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Therapy response of lymphomas is typically monitored 
with PET/CT after intravenous injection of fluorine 

18 (18F) fluorodeoxyglucose (FDG) (1). However, the 
ionizing radiation exposure associated with multiple CT 
scans is of concern for pediatric patients at increased 
risk of developing secondary cancers (2–6). To address 
this problem, integrated 18F-FDG PET/MRI technolo-
gies have been developed that substitute MRI for CT 
(7,8), thereby reducing the radiation exposure of the 
patient by 70%–80% (7,9).

Radiation exposure to the patient can be also reduced 
by reducing the 18F-FDG radiotracer dose. This approach 
would benefit both 18F-FDG PET/MRI and 18F-FDG 
PET/CT staging procedures. However, several investigators 

have reported that reduced 18F-FDG radiotracer doses lead 
to an apparent increase in the maximum standardized up-
take value (SUVmax) of the tumor tissue (10–13). As the 
radiotracer dose decreases, true coincidence events decrease 
and random events (noise) increase, which leads to an in-
creasing difference between tumor SUVmax and mean stan-
dardized uptake value (SUVmean) of liver and mediastinal 
blood pool as internal reference tissues (14,15). Although 
this is a minor problem for staging highly metabolically 
active tumors at baseline, the increased noise on follow-up 
scans can result in upstaging of tumors with low metabolic 
activity. With superimposed noise, tumors with relatively 
low metabolic activity can appear of equal or even higher 
PET signal compared with internal reference tissues, which 
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Purpose:  To investigate if a deep learning convolutional neural network (CNN) could enable low-dose fluorine 18 (18F) fluorodeoxy-
glucose (FDG) PET/MRI for correct treatment response assessment of children and young adults with lymphoma.

Materials and Methods:  In this secondary analysis of prospectively collected data (ClinicalTrials.gov identifier: NCT01542879), 20 
patients with lymphoma (mean age, 16.4 years 6 6.4 [standard deviation]) underwent 18F-FDG PET/MRI between July 2015 
and August 2019 at baseline and after induction chemotherapy. Full-dose 18F-FDG PET data (3 MBq/kg) were simulated to lower 
18F-FDG doses based on the percentage of coincidence events (representing simulated 75%, 50%, 25%, 12.5%, and 6.25% 18F-FDG 
dose [hereafter referred to as 75%Sim, 50%Sim, 25%Sim, 12.5%Sim, and 6.25%Sim, respectively]). A U.S. Food and Drug Administration–
approved CNN was used to augment input simulated low-dose scans to full-dose scans. For each follow-up scan after induction 
chemotherapy, the standardized uptake value (SUV) response score was calculated as the maximum SUV (SUVmax) of the tumor nor-
malized to the mean liver SUV; tumor response was classified as adequate or inadequate. Sensitivity and specificity in the detection of 
correct response status were computed using full-dose PET as the reference standard.

Results:  With decreasing simulated radiotracer doses, tumor SUVmax increased. A dose below 75%Sim of the full dose led to erroneous 
upstaging of adequate responders to inadequate responders (43% [six of 14 patients] for 75%Sim; 93% [13 of 14 patients] for 50%Sim; 
and 100% [14 of 14 patients] below 50%Sim; P , .05 for all). CNN-enhanced low-dose PET/MRI scans at 75%Sim and 50%Sim en-
abled correct response assessments for all patients. Use of the CNN augmentation for assessing adequate and inadequate responses 
resulted in identical sensitivities (100%) and specificities (100%) between the assessment of 100% full-dose PET, augmented 75%Sim, 
and augmented 50%Sim images.

Conclusion:  CNN enhancement of PET/MRI scans may enable 50% 18F-FDG dose reduction with correct treatment response assess-
ment of children and young adults with lymphoma.

Clinical trial registration no: NCT01542879
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and all parents of pediatric patients. In addition, pediatric pa-
tients were asked to give their assent to participate in the study. 
We enrolled 20 children and young adults with lymphoma be-
tween July 2015 and August 2019. Inclusion criteria comprised 
the following: (a) age younger than 30 years, (b) histologically 
proven lymphoma, (c) PET/MRI at baseline and after induc-
tion chemotherapy, and (d) completed first-line chemotherapy. 
Exclusion criteria were (a) MRI-incompatible metal implants, 
(b) claustrophobia, and (c) pregnancy.

