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The use of artificial intelligence (AI) techniques is trans-
forming both the clinical and research fields of medi-

cal imaging. As highlighted by the literature in Radiology 
issues from this year, the use of AI in imaging is an ac-
tive research field. In 2020, 25% of the articles published 
in Radiology discussed AI and machine learning (1), in-
cluding several overviews based on research activity and 
methods (1–4). The frequency of publications related to 
AI is even more impressive if we consider the recently 
launched journal, Radiology: Artificial Intelligence, specifi-
cally dedicated to this emerging technology.

Radiologists recognize that AI-driven tools will be criti-
cally important to their practice, as there are increasingly 
complex demands in precision medicine (5). The use of AI 
tools improves the performance of radiologists in their daily 
tasks, such as basic diagnostics (6–19). Moreover, these tools 
allow radiologists to push imaging boundaries by enabling 
treatment response prediction (20–22) and even provide pa-
tient prognostic instruments (23,24). The use of AI involves 
all disciplines in medical imaging, including, but not limited 
to, chest (7–11,24–26), COVID-19 (18,19,27,28), cardiac 
(29–32), breast (20,33–36), neuroradiologic (12–17), and 
abdominal (21–23,37,38) imaging. To support this trend, 
the U.S. Food and Drug Administration has proposed a reg-
ulatory framework for using AI-based technologies as medi-
cal devices (39). The imaging community has also developed 
scoring systems to design high-quality pipelines, such as the 
radiomics quality score (40).

As AI becomes better integrated and more common in 
clinical practice, it is critical for radiologists to understand 
both the potential of AI and its limitations. Although there 
is extensive literature about AI uses and applications in 
medical imaging that would suggest this technology has 
become mainstream, the actual deployment and daily 
use of such tools is much more limited. We believe that 
this gap arises, in part, from the challenges of designing 
AI models that can maintain the same performance when 
applied to different datasets, which is the concept known 
as generalizability. This report focuses on a recent publica-
tion by D’Amour et al (41), which highlights a concept 
hindering generalizability called underspecification that is 
unaddressed by the current AI medical imaging literature, 
including that published in Radiology (ie, underspecifica-
tion was mentioned in zero of 57 Radiology articles about 
AI in 2020) (1,5–38,42–63). Underspecification can be 
generally defined as not knowing whether the model has 
encoded the inner logic of the underlying system. Specific 
examples of underspecification will be described within 
this report.

The Basics of AI Model Building

Machine Learning Pipeline: A Series of Steps to Build a 
Model
Machine learning is a subset of AI that defines algo-
rithms for which predictions are created without being 
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The clinical deployment of artificial intelligence (AI) applications in medical imaging is perhaps the greatest challenge facing radiology 
in the next decade. One of the main obstacles to the incorporation of automated AI-based decision-making tools in medicine is the 
failure of models to generalize when deployed across institutions with heterogeneous populations and imaging protocols. The most 
well-understood pitfall in developing these AI models is overfitting, which has, in part, been overcome by optimizing training proto-
cols. However, overfitting is not the only obstacle to the success and generalizability of AI. Underspecification is also a serious impedi-
ment that requires conceptual understanding and correction. It is well known that a single AI pipeline, with prescribed training and 
testing sets, can produce several models with various levels of generalizability. Underspecification defines the inability of the pipeline to 
identify whether these models have embedded the structure of the underlying system by using a test set independent of, but distributed 
identically, to the training set. An underspecified pipeline is unable to assess the degree to which the models will be generalizable. Stress 
testing is a known tool in AI that can limit underspecification and, importantly, assure broad generalizability of AI models. However, 
the application of stress tests is new in radiologic applications. This report describes the concept of underspecification from a radiologist 
perspective, discusses stress testing as a specific strategy to overcome underspecification, and explains how stress tests could be designed 
in radiology—by modifying medical images or stratifying testing datasets.  In the upcoming years, stress tests should become in radiology 
the standard that crash tests have become in the automotive industry. 
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in an identically distributed dataset. This report explores why 
this test-phase step should ideally be enriched with stress tests 
so that if the model performs well enough, it would then be 
considered usable in clinical scenarios.

