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Deep learning has brought many promising applications 
within medical imaging, with recent studies showing 

potential for key clinical assessments within radiology 
(1–3). One major class of deep neural networks is convo-
lutional neural networks (CNNs), which take raw pixel 
values as input and transform them into the output of in-
terest (such as diagnosis). Many CNNs have outperformed 
conventional methods for various medical tasks (4,5). As 
CNNs are becoming popular for classification of medical 
images, it has become important to find methods that ex-
plain the decisions of these models to establish trust with 
clinicians. Saliency maps have become a popular approach 
for post hoc interpretability of CNNs. These maps are de-
signed to highlight the salient components of medical im-
ages that are important to model prediction. As a result, 
many CNN medical imaging studies have used saliency 
maps to rationalize model prediction and provide localiza-
tion (6–8). However, a recent study that evaluated a variety 

of datasets showed that many popular saliency maps are 
not sensitive to model weight or label randomization (6). 
Although, to our knowledge, there have previously been 
no studies that corroborate these findings with medical im-
ages, there are several works that have demonstrated serious 
issues with saliency methods (8–10). A recent study also 
showed that saliency maps did not provide additional per-
formance improvement in assisted clinician interpretation 
compared with only providing a model prediction (11). To 
the best of our knowledge, Mitani et al (8) is the only work 
that has evaluated the robustness of saliency maps in medi-
cal imaging. However, the work does not encompass all the 
widely used saliency methods nor effectively quantify the 
overlap of saliency maps with ground truth regions.

In this study, we evaluated popular saliency maps for 
CNNs trained on the Society for Imaging Informatics in 
Medicine–American College of Radiology (SIIM-ACR) 
Pneumothorax Segmentation and Radiological Society of 
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Purpose: To evaluate the trustworthiness of saliency maps for abnormality localization in medical imaging.

Materials and Methods: Using two large publicly available radiology datasets (Society for Imaging Informatics in Medicine–American 
College of Radiology Pneumothorax Segmentation dataset and Radiological Society of North America Pneumonia Detection 
Challenge dataset), the performance of eight commonly used saliency map techniques were quantified in regard to (a) localization 
utility (segmentation and detection), (b) sensitivity to model weight randomization, (c) repeatability, and (d) reproducibility. Their per-
formances versus baseline methods and localization network architectures were compared, using area under the precision-recall curve 
(AUPRC) and structural similarity index measure (SSIM) as metrics.

Results: All eight saliency map techniques failed at least one of the criteria and were inferior in performance compared with localization 
networks. For pneumothorax segmentation, the AUPRC ranged from 0.024 to 0.224, while a U-Net achieved a significantly superior 
AUPRC of 0.404 (P , .005). For pneumonia detection, the AUPRC ranged from 0.160 to 0.519, while a RetinaNet achieved a sig-
nificantly superior AUPRC of 0.596 (P , .005). Five and two saliency methods (of eight) failed the model randomization test on the 
segmentation and detection datasets, respectively, suggesting that these methods are not sensitive to changes in model parameters. The 
repeatability and reproducibility of the majority of the saliency methods were worse than localization networks for both the segmenta-
tion and detection datasets.

Conclusion: The use of saliency maps in the high-risk domain of medical imaging warrants additional scrutiny and recommend that de-
tection or segmentation models be used if localization is the desired output of the network.

Supplemental material is available for this article.
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were obtained from publicly available datasets on Kaggle 
(12,14).

The SIIM-ACR Pneumothorax Segmentation dataset con-
sists of 10 675 images, split into 81% training, 9% validation, 
and 10% testing. The training set comprised 8646 images with 
1931 patients with pneumothorax, the validation set had 961 
images with 202 patients with pneumothorax, and the test set 
had 1068 images with 246 patients with pneumothorax.

The RSNA Pneumonia Detection Challenge dataset con-
sists of 14 863 images, which was split in a similar fashion as 
described above for the pneumothorax dataset. The final training 
set comprised 12 039 images with 4870 patients with pneumo-
nia, the validation set had 1338 images with 541 patients with 
pneumonia, and the test set had 1486 images with 601 patients 
with pneumonia.