Image Acquisition
All patients underwent whole-body integrated 18F-FDG 
PET/MRI at baseline and after induction chemotherapy with 
a 3-T Signa PET/MRI scanner (software version MP26, GE 
Healthcare) using a 32-channel torso phased-array coil and 
an eight-channel, receive-only head coil. Before undergoing 
the scanning, patients were asked to fast for at least 4 hours 
and demonstrate a blood glucose level below 140 mg/dL. 
18F-FDG was administered intravenously approximately 60 
minutes (mean 6 standard deviation, 56 minutes 6 3; range, 
51–62 minutes) before scanning at a dose of 3 MBq per ki-
logram of body weight. The imaging protocol consisted of 
an axial Dixon sequence for PET attenuation correction and 
axial breath-hold gradient-echo fat-saturated T1-weighted 
sequence. Details of the pulse sequence parameters are in-
cluded in Table E1 (supplement). PET data were acquired 
simultaneously with MRI scans, using a 25-cm transaxial 
field of view and 3-minute 30-second acquisitions per PET 
bed. The PET data were reconstructed using scanner-specific 
algorithms (three-dimensional ordered subsets expectation 
maximization: 28 subsets, two iterations, with time-of-flight 
and point spread function information), accounting for at-
tenuation from coils and patient cradle.

Radiotracer input data were used to generate 18F-FDG PET 
images. Full-dose (3 MBq/kg) PET data were acquired in list 
mode, which helps detect coincidence events across the entire 
duration of the PET bed time (3 minutes 30 seconds). Low-
dose PET images were retrospectively simulated by unlisting 
the PET list-mode data and reconstructing them based on the 
percentage of coincidence events (22). The list-mode PET in-
put data collected over a time period of the first block of 3 min-
utes 30 seconds, 2 minutes 38 seconds, 1 minute 45 seconds, 
53 seconds, 26 seconds, and 13 seconds were used to simu-
late 100%, 75%, 50%, 25%, 12.5%, and 6.25% 18F-FDG 
dose levels (hereafter referred to as 75%Sim, 50%Sim, 25%Sim, 
12.5%Sim, and 6.25%Sim, respectively).

A commercially available U.S. Food and Drug Administra-
tion–approved software (SubtlePET, version 1.3, Subtle Medi-
cal) was used to enhance the image quality of the synthesized 
low-dose PET images. This software, which uses a 2.5D en-
coder-decoder U-Net CNN to perform PET denoising (23), 
was trained on pairs of low- and high-count PET studies ob-
tained from whole-body PET/MRI and PET/CT acquisitions 
from multiple different vendors and institutions from pediatric 
and adult populations. This DL CNN had been previously vali-
dated for augmentation of brain scans in adult patients (24,25) 
and was cross-trained for augmentation of whole-body scans.

in turn affects the Deauville score for therapy response assess-
ment and decisions concerning patient care (16–18). The Deau-
ville score is a five-point scale, recommended by the Lugano 
classification system for response assessment of Hodgkin and 
non-Hodgkin lymphoma, that relates the PET signal of target 
lesions to reference regions of normal mediastinum and liver and 
permits a threshold for adequate or inadequate response (19,20).

To address this problem, we used a deep learning (DL) convo-
lutional neural network (CNN) to enhance simulated low-dose 
18F-FDG PET scans from children and young adults with lym-
phoma such that the relationship between tumor and reference 
tissues would be consistent with that of 100% dose scans. To our 
knowledge, the application of DL CNN in dose reduction of 
18F-FDG PET scans in pediatric lymphoma has not previously 
been investigated, nor has the effect of CNN on tumor therapy 
response assessments on 18F-FDG PET scans been considered. 
Previous studies on dose reduction have focused on studies at 
baseline, when tumors typically demonstrate strong radiotracer 
uptake compared with healthy reference tissues (10,11,21). It 
is more challenging to resolve variable changes in tumor radio-
tracer uptake compared with reference tissues after chemother-
apy when tumors have low 18F-FDG metabolism. Taking these 
important variables into account, the goal of our study was to 
investigate if a CNN enables low-dose 18F-FDG PET for correct 
treatment response assessment of patients with lymphoma.

Materials and Methods

Patient Sample
This Health Insurance Portability and Accountability Act–com-
pliant clinical study was approved by our institutional review 
board and performed as a secondary analysis of prospectively 
acquired data (ClinicalTrials.gov identifier: NCT01542879). 
Written informed consent was obtained from all adult patients 

Abbreviations
CNN = convolutional neural network, DL = deep learning, FDG 
= fluorodeoxyglucose, SUV = standardized uptake value, SUVmax = 
maximum SUV, SUVmean = mean SUV

Summary
Deep learning may enable a reduction in dose of fluorine 18 fluoro-
deoxyglucose in integrated PET/MRI scans of children and young 
adults with lymphoma for treatment response assessment without 
compromising diagnostic sensitivity and specificity.