Narrow and Broad Generalizability of Models

Data Can Be “New” in Two Main Ways
One of most substantial drawbacks of machine learning is that 
the performance of predictive models developed in the afore-
mentioned experimental training framework is often degraded 
when deployed in real-world clinical scenarios. The major chal-
lenge is, therefore, to build a model whose predictions can be 
generalized to new datasets. However, to address this generaliz-
ability issue, it is essential to understand that data can be “new” 
in different ways. There are two fundamental ways in which 
data may be considered new: resampling and data shifting.

Resampling Results in Narrow Generalization Issues Such as 
Overfitting
Resampling relates to the fact that two subsets taken from 
identically distributed databases will slightly differ because of 
statistical noise (Fig 1A). Being able to perform well on datasets 
that are identically distributed as compared with the training 
set could be labeled as “narrow” generalizability. To generalize 
in this way, a model must be able to distinguish between a sta-
ble signal and noise in a training set. Narrow generalization can 
be assessed easily, for example, by randomly splitting a single 
dataset and testing on these subsets. The failure to narrowly 
generalize is often related to overfitting (Fig 1C).

Data Shift Results in Broad Generalization Issues Such as 
Underspecification
Data shift represents a change in distribution between two 
datasets (Fig 1B). Deploying a model to clinical applications 
involves applying it to new datasets that are often not distrib-
uted identically to the training data. This change in distribu-
tion between training and deployment domains often leads to 
generalization failures. For instance, in radiologic applications, 
a change of distribution can occur when the databases con-
tain different distributions in patients’ ages or ethnicities. Be-
ing able to perform well on datasets whose distribution differs 
from that of the training domain could be labeled as “broad” 
generalizability. Therefore, to broadly generalize, the model has 
to find a stable signal for making predictions that filters out 
noise and must also identify such a signal that will persist in the 
deployment domain, even in the presence of a data shift. There 
are many ways to fail at this latter task, and D’Amour et al (41) 
highlight underspecification as being one of them (Fig 1D).

Continuous Learning Bypasses Generalizability Issues but 
Does Not Solve Them
Continuous learning AI has been proposed as a potentially ef-
fective way to counteract the performance loss of an AI model 
over time (52). The performance loss becomes a generalizabil-
ity issue when the model cannot generalize well to data ob-

explicitly programmed. The inner logic of the model remains 
mostly hidden from the operator or user. The current paradigm 
in model building relies on a string of multiple steps (Fig 1), 
called a pipeline, that can ultimately vary among different AI 
approaches. Data are usually divided into three parts: training, 
validation, and test sets (3,4,40).

Training: the model trying to learn the inner logic of the sys-
tem.— The first step consists of training a model. Algorithms 
build predictive models on sample data, typically referred to 
as training data, that are used to do model fitting. The larger 
the training dataset, the more the algorithm can improve by 
identifying patterns able to predict desired outcomes and dif-
ferentiating them from random associations. The relevance of 
the patterns used by the model are unknown at this point.

Validation: tuning the model on held-out data.—The second 
step in the pipeline is to use the validation dataset to perform 
model selection by confirming modeling choices that avoid 
overfitting. This step typically uses data that were withheld 
from analysis during the training step but that were sourced by 
the same database as the training set, making it independent 
and identically distributed (iid).

Testing: evaluation of model performance.— The third step is 
to use an additional dataset, known as the test dataset, to evalu-
ate the performance of the model. Ideally, the test set should 
be designed to predict real-world performance. Frequently, the 
predictive performance of models is tested on a dataset that is 
withheld from the training and validation sets but is sourced 
from the same data collection as in the training set, resulting 

Abbreviations
AI = artificial intelligence, iid = independent and identically dis-
tributed

Summary
Underspecification is a major obstacle to the generalizability of 
machine learning models and defines the inability of the pipeline 
to ensure that the model has encoded the inner logic of the system; 
this phenomenon is different and less well known than overfitting in 
artificial intelligence but can be analyzed and resolved with the use of  
stress testing.