Model Training
We trained InceptionV3 (16) and DenseNet-121 (17) models 
for all our experiments. The InceptionV3 network comprises 
several modules, allowing for more efficient computation 
and deeper networks through dimensionality reduction with 
stacked 1 3 1 convolutions. The DenseNet-121 network com-
prises four blocks with six, 12, 24, and 16 layers each, which 
extract features to be sent to a classification module. These im-
age classification model backbones were modified by replac-
ing the final layer to perform binary classification. The mod-
els were loaded with pretrained weights on ImageNet, which 
were then fine-tuned during training. Both InceptionV3 and 
DenseNet-121 models are trained using binary cross-entropy 
loss:
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Further details about model training are in Appendix E1 
(supplement).

Saliency Methods and Evaluation Criteria
For model interpretability, we evaluated the following sa-
liency methods: gradient explanation (GRAD) (18), Smooth-
grad (SG) (19), integrated gradients (IG) (20), smooth IG 
(SIG) (19,20), gradient-weighted class activation mapping 
(GCAM) (9), XRAI (21), guided backpropagation (GBP) 
(22), and guided GCAM (GGCAM) (9). All methods are 
summarized and defined in Table 1. We compared the perfor-
mance of these saliency maps against the following baselines: 
(a) for localization utility, a low baseline defined by a single 
“average” mask of all ground truth segmentations or bound-
ing boxes in the training and validation datasets (AVG) and 
a high baseline determined by the area under the precision 
recall curve (AUPRC [23]) of segmentation (U-Net) and de-
tection networks (RetinaNet); (b) in model weight random-
ization, the average value of the structural similarity index 
measure (SSIM) of 50 randomly chosen pairs of saliency 
maps pertaining to the fully trained model (randomization 
baseline); and (c) in repeatability and reproducibility, a low 
baseline of an SSIM of 0.5 and a high baseline determined 

North America (RSNA) Pneumonia Detection Challenge data-
sets (12–15) in terms of four key criteria for trustworthiness: (a) 
utility, (b) sensitivity to weight randomization, (c) repeatability 
(intra-architecture), and (d) reproducibility (interarchitecture).

Materials and Methods

Study Design
Considering the combination of the above-mentioned trust-
worthiness criteria provides a blueprint for us to assess a sa-
liency map’s localization capabilities (localization utility), sen-
sitivity to trained model weights (vs randomized weights), and 
accuracy with respect to models trained with the same architec-
tures (repeatability) and different architectures (reproducibil-
ity). Figure 1 summarizes the questions addressed in this work.

Data Preparation
Institutional review board approval was not required for this 
retrospective study; the chest radiographs used in this study 

Abbreviations
ACR = American College of Radiology, AUC = area under the 
receiver operating characteristic curve, AUPRC = area under the 
precision-recall curve, AVG = average of all masks across the train-
ing and validation datasets, CNN = convolutional neural network, 
GBP = guided backpropagation, GCAM = gradient-weighted class 
activation mapping, GGCAM = guided GCAM, GRAD = gradient 
explanation, IG = integrated gradients, RSNA = Radiological Soci-
ety of North America, SG = Smoothgrad, SIG = smooth IG, SIIM 
= Society for Imaging Informatics in Medicine, SSIM = structural 
similarity index measure

Summary
A variety of saliency map techniques used to interpret deep neural 
networks trained on medical imaging did not pass several key criteria 
for utility and robustness, highlighting the need for additional valida-
tion before clinical application.

Key Points
 n Eight popular saliency map techniques were evaluated for their 

utility and robustness in interpreting deep neural networks trained 
on chest radiographs.

 n All the saliency map techniques did not pass at least one of the 
criteria that had been defined in the original study, indicating 
their use for high-risk medical applications to be problematic. In 
particular, only XRAI passed the localization utility test for both 
the segmentation and detection datasets (segmentation, P = .02; 
detection, P , .001), but it did not pass the randomization test 
for both datasets (P , .001). Moreover, no saliency method was 
found to be more repeatable or reproducible than their localization 
network counterpart (P , .001), with XRAI repeatability on the 
detection dataset being the sole exception in the detection dataset 
(P , .001).

 n The use of detection or segmentation models is recommended if 
localization is the ultimate goal of interpretation. These models 
outperformed all eight saliency methods in terms of localization 
utility on both the detection and segmentation datasets (P , 
.001).