Key Points
	n A simulated fluorine 18 (18F) fluorodeoxyglucose (FDG) radio-

tracer dose reduction below 75% at PET/MRI resulted in incor-
rect treatment response assessment of children and young adults 
with lymphoma.

	n Deep learning–enhanced simulated low-dose PET/MRI scans en-
able dose reductions of 18F-FDG of up to 50% without changing 
response assessment.

Keywords
Pediatrics, PET/MRI, Computer Applications Detection/Diagnosis, 
Lymphoma, Tumor Response, Whole-Body Imaging, Technology 
Assessment
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image SUV response scores were used as a standard of reference 
for all statistical analyses. Concordances were evaluated for each 
reader using the exact McNemar test and summarized as Cohen 
k statistics with exact 95% CIs (26).

Pairwise differences in SUV response scores for matched tar-
get lesions between the full dose and simulated low dose with 
and without DL enhancement were estimated using a gener-
alized estimating equation approach that calculated within-
patient mean differences of target lesions first for both readers 
and then averaged within-patient mean difference across all 
patients. For each comparison of simulated lower-dose images 
with or without DL enhancement versus the full-dose images, 
we randomly permuted dose labels for each study patient to 
generate 200 000 samples under the null hypothesis of no dif-
ference between two imaging conditions. A two-sided P value 
was then derived as the proportion of samples that had abso-
lute generalized estimating equation mean difference above the 
observed generalized estimating equation mean value. A modi-
fied Lin concordance correlation coefficient (r value) was used 
to measure the agreement between the SUV response scores of 
all target lesions between the full-dose images and the simu-
lated low-dose PET images and was calculated for each reader 
using the following equation (27), where the mx and sx are the 
mean and standard deviation of the SUV response scores from 
the full dose, my and sy are the mean and standard deviation 
of the SUV response from the simulated low dose, and r is the 
correlation coefficient between the SUV response scores from 
the full dose and the simulated low dose: 

2 2 2

2
.

( )
x y

c
x y x y

ρσ σ
ρ =

σ +σ + µ −µ

Here, the covariance rsxsy and total variance were calculated 
first for individual patients and then averaged across patients 
to obtain population level of covariance as the numerator and 
population total variance as the denominator.

The sensitivity and specificity of the simulated low-dose PET 
images with and without DL enhancement to ascertain response 
status were computed with their corresponding exact 95% CIs 
using the R software package binom (version 1.2.5033; The R 
Project for Statistical Computing). All quantitative analyses were 
calculated by our statistician (Y.L., with .20 years of experience) 
based on the assessments of the readers, who were blinded to 
clinical outcomes. All quantitative analyses were performed using 
Python (version 3.6.7, Python Software Foundation) using the 
NumPy (version 1.16) and SciPy (version 1.3) libraries for statisti-
cal analysis and the matplotlib (version 3.1) and seaborn (version 
0.8.1) libraries for visualization. as well as GraphPad Prism (ver-
sion 6.0, GraphPad Software) and RStudio (version 1.2.5033). P 
, .05 was indicative of a statistically significant difference.

Results

Patient Demographics
The flowchart of our study cohort is shown in Figure E1 (sup-
plement). Twenty-seven patients who met the inclusion criteria 

The PET/MRI scans included in this study were not included 
in the training of this algorithm, making it a true external test 
set. The inputs to this CNN were only the low-dose images, and 
the outputs were the DL-enhanced images, which had improved 
signal-to-noise ratios compared with the low-dose images.

Image Analysis
At baseline, two experienced radiologists (H.E.D.L. and A.J.T., 
with .20 years and 6 years of experience, respectively) identi-
fied up to six measurable target lesions per patient in consensus 
according to the Lugano classification (20). In patients with 
multiple lesions, the hottest and typically largest lesions were 
selected. The radiologists were blinded to tumor histopatho-
logic characteristics, clinical data, and treatment outcomes. 
Based on the identified target lesions, two radiologists (F.S. and 
A.J.T., each with 6 years of experience) measured SUVmax and 
standardized uptake value (SUV) standard deviation (in grams 
per milliliter) of all target lesions and SUVmean and SUV stan-
dard deviation (in grams per milliliter) of liver and mediastinal 
blood pool on baseline and follow-up scans by placing a three-
dimensional volume of interest over tumor lesions, mediastinal 
blood pool, and right liver lobe. This was performed in random 
order for all patients for each simulated dose group on conven-
tional and DL-augmented PET images using MIM version 6.5 
(MIM Software). SUV values were calculated based on patient 
body weight by using the following equation: SUV = tissue 
tracer activity (in millicuries per milliliter)/[injected dose (in 
millicuries)/patient body weight (in grams)].