Key Points
	n Overfitting and underspecification are the two major obstacles to 

the generalizability of artificial intelligence (AI) applications in 
radiology.

	n Overcoming overfitting allows for the deployment of narrowly 
generalizable AI models when analyzing data from a similarly or 
identically distributed dataset.

	n Overcoming underspecification, which is the inability of the 
pipeline to ensure that the model has encoded the inner logic of 
the system, allows for the deployment of broadly generalizable AI 
models.
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observations from new datasets, even if those new datasets are 
identically distributed. The model therefore fails to narrowly 
generalize. In nonoverfitted models, the AI model has learned 
to separate signal from noise and to rely on stable patterns that 
persist even when data are resampled from the same source.

Overfitting Is Common in Medical Imaging
Overfitting is frequent in medical imaging literature because 
the same scenario has been iterated multiple times. Overly 
complex models with a high number of features have been de-
signed by single institutions with a small retrospective dataset. 
First, medical datasets tend to be unbalanced because some 
conditions are more frequent than others. The incremental 
value of AI algorithms for the diagnosis of uncommon diseases 
is obvious, as they can be underdiagnosed by radiologists who 
are not familiar with such diseases. Nonetheless, the rarer the 
condition, the smaller its frequency in the training set will be. 

tained months or years after a model was trained. Continuous 
learning is a powerful way to bypass potential generalizability 
issues, but it does not solve the underlying issue.

Overfitting

Overfitting Is a Training Phase Issue
Overfitting is the most critical issue that contemporary AI 
strategies have been designed to prevent. Overfitting defines 
a structural failure mode that occurs during the training phase 
and prevents the model from distinguishing between signal 
and noise (Fig 1). A model is overfitted when it has learned 
every aspect of the training set, including irrelevant patterns 
originating from noise in the dataset. It has “memorized” that 
a specific combination of parameters is linked to an individual 
patient with a particular outcome. Although it performs well in 
the training set, an overfitted model will fail to predict future 

Figure 1:  Radiomics pipeline examples of overfitting and underspecification. A high-quality radiomics pipeline is shown. Data selection can be affected by data 
sampling and data shift. Modeling can be biased as a result of overfitting and underspecification. (A) Data sampling. The training set and an independent and identically 
distributed (iid) dataset are represented, respectively, in the top and bottom figures. Even if following the same distribution, resampling data induces small variations in out-
come positions. (B) Data shift. The training dataset and a dataset drawn from the real world are represented, respectively, in the top and bottom figures. Outcomes of low 
values of dimension 1 are overrepresented in the training set, and outcomes of high values of dimension 1 are overrepresented in the real-world dataset. (C) Overfitting. 
The red line represents an overfitted model, which is able to isolate every outcome 1 from outcome 2 in the training set. When applied to an iid dataset, its performance 
deteriorates. The black line represents the desired model, performing identically in a training dataset and in an iid dataset. The blue line represents an underfitted model. (D) 
Underspecification. Three models (green, orange, and red dotted lines) are trained in a training set in which outcomes of low values of dimension 1 are overrepresented 
(top figure). These three models fit data well for low values of dimension 1. For high values of dimension 1, models 1 (green dotted line), 2 (orange dotted line), and 3 (red 
dotted line) behave differently. These three models will perform equally in an iid testing set. However, if the real-world dataset (bottom figure) presents a data shift, charac-
terized by an overrepresentation of dimension 1 high values, model 1 segregates outcomes better than models 2 and 3 and represents the best model regarding generaliz-
ability. VOI = volume of interest.
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reduction. However, oversimplifying can lead to underfitting 
when the model fails to spot relevant patterns, which causes 
a loss of accuracy (Fig 1C). Finding the right spot between an 
underfitted and an overfitted model is also known as the bias or 
variance trade-off (66). Bias error defines an error from an erro-
neous assumption, leading to missing the association between 
a relevant variable and the predicted outcome. Variance error 
determines the sensitivity to small fluctuations in the training 
data, leading the model to consider the random noise. An over-
simplified, underfitted model has low variance and high bias 
and is therefore not accurate. Conversely, an overly complex, 
overfitted model has low bias and high variance, which hinders 
its generalizability.