Keywords
Technology Assessment, Technical Aspects, Feature Detection, Con-
volutional Neural Network (CNN)
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using pixel-based metrics to show the discrepancies with using 
them in such a manner and provide objective measures as to 
why using saliency maps in place of segmentation or detection 
may not be ideal in clinical scenarios. We choose AUPRC as the 
metric to capture localizability of saliency maps, as the relatively 
small size of the ground truth segmentation masks and bound-
ing boxes would benefit from an approach that would account 
for the class imbalance. Precision recall curves better serve to be 
more informative about the performance of an algorithm, par-
ticularly for unbalanced datasets with few positive pixels relative 
to the number of negative pixels. In the context of findings on 
medical images, the area under the receiver operating charac-
teristic curve (AUC) can be skewed by the presence of a large 
number of true-negative findings (25).

Precision is defined as the ratio of true-positive findings to 
predicted positive findings (true-positive findings + false-positive 
findings), while recall is defined as the ratio of true-positive find-
ings to ground truth positive findings (true-positive findings + 
false-negative findings). Since neither of these account for the 
number of true-negative findings, they make ideal candidates 
for our analysis. To capture the intersection between the saliency 
maps and segmentation masks or bounding boxes, we consid-
ered the pixels inside the segmentations or boxes to be positive 

by the SSIM of U-Net and RetinaNet. Note that a low base-
line of 0.5 for SSIM was chosen because SSIM ranges from 0 
(for lack of any structural similarity) to 1 (for identical struc-
tural similarity), and 0.5 marks the midpoint for whether the 
SSIM is more structurally similar or dissimilar (24). SSIM is 
a metric used for evaluating image similarity computed as a 
weighted combination of the comparison measurements of 
luminance, contrast, and structure. An SSIM of 1 is achieved 
when comparing identical sets of data, whereas an SSIM of 
0 indicates no structural similarity. Note that throughout 
this section, a “pass” is denoted if the saliency method had a 
higher performance than the respective baseline, while a “did 
not pass” is denoted if the saliency method had a lower per-
formance than the respective baseline (described further in 
Tables 2 and 3). If “uncertain” is denoted, this indicates that 
there was no significant difference between the performance 
of the saliency map and the corresponding baseline.

Although saliency maps were not originally intended for ei-
ther segmentation or detection, they have been used this way in 
clinical research to identify areas of abnormality from trained 
neural networks (6–8). Using saliency maps in this manner can 
cause potential problems when this type of research is applied to 
clinical practice. Therefore, we chose to evaluate saliency maps 

Figure 1: Visualization of the different questions addressed in this work. Note that the top rows of images and saliency maps 
demonstrate ideal (and less commonly observed) high-performing examples (“pass”), while the bottom rows of images demonstrate 
realistic (and more commonly observed) poor-performing examples (“did not pass”). First, we examined whether saliency maps are 
good localizers in regard to the extent of the maps’ overlap with pixel-level segmentations or ground truth bounding boxes. Next, we 
evaluated whether saliency maps were affected when trained model weights were randomized, indicating how closely the maps 
reflect model training. Then we generated saliency maps from separately trained InceptionV3 models to assess their repeatability. 
Finally, we assessed the reproducibility by calculating the similarity of saliency maps generated from different models (InceptionV3 
and DenseNet-121) trained on the same data.
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4 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 3: Number 6—2021

Assessing Trustworthiness of Saliency Maps for Localizing Abnormalities in Imaging

models, an ideal trait of a saliency map would be to have some 
degree of robustness across models with different trained weights 
or architectures.

Training details of the models, corresponding baselines (U-
Net for segmentation, RetinaNet for detection), and additional 
description of the utility metric (AUPRC) are provided in Ap-
pendix E1 (supplement).