On follow-up scans, each patient was classified as an adequate 
or inadequate responder, using the SUVmean of the liver as an inter-
nal reference tissue (19). According to the Deauville score, a target 
lesion demonstrates inadequate response if the most intense tumor 
18F-FDG signal is moderately or markedly higher than that of the 
liver (score 4 and 5) and a target lesion demonstrates adequate 
response if the most intense tumor 18F-FDG signal is lower than 
that of the liver and/or mediastinum (score 1–3) (19).

Statistical Analysis
SUVmax of target tumors and SUVmean of the liver on baseline 
scans were compared using a mixed random effects model in 
which the label of the lesion (liver and targeted lesions) was 
the fixed effect and the patients and readers were the random 
effect. For the follow-up PET scans, the SUVmax of the target 
tumor was normalized to the SUVmean of the liver in each pa-
tient; this is termed the SUV response score.

Patients were considered adequate responders (negative for 
disease) if all hypermetabolic lesions detected at baseline had 
SUV response scores less than 1 on follow-up scans, whereas in-
adequate response (positive for disease) was considered if at least 
one of the target lesions on follow-up scans or a newly detected 
lesion on follow-up scans had a SUV response score of more 
than 1. Because two readers agreed 100% on patient responder 
status for all study patients under similar imaging conditions, 
we report the results for only one reader without reference to 
readers. Change of response status above and below 75%Sim dose 
groups was analyzed using the Fisher exact test. The full-dose 
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scans changed the visual appearance and quantitative measure-
ments between tumor and reference tissues such that 43% (six 
of 14) of adequate responders at dose 75%Sim (P = .02), 93% 
(13 of 14) at dose 50%Sim (P , .001), and 100% (14 of 14) 
at dose below 50%Sim (P , .001) were upstaged to inadequate 
responders (Fig 3A).

Lin concordance correlation coefficients to measure the 
agreement of SUV response scores after induction chemother-
apy between simulated low-dose and full-dose scans for reader 1 
and reader 2, respectively, were 0.99 and 0.99 (75% dose), 0.96 
and 0.95 (50% dose), 0.87 and 0.90 (25% dose), 0.66 and 0.67 
(12.5% dose), and 0.39 and 0.42 (6.25% dose) (Table 2). A 
permutation test showed significant differences in SUV response 
scores for all low-dose groups compared with the 100% dose 
group (P , .001) (Table 2).

CNN Augmentation of Simulated Low-Dose PET/MRI Scans 
Enabled More Accurate Tumor SUV Measurements
To correct the errors in upstaging adequate responders, we ap-
plied a commercially available DL CNN for augmentation of 
18F-FDG PET data to improve image assessment of lesion re-
sponse. The DL-augmented images showed reduced noise and 
improved tumor-to-liver contrast compared with their non-
augmented counterparts (Fig 1). Lin concordance correlation 
coefficients between SUV response scores of CNN-augmented 
low-dose and full-dose scans for readers 1 and 2, respectively, 
were 0.95 and 0.96 (75%Sim), 0.97 and 0.97 (50%Sim), 0.96 
and 0.96 (25%Sim), 0.90 and 0.91 (12.5%Sim), and 0.78 and 
0.68 (6.25%Sim) (Table 2). Significant differences in SUV re-
sponse scores for DL-enhanced low-dose scans compared with 
the 100% full-dose group were observed for all dose groups (P 
, .001) except dose 25%Sim (P = .02) (Table 2).

CNN-augmented Low-Dose PET/MRI Scans Enable Tumor 
Therapy Response Assessments
On 100% dose follow-up scans, the SUVmax of the 49 target 
tumors from the 14 adequate responders (mean, 1.5 6 0.4) 
was lower than the SUVmean of the liver (1.9 6 0.4, P , .001). 
The SUVmax of 19 target tumors in six inadequate responders 
(mean, 3.9 6 2.9) was higher than the SUVmean of the liver (2.1 
6 0.4, P = .001).

On nonaugmented low-dose scans, the response status of 
inadequate responders did not change. However, adequate re-
sponders were upstaged (Fig 3A) when using the simulated im-
ages. Sensitivity and specificity, respectively, were 57% (95% 
CI: 29, 82) and 100% (95% CI: 54, 100) for 75%Sim and 7% 
(95% CI: 0, 34) and 100% (95% CI: 54, 100) for 50%Sim. The 
25%Sim, 12.5%Sim, and 6.25%Sim images all had the same values, 
with 0% sensitivity (95% CI: 0, 23) and 100% specificity (95% 
CI: 54, 100) (Table 3).