An additional technique to reduce model complexity is regu-
larization, in which a penalty coefficient is added during train-
ing to refrain the model from increasing its complexity. In deep 
learning, neural architecture search is a strategy in which the 
complexity of the model is tuned by the algorithm itself (67). 
Neural architecture searches can be used as powerful tools to re-
duce overfitting.

Example of Overfitting in a Radiologic Application
There are different scenarios in which a model can become 
overfitted. For example, a model is trained to predict overall 
survival in patients with metastatic colorectal cancer. The train-
ing dataset was sourced from two different hospitals: a tertiary 
cancer center and a general hospital. In this dataset, the overall 
survival is higher at the tertiary cancer center because the medi-
cal management at this center is more advanced than that at 
the general hospital. An overfitted model with too many fea-
tures used could, for example, classify the specific reconstruc-
tion setting of the CT scanner at the tertiary cancer center as 
a predictor of higher disease-free survival rather than actual 
imaging features of the cancer.

Second, during the model-building process, the medical com-
munity uses an excessively high number of candidate features, 
because of the fear of missing valuable information, to improve 
the treatment of patients. Thus, strategies are needed to over-
come overfitting issues within medical AI applications.

Strategies to Overcome Overfitting
Most modern AI pipelines are designed to address overfitting 
by mainly using three strategies: using a held-out validation 
dataset, training with more data, and decreasing model com-
plexity (Fig 2).

The first strategy consists of testing the developed model on 
held-out data that are iid. While the performance of a nonover-
fitted model will remain stable, the performance of an overfitted 
model will drop when applied to this unseen data.

The second strategy consists of training with more data to 
better detect the signal of interest. Because increasing the train-
ing set volume is not always possible, several strategies have been 
described. One approach is cross-validation, which consists of 
splitting the training set into multiple folds to calibrate and 
fine-tune the model. Another strategy is adversarial training, 
or synthetic training, in which the training set is augmented by 
purposely adding small perturbations to the data (eg, adding 
blur) to build and introduce variability in the training data and 
therefore reduce the probability of overfitting (64). However, the 
amount of data needed to significantly improve performance is 
large in practice. Finally, building data networks among organi-
zations could allow for the establishment of large databases. This 
is the goal of federated learning, which has been well studied and 
has undergone many recent innovations that can protect patient 
security (65).

The third strategy is to reduce the complexity of the model, 
which can be achieved by reducing the number of used features 
to prevent learning noisy patterns. This is called dimensionality 

Figure 2:  Strategies to overcome overfitting and underspecification.
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the underlying system and will remain invariable in response 
to confounding factors. Models that are either successful or 
unsuccessful at properly encoding the system structure often 
perform identically on the iid testing set and thus cannot be 
distinguished. If the iid-tested chosen model does not encode 
any part of the structure of the problem of interest, then it 
will undoubtedly exhibit poor performance in real-life condi-
tions. A critical distinction is that underspecification occurs 
during the testing phase, whereas overfitting occurs in the 
training phase.

In more general terms, a system is said to be underspecified 
when it has “more than one solution.” This can be compared 
with mathematics, such as in a system of equations with more 
unknowns than linear equations (eg, x 1 y = 3). In this algebra 
problem, several sets of values can solve the system (eg, x = 1 
and y = 2, or x = 2 and y = 1, etc). When the system has as many 
linear equations as unknowns (eg, x 1 y = 3 and x = 2y), then 
only one set of values solves the system (eg, x = 2 and y = 1): the 
system is specified.

In the example shown in Figure 1D, one of the models fit-
ted the training dataset by using an exponential decay (red dot-
ted line, model 3). However, real-world data do not follow this 
distribution, and model 3 did not encode the inner logic of the 
system. When applied to a real-world dataset, model 3 failed. 
Another model trained with the same training dataset success-
fully encoded the inner logic of the system (green dotted line, 
model 1), which is a parabolic distribution, and will generalize 
in the real world. Testing models with data that are distributed 
identically to the training data did not allow for model 1 to be 
differentiated from model 3.

In an underspecified pipeline, multiple models can yield good 
performance in a single iid test set. The testing phase has to be 
strengthened to be able to select the most generalizable model.