Statistical Analysis
Statistical analyses were performed in RStudio version 1.2.5033 
using R 3.6 and the lmer (lme4, version 1–1-25), lmerTest (ver-
sion 3.1–3), ggplot2 (version 3.3.2), and multComp (version 
1.4–14) packages. A linear mixed-effects model was used to 
evaluate trustworthiness of the eight saliency map methods us-
ing a two-sided test with a level set at .05 for statistical signifi-
cance. Tukey honestly significant difference test was used for 
post hoc analysis. For our statistical analysis, we assessed four 
main questions. First, we determined if there were differences 
in the utilities between saliency map methods derived from the 
trained classification models compared with the utility of the 
localization networks (U-Net for segmentation and RetinaNet 
for detection). Second, we determined if there were differences 
in the performances between the saliency maps and the average 
mask (ie, average of segmentations or bounding boxes from the 
training and validation sets) in terms of the utility of the map. 
Third, we assessed if saliency maps degraded to the level of the 
randomization baseline when the model weights of the trained 

labels and those outside to be negative. Each pixel of the saliency 
map is thus treated as an output from a binary classifier. An ideal 
saliency map, from the perspective of utility, would have perfect 
recall (finding all regions of interest) without labeling any pixels 
outside the regions of interest as positive (perfect precision).

To investigate the sensitivity of saliency methods under 
changes to model parameters and to identify potential correla-
tion of particular layers to changes in the maps, we employed 
cascading randomization on the InceptionV3 model (6). In cas-
cading randomization, we successively randomized the weights 
of the model, beginning from the top layer to the bottom, effec-
tively erasing the learned weights in a gradual fashion. We used 
the SSIM to assess the change of the original saliency map with 
the saliency maps generated from the model after each random-
ization step (26).

Additionally, to test if the saliency methods produce similar 
maps with a different set of trained weights and whether they 
were architecture agnostic (assuming that models with differ-
ent trained weights or architectures have similar classification 
performance), we conducted repeatability tests on the saliency 
methods by comparing maps from (a) different randomly ini-
tialized instances of models with the same architecture trained 
to convergence (intra-architecture repeatability) and (b) models 
with different architectures each trained to convergence (inter-
architecture reproducibility) using SSIM between saliency maps 
produced from each model. Although there was no constraint 
that indicated that interpretations should be the same across 

Table 1: Saliency Methods Evaluated

Saliency Map Definition

Gradient explanation (GRAD) (18) Measures the extent to which a change in a region of 
the input x affects the prediction S(x) to compute the 
map ∂∂

S
x

Smoothgrad (SG) (19) Smooths the mask obtained using the gradient and IG 
saliency methods by stochastically modifying input 
and performing Gaussian smoothing on the resulting 
maps

Integrated gradients (IG) (20) Constructs a map by interpolating from a baseline image 
to the input image and averaging the gradients across 
these interpolations; we use 25 such interpolations in 
our experiments to compute the masks

Smooth IG (SIG) (19,20) Smooths an IG map by stochastically modifying input 
and performing Gaussian smoothing

Gradient-weighted class activation map-
ping (GCAM) (9)

A backpropagation-based method that uses the feature 
maps of the final convolutional layer to generate 
heatmaps

XRAI (21) Builds on IG by starting with a baseline image and 
incrementally adding regions that offer maximal at-
tribution gain

Guided backpropagation (GBP) (22) Constructs a mask obtained by guiding the conventional 
backpropagation algorithm to suppress any negative 
gradients

Guided GCAM (GGCAM) (9) Combines the masks obtained by GCAM and GBP 
in an attempt to minimize the false-positive results 
produced by either

http://radiology-ai.rsna.org
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sets (low baseline), as well as a 
U-Net (7) trained to learn these 
segmentations directly (high 
baseline). Note that the average 
mask baseline was introduced as 
a criterion that should be easy for 
any saliency method to outper-
form. While the saliency maps 
were generated independently 
for each specific image, the aver-
age mask was a single map that 
is applied across all images in the 
test set and hence is a minimum 
bar for evaluation of this task. 
We defined the average mask as 
low baseline as a threshold for 
the saliency maps to outperform.