Tumor therapy response assessments based on CNN-
augmented PET images with 75%Sim and 50%Sim 18F-
FDG dose enabled correct diagnoses for all patients (ie, 
reviewer-based diagnoses of adequate or inadequate re-
sponse were identical for 100% dose PET scans, CNN-
augmented 75%Sim dose scans, and CNN-augmented 

were invited to participate in our study. Seven patients were 
excluded after baseline 18F-FDG PET/MRI because follow-up 
scanning was performed with 18F-FDG PET/CT, leaving 20 
patients for the final analysis. Patient demographics are sum-
marized in Table 1. We enrolled a total of 11 male and nine fe-
male patients (mean age, 16 years 6 6; range, 6–30 years) with 
Hodgkin lymphoma (60% [12 of 20 patients]), non-Hodgkin 
lymphoma (25% [five of 20 patients]), or posttransplant lym-
phoproliferative disorder (15% [three of 20 patients]).

Simulation of Reduced Radiotracer Doses Impaired Tumor 
SUV Measurements on PET/MRI Scans
At baseline, all evaluated target tumors (n = 73) in the 20 pa-
tients demonstrated higher metabolic activity (mean SUVmax, 
13.5 6 7.9) on 100% dose PET scans compared with the liver 
as an internal reference standard (SUVmean, 1.6 6 0.4; P , 
.001). As the simulated radiotracer dose was reduced, images 
exhibited higher image noise and lower contrast between the 
tumor and liver (Fig 1).

After induction chemotherapy, responders showed equal 
or lower tumor SUVmax compared with the liver on 100% 
dose scans, while nonresponders demonstrated higher tumor 
SUVmax compared with the liver. In scans with simulated re-
duced radiotracer doses, the tumor SUVmax of all target lesions 
at baseline (n = 73) and after induction chemotherapy (n = 
68) in all 20 patients increased, while the SUVmean of the liver 
and mediastinal blood pool remained stable (Fig 2, Table E2 
[supplement]). Similarly, the image noise measured with the 
SUV standard deviation of target lesions and liver was higher 
with reduced simulated doses (Fig E2 [supplement], Table E3 
[supplement]). The higher noise in simulated low-dose PET 

Table 1: Patient Demographics

Characteristic Patient Cohort (n = 20)

Age (y)
  Mean 6 SD 16 6 6
  Range 6–30
Sex
  M 11 (55)
  F 9 (45)
Type of lymphoma
  Hodgkin lymphoma 12 (60)
  Non-Hodgkin lymphoma 5 (25)
  PTLD 3 (15)
No. of lesions analyzed
  1 0 (0)
  2 6 (30)
  3 6 (30)
  4 2 (10)
  5 1 (5)
  6 5 (25)

Note.—Except where indicated, data are numbers of patients, 
with percentages in parentheses. PTLD = posttransplant lym-
phoproliferative disease, SD = standard deviation.
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patient exposure by 70%–80% (7,9). A clinical standard 18F-
FDG PET/CT in children is associated with about 4–7 mSv 
of radiation exposure for PET (28,29) and up to 20 mSv 
for CT (28); however, newer CT protocols for children can 
reduce the radiation exposure from CT to 1.77 mSv (29). 
Therefore, radiation exposure from PET can be higher than 
that from CT and warrants further research in 18F-FDG dose 
reductions. The North American Consensus Guidelines for 
Pediatric Nuclear Medicine suggest an 18F-FDG dose of 3.7–
5.2 MBq/kg (0.1–0.14 mCi/kg) for clinical 18F-FDG PET/
CT (30). To our knowledge, a dose threshold for 18F-FDG 
PET/MRI studies has not yet been determined. Several recent 
studies suggest that the longer image data acquisition dur-
ing PET/MRI scanning enables administration of reduced 
radiotracer doses (10–13,21). In a study of adult patients 
with solid cancers, Behr et al (10) reported that a seven-times 
reduced 18F-FDG dose for time-of-flight PET/MRI provided 
better visual image quality compared with non-time-of-flight 

50%Sim dose scans for both readers) (Figs 3B, E3 [supple-
ment]), with sensitivity of 100% (95% CI: 77, 100) and speci-
ficity of 100% (95% CI: 54, 100). CNN-enhanced PET scans 
demonstrated an increasing error for 18F-FDG doses of less 
than 50%Sim (Fig E4 [supplement]); sensitivity and specificity, 
respectively, were 57% (95% CI: 29, 82) and 100% (95% CI: 
54, 100) for 25%Sim dose and 7% (95% CI: 0, 34) and 100% 
(95% CI: 54, 100) for both 12.5%Sim and 6.25%Sim dose (Table 
3).

