoder as 
patches. The reconstruction error, which indicates the devia-
tion from the learned representation of what is normal, can 
then be set to a threshold to detect suspicious areas contain-
ing anomalies.

Federated Learning
One potential solution to train a model with a larger dataset 
is federated learning. In this collaborative training strategy, the 
model, weights, and parameters are sent to different institu-
tions. Each institution trains the model with its local data and 
submits the updated model weights to a shared server. The ag-
gregated model weights are sent back to the institutions for 
another round of training (64).

Figure 2: Illustration of semisupervised learning. An initial model (teacher) 
trained with labeled data predicts pseudolabels for the unlabeled dataset. The 
training process continues using the labeled and predicted pseudolabeled dataset 
until a predetermined termination condition. FC = fully connected layer.
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Various training strategies have been proposed for federated 
learning (13). In parallel training, the models are trained in par-
allel, and model weights are transferred to the central server. In 
nonparallel training, the model is sequentially updated at each 
institution. One of the main benefits of federated learning is the 
opportunity to train models with larger and more diverse da-
tasets through multisite collaboration while preserving patient 
privacy and strengthening the model’s generalizability. Collab-
orative training also provides the opportunity for research and 
development in rare diseases that require multi-institutional ef-
forts for data curation.

Federated learning is in its early phase and requires more con-
sideration for effective use in clinical settings. One challenge is 
the variations in data types, data formats, acquisition protocols, 
annotation formats, and terminology across institutions (13). 
These impediments can be overcome with agreements in stan-
dardization among the involved institutions. The other barriers 
to the effective use of federated learning are technical limitations. 
The computational infrastructures needed to train the models 
efficiently may be limited at some institutions.

Despite the challenges, preliminary efforts show the appli-
cability of cooperative training in medical image analysis (64). 

It has also been described as one 
of the fundamental techniques in 
the future of digital health (65). 
A comprehensive analysis of fed-
erated learning can be found in 
Yang et al (66).

Regularization in Network 
Architecture
Researchers have also developed 
techniques to construct more 
data-efficient NN architectures. 
Regularization techniques can 
mitigate the overfitting seen 
in data-limited scenarios and 
increase the model’s generaliz-
ability. Dropout (67) is one of 
the most employed regulariza-
tion techniques. In this strategy, 
random neurons are dropped 
out by assigning zeros to the 
activation values at each train-
ing iteration to force learning 
of more discriminative features. 
The dropout rate is a hyperpa-
rameter, which, according to the 
thorough review by Srivastava et 
al (67), should be between 0.5 
and 0.8. The optimal value can 
be chosen by using a validation 
set or can be set at 0.5, which 
has been empirically found to 
be near optimal (67). The study 
also found no improvement of 

dropout in extremely small datasets (eg, 100–500), but as the 
data size increases, the gain from dropout increases up to a 
point and then declines. The researchers concluded that for any 
given architecture, the dropout necessity and the dropout rate 
can be determined by using a validation set. Batch normaliza-
tion is another explicit regularization technique that subtracts 
the batch mean from each activation and divides by the batch 
standard deviation (68). The regularization can be applied 
implicitly by tuning the loss function with weight decays (eg, 
lasso regression and ridge regression) that constrain the model’s 
capacity (69). See the comprehensive review by Kukačka et al 
(69) for regularization methods in deep learning.

Addressing Class Imbalance
As we previously mentioned when discussing the concept of 
learning the normal, positive cases are sometimes scarce in a 
curated dataset, which creates an imbalanced training set. The 
class imbalance causes a biased model that makes decisions in 
favor of the majority class. The class-balancing techniques are 
well studied in ML (70,71).

One of the well-known class-balancing techniques is based 
on data sampling. The minority class can be oversampled with 

Figure 3: Illustration of the few-shot learning strategy. The model starts with a large-scale dataset in the source domain 
(Ds) and learns to differentiate between two given inputs. The trained model is then applied to query images. The limited 
labeled dataset in the target domain (Dt) is used as a comparison set. The model predicts the class label by comparing the 
query image with the comparison set. The highest similarity class label is associated with the query. FC = fully connected 
layer.
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augmentation by altering the existing images or synthetically cre-
ating new images. The samples undergoing augmentation can be 
selected randomly or strategically (72). Care must be taken when 
augmenting the minority class synthetically because of the chal-
lenges of learning the minority class distribution (73), as unsuc-
cessful augmentation might distort the class boundary. To effi-
ciently learn the distribution of the minority class, an autoencoder 
framework that estimates class distributions in the latent space (74) 
can be used by a GAN to generate minority class samples on the 
basis of the predicted class distribution. Oversampling techniques 
increase the training data, which can therefore increase model ac-
curacy, but excessive oversampling might lead to overfitting (70).

Another class-balancing technique is increasing the impor-
tance of the minority class. The training process can be altered by 
penalizing the majority samples during loss computation or by 
increasing the weights of minority samples with a weight mul-
tiplication (75). Lin et al (76) proposed use of focal loss that 
reduces the weights of the well-classified examples, assuming 
that the dominant class becomes well classified because of larger 
representative samples.

One alternative training strategy to work with imbalanced 
datasets is learning the majority class (ie, learning normal anat-
omy). In this approach, the classifier is trained only with the 
majority class and classifies the minority class on the basis of the 
deviation from the majority class (57). Comprehensive studies 
that address the class-imbalance strategies in ML can be found 
in He and Garcia (71).

Conclusion
Models developed with deep NNs have great potential to shape 
the future practice of radiology, but their success will depend on 
their ability to generalize to different settings (1). A wide variety 
of approaches are available to enhance the generalization capabil-
ities of deep learning–based models in data-limited settings. This 
review discussed strategies to enlarge the data sample, decrease 
the time burden of manual labeling, adjust the NN architecture 
to improve model accuracy, apply semisupervision approaches, 
and leverage efficiencies from pretrained models. Most of these 
described strategies have been routinely implemented in medical 
imaging artificial intelligence research and can be readily incor-
porated into an ML pipeline to enhance model performance.
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