Saliency maps generated 
from InceptionV3 demonstrated 
higher utility than those gener-
ated from DenseNet-121 and 
are displayed in Figure 2A. For 
individual saliency maps on In-
ceptionV3, the highest perform-
ing method was XRAI (AUPRC, 
0.15 6 0.20), while the lowest 
performing method was SIG 
(AUPRC, 0.03 6 0.03). It is also 
interesting to note that using the 
average of all masks across the 
pneumothorax training and vali-
dation datasets (AVG) performed 
as well or higher than most of the 
saliency methods (AUPRC, 0.15 
6 0.18), showing a strong limi-
tation in the saliency maps’ valid-
ity. Specifically, XRAI performed 
higher than the average map (P 
= .02), while the other saliency 
methods had lower AUPRCs (P 
, .001 for all). Additionally, the 
U-Net trained on a segmentation 

task achieved the highest utility (AUPRC, 0.41 6 0.22), and the 
utility of all maps was lower than the U-Net (P , 0.001 for all).

The utility of the saliency maps generated using the trained 
models was higher than the random models for SG (AUPRC, 
trained: 0.04 6 0.04 vs random: 0.03 6 0.04; P = .004), 
GCAM (trained: 0.09 6 0.14 vs random: 0.02 6 0.02; P , 
.001), XRAI (trained: 0.15 6 0.20 vs random: 0.05 6 0.09; P 
, .001), and GGCAM (trained: 0.09 6 0.13 vs random: 0.03 
6 0.04; P = .002), but not for GBP, GRAD, IG, and SIG.

Tests comparing the utilities in terms of the AUC were also 
performed and are summarized in Table 2. When compared 
with AVG, there were only two minor differences from AUPRC: 
(a) GBP was uncertain for AUC (P = .08), while it did not pass 
for AUPRC (P , .001), and (b) GGCAM was uncertain for 
AUC (P = .14), while it did not pass for AUPRC (P , .001). 

model were randomized. Last, we assessed if there were any dif-
ferences in the repeatability and/or reproducibility of each of 
the saliency map methods compared with the performance of 
the low baseline (ie, SSIM = 0.5) or the localization networks 
(U-Net for segmentation and RetinaNet for detection).

Results

Localization Utility

Segmentation utility.— We evaluated the localization utility 
of each saliency method by quantifying their intersection with 
ground truth pixel-level segmentations available from the pneu-
mothorax dataset. We compared the saliency methods with the 
average of the segmentations across the training and validation 

Table 2: Summary of All AUC Results

Dataset and Saliency Method

Utility

AUC P Value (AVG) P Value*

SIIM-ACR pneumothorax segmentation
 AVG 0.73 6 0.19 NA NA
 U-Net 0.87 6 0.12 NA NA
 GRAD 0.70 6 0.13 .02† ,.001†

 SG 0.70 6 0.12 .03† ,.001†

 IG 0.67 6 0.14 ,.001† ,.001†

 SIG 0.64 6 0.15 ,.001† ,.001†

 GCAM 0.65 6 0.28 .01† ,.001†

 XRAI 0.80 6 0.16 ,.001‡ ,.001†

 GBP 0.71 6 0.13 .08§ ,.001†

 GGCAM 0.69 6 0.25 .14§ ,.001†

RSNA pneumonia detection
 AVG 0.89 6 0.08 NA NA
 RetinaNet 0.95 6 0.04 NA NA
 GRAD 0.79 6 0.07 ,.001† ,.001†