Overcoming Underspecification with Stress Tests
To overcome underspecification, the testing phase must be 
used to aid in the selection of only broadly generalizable mod-
els. Such models should perform equally between training and 
real-world domains, even in the presence of data shift. To this 
end, D’Amour et al (41) suggest enriching pipelines by adding 
customized stress tests specifically designed to reproduce the 
challenges that the model will face when deployed in the real 
world. If the performance of the model is high in every stress 
test, the model has likely encoded the system structure. By us-
ing multiple, well-designed stress tests, modelers can ensure 
that the produced model is broadly generalizable. Stress testing 
has already been shown to rule out spurious models in other 
domains such as dermatology and natural language processing 
(68,69). D’Amour et al (41) considered three types of stress 
tests: shifted performance evaluation, contrastive evaluation, 
and stratified performance evaluation (Fig 2). 

Stress Tests with Shifted Performance Evaluation
The concept of a stress test with a shifted performance evalu-
ation consists of purposely identifying and using a shifted test 
set to assess whether the average performance of a model is 

In conclusion, overfitting corresponds to a model perfectly fit-
ted to a specific dataset, which will fail to narrowly generalize when 
data are resampled, even in an identically distributed dataset.

Underspecification

A Model Must Encode the Problem Structure to Broadly 
Generalize
A model will be broadly generalizable to datasets that are not 
identically distributed if the logic it has encoded in the train-
ing set is based on the underlying system. Encoding would be 
considered successful if the model has identified in the training 
set the causal relations between candidate predictors and the 
output to be predicted. Particularly in medical applications, 
the encoded structure should ideally remain invariable to po-
tential confounding factors, such as ethnicity, other unrelated 
diseases, and the quality of imaging techniques. For instance, a 
model that predicts the nature of a lesion should use imaging 
features related to the lesion (such as attenuation or enhance-
ment) or its environment (presence of emphysema for a lung 
tumor or cirrhosis for a liver tumor). If the training domain 
is significantly different from the application domain, the en-
coded logic will probably not capture the system structure. In-
terestingly, the absence of a noticeable data shift between the 
training set and the application domains is not sufficient to 
guarantee that the model will broadly generalize.

A Single Pipeline Can Produce Different Models
A single pipeline, given the same training and iid testing sets, 
can produce various models. However, each one of these mod-
els will likely have a different success level of generalization, 
despite performing equally during iid testing. D’Amour et al 
(41) have demonstrated this phenomenon by using retinal 
fundus image and skin lesion analysis models. They developed 
multiple versions of deep learning models for both retinal and 
skin lesions, with differences arising solely from randomized 
starting weights for the neural network. The first observation 
was that the models performed equally well on iid tests. How-
ever, they did not perform equally when they were run through 
specific tests designed to check accuracy with different con-
ditions. For example, retinal fundus analysis models were ap-
plied to images taken with a different type of camera, and the 
accuracy of the skin lesion analysis models were evaluated on 
the skin-type subgroups. They demonstrated that even with an 
ideal database presenting no data shift (eg, including all skin 
types for a skin analysis model), some of the models will not 
perform well when run through these tests (on each skin type). 
The poorly performing models would not have been ruled out 
by a simple iid test; crucially, iid test sets often do not contain 
enough information to distinguish between suitable and spuri-
ous models. These findings highlight the need for new strate-
gies to mitigate the risk of underspecification.

Definition of Underspecification
Underspecification describes the inability of the pipeline to 
identify whether the model has embedded the structure of 
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stable in the presence of a data shift. Different strategies can be 
used to obtain such shifted datasets. One easy method involves 
deliberately modifying images of the test set (eg, the changing 
resolution or simulating a softer reconstruction kernel) (Fig 3). 
An alternative method is to use an additional testing set that 
is genuinely shifted (eg, CT scans modified to mimic different 
acquisition protocols, such as section thickness).

Stress Tests with Contrastive Evaluation
Contrastive evaluation stress tests also use shifted data. How-
ever, contrastive evaluations do not assess the average perfor-
mance of the model but evaluate performance on the example 
level: each observation is paired to its transformation (eg, lower 
resolution or softer reconstruction kernel simulation), and the 
prediction before and after transformation are compared. If the 
prediction is often modified by the transformation, the model 
is likely not generalizable.