Discussion
Our data show that a DL CNN may enable low-dose 18F-
FDG PET/MRI of patients with lymphoma. Tumor therapy 
response assessments based on CNN-augmented PET/MRI 
scans with simulated 75% and 50% 18F-FDG dose enabled 
correct diagnoses of all patients.

Several investigators reported that replacing CT with MRI 
for anatomic coregistration of 18F-FDG PET data can reduce 

Figure 1:  Low-dose and deep learning–enhanced PET images in a 14-year-old boy with Hodgkin lymphoma. (A) Full-dose fluorine 18 (18F) fluoro-
deoxyglucose (FDG) PET image (3 MBq/kg) shows hypermetabolic mediastinal and left infra- and supraclavicular lymph nodes (arrows). (B–F) Simulated 
75% (75% Sim) (B), 50% (50% Sim) (C), 25% (25% Sim) (D), 12.5% (25% Sim) (E), and 6.25% (6.25% Sim) (F) dose 18F-FDG PET images and (G) cor-
responding MRI scan obtained with liver acquisition with volume acceleration sequence show increased noise and reduced contrast between tumor (arrows) 
and liver (arrowheads in G) with simulated reduced radiotracer dose. (H–L) Convolutional neural network (CNN)–augmented low-dose 18F-FDG PET 
images at 75% (H), 50% (I), 25% (J), 12.5% (K), and 6.25% (L) dose show reduced noise and improved contrast between tumor and liver compared with 
non-CNN–augmented PET images. 
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PET/CT. Seith et al (13) reported successful whole-body PET 
scans of adults with cancer after reducing the dose to 2 MBq/
kg 18F-FDG (which is similar to the 75%Sim dose group in 
our study). In studies of pediatric patients, Gatidis et al (11) 
and Zuchetta et al (21) reported that a dose reduction of 18F-
FDG from 3 MBq/kg to 1.5 MBq/kg body weight did not 
significantly affect the detection of solid tumors. Although 
lower 18F-FDG radiotracer doses on PET/MRI scans can be 
used for tumor staging, none of these previous studies evalu-
ated the effect of lower 18F-FDG radiotracer doses on tumor 
therapy response assessment. Our study adds the important 
finding that 18F-FDG dose reductions, when simulated, can 
impact cancer therapy response assessment. That is, low-dose 
scans can change the perceived relationship between the tu-
mor and liver PET signal, which in turn can lead to misclas-
sification of adequate responders.

Accurate response assessment after induction chemotherapy 
for pediatric patients with lymphoma is crucial for further 
treatment stratification. In most treatment protocols for classic 
Hodgkin lymphoma, response assessment after two cycles of 
chemotherapy helps determine the therapeutic regimen (either 
consolidation chemotherapy or escalated chemotherapy and 
radiation therapy). In children and young adults, radiation 
therapy is avoided as much as possible to prevent the risk of 
developing secondary malignancies. Previous studies of low- 
and intermediate-risk Hodgkin lymphoma have shown that 
omitting radiation therapy for complete responders after in-
duction chemotherapy led to a high rate of event-free survival 
(31,32). In an ongoing clinical trial (ClinicalTrials.gov iden-
tifier: NCT03755804) evaluating low-, intermediate-, and 
high-risk classic Hodgkin lymphoma, additional residual node 
radiation therapy is used only in patients who did not dem-
onstrate adequate response after two cycles of chemotherapy. 
In our study, DL-enhanced PET scans with 50% simulated 

Figure 2:  Tumor maximum standardized uptake value (SUVmax) increases 
with decreasing simulated fluorine 18 (18F) fluorodeoxyglucose (FDG) doses. (A) 
Baseline scans before therapy. Plot shows mean SUVmax of target tumors (n = 73) 
and mean standardized uptake values (SUVmean) of liver (n = 20) and mediastinal 
blood pool (med bl pool) (n = 20) on PET images with decreasing simulated 18F-
FDG dose levels. The SUVmax of all target lesions (circle) increases with decreasing 
18F-FDG dose levels, while the SUVmean of the liver (square) and mediastinal blood 
pool (triangle) remains stable. (B) Follow-up scans after induction chemotherapy. 
Plot shows mean SUVmax of target tumors (n = 68) and SUVmean of liver (n = 20) 
and mediastinal blood pool (n = 20) on PET images with decreasing simulated 
18F-FDG dose levels. For tumors with low metabolic activity, as typically noted after 
chemotherapy, increasing noise on low-dose images can change the relationship 
of tumor SUVmax to the SUVmean of reference tissues. Whiskers are 95% CIs.