 SG 0.62 6 0.10 ,.001† ,.001†

 IG 0.79 6 0.07 ,.001† ,.001†

 SIG 0.61 6 0.12 ,.001† ,.001†

 GCAM 0.81 6 0.16 ,.001† ,.001†

 XRAI 0.89 6 0.08 .87§ ,.001†

 GBP 0.62 6 0.11 ,.001† ,.001†

 GGCAM 0.76 6 0.14 ,.001† ,.001†

Note.—AUC values are given as mean 6 standard deviation. P values are shown for the com-
parison of each map method to either the average, U-Net, or RetinaNet values. ACR = American 
College of Radiology, AUC = area under the receiver operating characteristic curve, AVG = average 
mask of all ground truth segmentations or bounding boxes, GBP = guided backpropagation, 
GCAM = gradient-weighted class activation mapping, GGCAM = guided GCAM, GRAD = gradi-
ent explanation, IG = integrated gradients, RSNA = Radiological Society of North America, SG = 
Smoothgrad, SIG = smooth IG, SIIM = Society for Imaging Informatics in Medicine.
*P values are for the comparison to the U-Net for the SIIM-ACR pneumothorax segmentation 
dataset and are for RetinaNet in the RSNA pneumonia detection dataset.
†Saliency map did not pass the test.
‡Saliency map passed the test.
§Alternate hypotheses for pass or did not pass could not be significantly proven.

http://radiology-ai.rsna.org
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When compared with U-NET, there were no major differences 
among the eight different mapping methods.

Detection utility.— We evaluated the detection utility of each sa-
liency method using the ground truth bounding boxes from the 
pneumonia detection dataset. Figure E1 (supplement) shows vi-
sualizations of saliency maps generated from InceptionV3 on the 
pneumonia detection dataset. We compared the saliency meth-
ods with the average of the bounding boxes across the training 
and validation sets (low baseline), as well as a RetinaNet (27) 
trained to learn these bounding boxes directly (high baseline).

Results for the test set are shown in Figure 2B. The high-
est-performing saliency method was XRAI (AUPRC, 0.52 
6 0.22), while the lowest performing method was SIG (AU-
PRC, 0.16 6 0.13). It is interesting to note that using the 
average of all bounding boxes across the pneumonia training 

and validation datasets (AVG) performed higher than all the 
methods (AUPRC, 0.47 6 0.27) except for XRAI, which had 
a higher performance (P , .001). RetinaNet trained to gen-
erate bounding boxes achieved a higher performance than all 
the saliency methods (AUPRC, 0.59 6 0.26; P , .001 for all 
comparisons).

The utility of saliency maps generated using the trained 
models was higher than the utility of the random models 
for GRAD (trained: 0.34 6 0.16 vs random: 0.26 6 0.17; 
P , .001), GCAM (trained: 0.41 6 0.23 vs random: 0.15 
6 0.12; P , .001), XRAI (trained: 0.52 6 0.22 vs random: 
0.41 6 0.26; P , .001), and GGCAM (trained: 0.32 6 0.17 
vs random: 0.19 6 0.15; P , .001). The random model had 
higher performance SG (trained: 0.17 6 0.13 vs random: 0.29 
6 0.20; P , .001) and SIG (trained: 0.16 6 0.13 vs ran-
dom: 0.30 6 0.19; P , .001), and there were no statistical 

Table 3: Summary of Main Results for Utility and Randomization Experiments

Dataset and Saliency Method

Utility Randomization

AUPRC P Value (AVG) P Value* Baseline Fully Randomized P Value

SIIM-ACR pneumothorax seg-
mentation

 AVG 0.15 6 0.18 NA NA NA NA NA
 U-Net 0.41 6 0.22 NA NA NA NA NA
 GRAD 0.06 6 0.07 ,.001† ,.001† 0.23 6 0.03 0.19 6 0.02 ,.001‡

 SG 0.04 6 0.04 ,.001† ,.001† 0.31 6 0.01 0.28 6 0.01 ,.001‡

 IG 0.05 6 0.06 ,.001† ,.001† 0.24 6 0.04 0.25 6 0.03 .23§

 SIG 0.03 6 0.03 ,.001† ,.001† 0.49 6 0.05 0.38 6 0.03 ,.001‡

 GCAM 0.09 6 0.14 ,.001† ,.001† 0.44 6 0.15 0.39 6 0.10 .02‡

 XRAI 0.15 6 0.20 .02‡ ,.001† 0.64 6 0.04 0.68 6 0.07 ,.001†

 GBP 0.06 6 0.07 ,.001† ,.001† 0.35 6 0.07 0.25 6 0.04 ,.001‡

 GGCAM 0.09 6 0.13 ,.001† ,.001† 0.64 6 0.09 0.33 6 0.06 ,.001
RSNA pneumonia detection
 AVG 0.47 6 0.27 NA NA NA NA NA
 RetinaNet 0.59 6 0.26 NA NA NA NA NA
 GRAD 0.34 6 0.16 ,.001† ,.001† 0.20 6 0.03 0.17 6 0.01 ,.001‡