Stress Tests with Stratified Performance Evaluation
Stratified performance evaluation involves stratifying the test set 
into subgroups and testing the model on each subgroup to check 
whether the performances are consistent across the groups. For 
example, the performance of a radiomic model can be assessed 
on a testing set stratified into subgroups according to the acqui-
sition parameters of the CT scan. This type of evaluation can 
isolate potential confounding variations within the dataset.

Stress Testing in Radiologic Applications
In radiologic applications, specific stress tests could be designed 
to simulate different acquisition parameters (such as dose-re-

duction protocols, section thickness, or intravascular contrast 
attenuation), introduce artificial noise, or introduce artifacts 
(such as motion, beam hardening, partial volume, aliasing, etc) 
that will alter the image quality. The testing set could also be 
divided into subgroups according to the center of origin of the 
data, or according to acquisition parameters, to assess whether 
the performance of the model is consistent across centers or 
acquisition parameters.

Example of Overcoming Underspecification in Radiology
An example of overcoming underspecification in radiology is 
in a model trained to classify the presence or absence of hepatic 
steatosis by using a full CT scan section. Steatosis is strongly 
associated with obesity, and CT scans of patients with obesity 
are known to present a lower signal-to-noise ratio (70). The 
best-fitted model is validated and then tested on held-out data 
originating from the same center. One of the main features 
used by the selected model to predict the presence of hepatic 
steatosis is trivial: the signal-to-noise ratio. The model will 
therefore not generalize well to other imaging datasets, particu-
larly to those with a high number of patients with alcohol use, 
who often present with steatosis without obesity. The testing 
phase, which uses data sourced from the same hospital as the 
training set, would therefore be unable to rule out the model 
that encoded a trivial feature. Knowing that hepatic steatosis 
is more frequent in patients with obesity and that CT scans of 
these patients present a lower signal-to-noise ratio could lead 
to specific stress tests.

First, the test set could have been artificially modified by 
randomly changing the signal-to-noise ratio to apply shifted 

Figure 3:  Old and new paradigms: application of stress tests to counteract underspecification. The gray dots indicate models that were abandoned because of their 
low performance in the training set. The blue dots indicate models that performed well in the training set and were selected to continue to the validation and testing phases. 
The orange dots indicate the best-performing model in training, in independent and identically distributed (iid) validation, and in iid testing; however, this model performed 
poorly during stress tests. The green dots indicate the best overall model, which performed well in training, in iid validation, in iid testing, and during stress tests, and is more 
likely to be the most broadly generalizable model. In the old paradigm (left), after training, the best-performing model in the training set is validated and then tested with iid 
data. If the performance is satisfying, the model is deployed. In the new paradigm (right), six models (blue, orange, and green dots and lines) trained on the same training 
set are selected for validation and testing. After iid validation and iid testing, their performances are assessed by using three stress tests, designed with artificially modified CT 
scans, with the application of blurring and pixelating filters, and with contrast modification. All six models show great accuracy in the iid validation and iid test sets, but the 
green model is the only one that performs well throughout all stress tests. Therefore, the green model is the one that is the most likely to broadly generalize well (ie, to main-
tain high performance even when applied to shifted datasets). Adding stress tests to the pipeline allowed the green model to be distinguished from others.
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performance evaluation and contrastive evaluation. Both strat-
egies would have used these modified CT scans, but shifted 
performance evaluation would have compared the average per-
formance of the model between the original test set and the 
modified test set, whereas contrastive evaluation would have 
compared the prediction of the model for each CT scan of the 
test set before and after modification. Another way to detect 
spurious models would have been by creating subgroups of the 
testing sets stratified by body mass index (stratified performance 
evaluation). In this example, the performance of the generaliz-
able model would have been consistent across the subgroups, 
whereas the performance of the nongeneralizable model would 
be lower in the low body mass index subgroups.