Figure 3:  Response status on (A) conventional and (B) deep learning 
(DL)–enhanced simulated fluorine 18 (18F) fluorodeoxyglucose (FDG) PET scans. 
(A) Bar chart shows that reducing the radiotracer dose to less than or equal to 
75% leads to a significant underestimation of tumor therapy response and errone-
ous upstaging of adequate responders to inadequate responders on simulated 
reduced-dose 18F-FDG PET images (P < .05). (B) Bar chart shows that simulated 
dose reduction with DL-enhanced 18F-FDG PET scans enables dose reduction up 
to 50% with correct therapy response assessment of all patients.
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reduced radiotracer dose provided equal treatment response as-
sessments compared with 100% dose scans.

The sensitivity for correct treatment response assessment for 
DL-enhanced 25% dose scans was not perfect. Therefore, we 
recommend the assessment of a 50% dose reduction with the 
use of the DL CNN for improved image quality. Further study 
would allow validation that the use of a DL CNN on reduced-
dose images would avoid erroneous upstaging. In addition, this 
lower radiotracer dose would reduce radiation exposure to the 
patient. Another approach to further reduce radiation dose while 
maintaining image quality would be to decrease the FDG dose 
while simultaneously increasing the PET acquisition time. How-
ever, PET of children cannot be too time-consuming, and our 
protocol has been shown to provide cancer staging scans in less 
than 1 hour (7,33).

While 50% dose reduction is just a first step with an already 
commercially available DL CNN, future artificial intelligence 
algorithms must further lower the FDG dose without affecting 
image quality. A novel artificial intelligence algorithm recently 
developed in our laboratory enabled a dose reduction to as low 

as 6.25% of the original dose while maintaining image quality 
(34). Similarly, other DL algorithms for PET denoising have 
mostly evaluated the image quality through quantitative metrics 
such as peak signal-to-noise ratio and structural similarity (35–
38), which have been shown to have a lower discordance with 
clinically useful metrics (39). Our proposed method has been 
shown to maintain lesion conspicuity as well as SUV accuracy.

We observed that the nonaugmented 75%Sim dose-reduction 
group had higher agreement of tumor SUV response scores 
than the CNN-augmented 75%Sim dose group. This is likely 
owing to the training paradigm of the Food and Drug Admin-
istration–approved algorithm that was used. The algorithm was 
trained in a supervised manner to enhance the quality of low-
dose scans at approximately the image quality of one-fourth 
of the dose as the input scans. In the scenario of the 75%Sim 
inputs, the input images were of high quality to begin with and 
likely were out of distribution for the model. This also explains 
how the performance of the algorithm improved and remained 
stable while reducing the dose from 75%Sim to 50%Sim as well 
as 25%Sim, in line with the aforementioned training technique.

Table 3: Specificity, Sensitivity, k Statistic, and McNemar Test Results for Assessment of Response Status and Agree-
ment, with and without DL Enhancement

Simulated 
Dose Group

Specificity (%) Sensitivity (%) k Statistic

No DL With DL No DL With DL No DL With DL

75%Sim 100 (54, 100) 100 (54, 100) 57 (29, 82) 100 (77, 100) 0.44 (0.07, 0.82)* 1 (1, 1)‡

50%Sim 100 (54, 100) 100 (54, 100) 7 (0, 34) 100 (77, 100) 0.04 (–0.26, 0.35)† 1 (1, 1)‡

25%Sim 100 (54, 100) 100 (54, 100) 0 (0, 23) 57 (29, 82) 0 (–0.29, 0.29)† 0.44 (0.07, 0.82)§

12.5%Sim 100 (54, 100) 100 (54, 100) 0 (0, 23) 7 (0, 34) 0 (–0.29, 0.29)† 0.04 (–0.26, 0.35)ǁ

6.25%Sim 100 (54, 100) 100 (54, 100) 0 (0, 23) 7 (0, 34) 0 (–0.29, 0.29)† 0.04 (–0.26, 0.35)ǁ

Note.—Numbers in parentheses are 95% CIs. DL = deep learning, 6.25%Sim = simulated 6.25% dose, 12.5%Sim = simulated 12.5% dose, 
25%Sim = simulated 25% dose, 50%Sim = simulated 50% dose, 75%Sim = simulated 75% dose.
*McNemar test, P = .03.
†McNemar test, P , .001.
‡McNemar test, P . .99.
§McNemar test, P = .57.
ǁMcNemar test, P = .07.