 SG 0.17 6 0.13 ,.001† ,.001† 0.32 6 0.01 0.29 6 0.01 ,.001‡

 IG 0.32 6 0.16 ,.001† ,.001† 0.22 6 0.04 0.23 6 0.04 .18§

 SIG 0.16 6 0.13 ,.001† ,.001† 0.61 6 0.11 0.34 6 0.03 ,.001‡

 GCAM 0.41 6 0.23 ,.001† ,.001† 0.53 6 0.14 0.23 6 0.10 ,.001‡

 XRAI 0.52 6 0.22 ,.001‡ ,.001† 0.64 6 0.05 0.72 6 0.08 ,.001†

 GBP 0.17 6 0.11 ,.001† ,.001† 0.30 6 0.08 0.22 6 0.05 ,.001‡

 GGCAM 0.32 6 0.17 ,.001† ,.001† 0.55 6 0.10 0.52 6 0.11 .12§

Note.—Data are presented as mean 6 standard deviation. P values are shown for the comparison of each map method to either the aver-
age, U-Net, or RetinaNet values. ACR = American College of Radiology, AUPRC = area under the precision-recall curve, AVG = average 
mask of all ground truth segmentations or bounding boxes, GBP = guided backpropagation, GCAM = gradient-weighted class activation 
mapping, GGCAM = guided GCAM, GRAD = gradient explanation, IG = integrated gradients, RSNA = Radiological Society of North 
America, SG = Smoothgrad, SIG = smooth IG, SIIM = Society for Imaging Informatics in Medicine.
*P values are for the comparison to the U-Net for the SIIM-ACR pneumothorax segmentation dataset and are for RetinaNet in the RSNA 
pneumonia detection dataset.
†Saliency map did not pass the test.
‡Saliency map passed the test.
§The alternate hypotheses for pass or did not pass could not be significantly proven.
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differences for IG (trained: 0.32 6 0.16 vs random: 0.29 6 
0.18; P = .06).

Tests comparing the utilities in terms of AUC were also per-
formed and are summarized in Table 2. There was only one 
minor difference from AUPRC: When compared with AVG, 
XRAI was uncertain for AUC (P = .87), while it passed for 
AUPRC (P , .001).

Sensitivity to Trained versus Random Model Weights
Saliency maps should be sensitive to model weights to be mean-
ingful. Specifically, a saliency map generated from a trained 
model should differ from a randomly initialized model, which 
has no knowledge of the task.

Figure 3A shows the progressive degradation of saliency 
maps, and Figure 3B shows an example image of saliency map 

degradation from cascading randomization. Figure E2 (supple-
ment) shows additional examples. Table 3 shows the mean 
SSIM scores of saliency maps for fully randomized models 
(after cascading randomization has reached the bottommost 
layer), as well as the corresponding randomization baselines, 
defined below.

A saliency map reached degradation and was classified as a 
pass when the average SSIM was not significantly different or 
below the randomization baseline. For both pneumothorax and 
pneumonia datasets, we observed that XRAI did not reach the 
randomization baseline when cascading randomization had 
reached the bottommost layer (ie, full randomization), showing 
invariance to the trained model parameters. The saliency maps 
that fell below this randomization baseline on both datasets 
when the model was fully randomized include GCAM, GBP, 