Stress Testing Drawbacks and Strengths
Stress tests reveal whether the model performance will be sta-
ble when applied to a shifted dataset by introducing artificial 
shifts or by monitoring its predictions in particular subgroups 
of the testing set. Each stress test assesses the performance 
of the model under a single shift (such as changes in section 
thickness or a different signal-to-noise ratio). It is, however, 
not conceivable to design specific stress tests for each potential 
shift, particularly in radiology, where numerous image acqui-
sition parameters add up to the wide range of patient char-
acteristics to create a large ensemble of potential distribution 
shifts. Stress tests should therefore ideally be carefully designed 
to reproduce specific shifts that can result in model failure. In 
addition to focusing on how well the model is performing in 
terms of achieving the task it is designed for, researchers must 
anticipate under what specific conditions the model will be 
used and will have to maintain stable performance. There is 
a need to develop alternative strategies to force the model to 
identify and use features that remain invariable to most, if not 
all, confounding factors. This is the aim of causal inference and 
domain invariance, which are active fields of AI research with 
emergent applications in medicine and radiology (71,72).

On the other hand, unlike the now mainstream “external 
dataset” testing procedure, stress tests offer the opportunity to 
assess the performance of the model under specific conditions 
that are not represented in the training set but that might not 
be represented in an external dataset either. Although the use of 
an external dataset is considered the reference standard testing 
procedure to acknowledge model generalizability, an externally 
sourced testing set can still be similar to the training domain re-
garding certain characteristics. Stress tests introduce a more pre-
cise and deliberate method of evaluating model generalizability.

Discussion
This report discussed specific strategies to limit overfitting and 
underspecification to improve the generalizability of models 
and the deployment of AI applications in radiology. Overfit-
ting is a structural failure mode that occurs during the learn-
ing phase and hinders the model from distinguishing between 
stable signals and noise, thus narrowly generalizing to identi-
cally distributed datasets. Solutions to this challenge include 
training with more data, decreasing dimensionality, and us-
ing external test sets. Underspecification is a testing phase is-

sue representing the difficulty of knowing whether the model 
has encoded the system structure with an iid test set and thus 
whether the model will broadly generalize to non–identically 
distributed datasets. The underspecification concept has previ-
ously been discussed in AI literature (73–77), but its extent in 
practical applications is underestimated and needs to be ad-
dressed, particularly in radiologic applications. The use of spe-
cifically designed stress tests allows for the identification and 
selection of broadly generalizable models.

It is worth noting that the absence of a noticeable data shift 
between the training set and the application domains is not suf-
ficient to guarantee that the model will broadly generalize, and 
an underspecified pipeline will ultimately produce non–broadly 
generalizable models. Training sets should be as representative of 
the target population as possible, but the testing phase should 
also be enhanced by using specifically designed stress tests.

Yielding high generalizability might nonetheless come at the 
cost of performance, and researchers must develop new plans 
to optimize the trade-offs among generalizability, the highest 
overall performance, and the performance in specific conditions 
(78). In the current quest toward generalizability, there are two 
distinct solutions: developing models able to handle heteroge-
neous data and reducing data heterogeneity by standardizing 
acquisitions across institutions. The evolution of technology and 
standardization to address these issues will be fascinating to ob-
serve. On the one hand, leading medical imaging manufacturers 
might be interested in optimizing software specifically designed 
to achieve the highest performance on their hardware and recon-
struction settings. On the other hand, AI start-ups and software 
companies might favor broadly generalizable models to increase 
the sale of their product.

The deployment of AI in radiology, however, does not only 
rely on performance and generalizability issues. Although the 
most critical issue is to avoid AI errors that could be detrimental 
to the health of patients, another major challenge is to help radi-
ologists trust AI by opening the black box and creating transpar-
ency regarding how it makes decisions. Hence, the development 
of new software dedicated to this task is required (79).

The advent of AI tools is triggering a profound change in 
radiology. AI tools will allow radiologists to combine their inter-
pretations with model outputs, which may contain information 
inconceivable by the human eye. It will therefore be necessary 
for every radiologist to become aware of AI pitfalls (such as its 
generalizability issues) to keep a critical mind to prevent making 
mistakes that could be detrimental to patients and to guarantee 
a high-quality personalized report that both the patient and their 
physician are expecting.
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