Table 2: Comparison of Agreement Averaged for Both Readers and Differences between SUV Response Scores of 100% 
Dose and Simulated Low-Dose Groups, with and without DL Enhancement

Dose

Lin Concordance (r Value) Permutation Test: No DL Permutation Test: With DL

No DL With DL SUV Response Score P Value* SUV Response Score P Value*

100% full dose NA NA NA NA NA NA
75%Sim 0.99 0.96 0.0389 ,.001 –0.1190 ,.001
50%Sim 0.95 0.97 0.1544 ,.001 –0.0968 ,.001
25%Sim 0.88 0.96 0.2581 ,.001 –0.0466 .02
12.5%Sim 0.66 0.90 0.5972 ,.001 0.1390 ,.001
6.25%Sim 0.4 0.73 1.1279 ,.001 0.4341 ,.001

Note—DL = deep learning, NA = not applicable, SUV = standardized uptake value, 6.25%Sim = simulated 6.25% dose, 12.5%Sim = simu-
lated 12.5% dose, 25%Sim = simulated 25% dose, 50%Sim = simulated 50% dose, 75%Sim = simulated 75% dose.
*P value for the difference of the SUV response score between each simulated group with the 100% full dose.
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DL has been used for a number of medical imaging classi-
fication applications, such as detection of retinal disease (40), 
detection of pneumonia on chest radiographs (41), and estima-
tion of bone age on the basis of hand radiographs (42). Recently, 
DL has been used for image quality enhancement of MRI scans 
(43) and dose reduction of a gadolinium-based contrast agent in 
MRI (44). To date, however, minimizing the radiation exposure 
of PET/MRI to children with cancer has not been a target of 
DL. Despite the obvious need for low-dose imaging protocols 
for pediatric patients, no current strategy has yet used DL to 
reduce the radiotracer dose in PET/MRI of pediatric patients.

For our study, we used CNNs to improve image quality. 
CNNs use a variation of multilayer perceptrons with shared-
weights architecture and translation invariance characteristics to 
reconstruct high-level features from incomplete data and have 
several advantages over standard image reconstructions (45). 
Compared with traditional analytical approaches, CNNs are 
more precise, faster, and vendor-independent, and have fewer 
artifacts (46). One of the major strengths of this study is that the 
datasets used for evaluating the image enhancement were not 
used for training the CNN algorithm. This demonstrates the 
generalizability of the results to external and real-world datasets. 
Consequently, the proposed method may be used broadly with 
a lower risk of overfitting on specific datasets obtained from a 
single institution or vendor.

We did not assess a visual Deauville score. However, for 
this simulation study we measured SUV of tumors, liver, and 
mediastinal blood pool to enable quantitative comparisons 
of the tumor-to-liver contrast, as measured in clinical reports 
and to assess treatment response status. For our measure-
ments, we selected the largest lesions with the highest meta-
bolic activity for up to six index lesions according to the Lu-
gano criteria for staging and follow-up imaging studies after 
chemotherapy (20). Because the intended outcome of che-
motherapy is to reach background metabolic activity for any 
given tumor, this goal is most challenging for tumors with 
high metabolic activity.

We used simulated low-dose PET images by retrospectively 
unlisting the PET list-mode data and reconstructing them based 
on the percentage of coincidence events. An alternative approach 
would have been to inject multiple different PET tracer doses 
in a single patient; however, this would not be ethically feasible. 
Previous data have shown that simulated low-dose images have 
characteristics similar to those of actual low-dose images (47). 
Therefore, our group and others have used this method to gener-
ate low-dose PET images (10–13,21,22,48,49).

Our approach integrates the development of new PET/MRI 
technologies (7,8) with the use of novel DL methods (45) and, 
as such, the results from this study have immediate clinical im-
pact. The transition from PET/CT to PET/MRI technologies 
reduces radiation exposure by replacing CT with radiation-free 
MRI. As PET/MRI technologies become more widely available, 
the remaining variable that can further reduce radiation expo-
sure is the administered radiotracer dose. The applied CNN for 
reconstruction of high-dose images from low-dose data are im-
mediately clinically available and could have an immediate ef-
fect on patient care by enabling the implementation of low-dose 

clinical PET/MRI protocols for pediatric patients with cancer. 
The DL CNN algorithm could be immediately used by other 
institutions and applied to other tumor types in children or to 
PET scans of adult patients. Results can have major and broad 
effects on health care, as the described DL tool to monitor tumor 
response with minimal radiation exposure will be readily trans-
latable to the clinic and, ultimately, will help minimize the risk 
of developing secondary cancer later in life.
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