Figure 2: (A) Test set segmentation AUPRC scores for SIIM-ACR Pneumothorax Segmentation dataset and (B) test set bounding box detection AUPRC scores for 
RSNA Pneumonia Detection Challenge dataset. Each box plot represents the distribution of scores across the test datasets for each saliency map, with a solid line denoting 
the median and a dashed line denoting the mean. Results are compared with a low baseline using the average segmentation or bounding box of the training and valida-
tion sets (light blue) and high baseline using U-Net or RetinaNet (dark blue). (C) Example saliency maps on SIIM-ACR pneumothorax dataset with corresponding AUPRC 
scores and (D) on RSNA pneumonia dataset with corresponding utility scores. “AVG” refers to using the average of all ground-truth masks (for pneumothorax) or bound-
ing boxes (for pneumonia) across the training and validation datasets; “UNET” refers to using the U-Net trained on a segmentation task for localization of pneumothorax; 
“RNET” refers to using RetinaNet to generate bounding boxes for localizing pneumonia with bounding boxes. ACR = American College of Radiology, AUPRC = area 
under the precision-recall curve, GBP = guided backpropagation, GCAM = gradient-weighted class activation mapping, GGCAM = guided GCAM, GRAD = gradient 
explanation, IG = integrated gradients, RSNA = Radiological Society of North America, SG = Smoothgrad, SIG = smooth IG, SIIM = Society for Imaging Informatics in 
Medicine. 
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GRAD, SG, and SIG, showing a dependency on the model 
weights, which is desired.

Repeatability and Reproducibility
To investigate intra-architecture repeatability and interarchi-
tecture reproducibility, the SSIMs of saliency maps produced 
from (a) models sharing the same architecture but different 
random initializations and (b) models with different archi-
tecture classes were analyzed. In both cases, the models were 
trained to convergence. For comparison, we used a low base-
line of SSIM = 0.5 (since SSIM = 0.5 marks the midpoint for 
whether the SSIM is more structurally similar or dissimilar) 
and a high baseline of repeatability and reproducibility of sepa-
rately trained U-Nets (for the pneumothorax dataset) and Reti-
naNets (for the pneumonia dataset).

We examined the repeatability of saliency methods from two 
separately trained InceptionV3 models and the reproducibility of 
saliency methods from trained InceptionV3 and DenseNet-121 
models. Figures 4A and 4B summarize the results for the 
pneumothorax and pneumonia datasets, respectively. In the 

pneumothorax dataset, the baseline U-Net achieved an SSIM of 
0.98 6 0.02, which was higher than the SSIM values from any 
of the other saliency maps (P , .001 for all comparisons). The 
low baseline of SSIM of 0.5 was higher than the SSIM of any 
of the other saliency maps except for the repeatability of XRAI 
and GGCAM. Among the saliency maps, XRAI had the highest 
repeatability (SSIM, 0.64 6 0.09), while SG has the lowest re-
peatability (SSIM, 0.18 6 0.03). For reproducibility, XRAI had 
the highest SSIM (0.49 6 0.08), while GRAD had the lowest 
SSIM (0.17 6 0.01).

In the pneumonia dataset, the baseline RetinaNet achieved 
an SSIM of 0.80 6 0.05, which was only exceeded by XRAI’s 
repeatability score (P , .001). The low baseline of 0.5 SSIM was 
greater than the performance of all saliency maps except the re-
peatability and reproducibility of GCAM, GGCAM, and XRAI 
and the repeatability of GBP. Among the saliency maps, XRAI 
had the highest repeatability (SSIM, 0.84 6 0.06), while SG had 
the lowest (SSIM, 0.27 6 0.01). For reproducibility, XRAI had 
the highest SSIM (0.75 6 0.06), while SG had the lowest SSIM 
(0.18 6 0.01). Repeatability was higher than reproducibility 

Figure 3: (A) Structural similarity index measures (SSIMs) under cascading randomization of modules on InceptionV3 for the SIIM-ACR Pneumothorax Segmentation 
dataset and RSNA Pneumonia Detection Challenge dataset. Note that the colored dotted lines correspond to the randomization baseline for each saliency map, which 
were generated by the average SSIMs of 50 randomly chosen pairs of saliency maps pertaining to the fully trained model; a saliency model successfully reaches degrada-
tion if it goes below its corresponding randomization baseline. (B) Example image from RSNA pneumonia detection dataset to visualize saliency map degradation from 
cascading randomization.  “Logits” refers to the logit layer (final layer) of the InceptionV3 model, and layer blocks 1 through 10 refer to blocks mixed 1 through mixed 10 
in the original InceptionV3 architecture. ACR = American College of Radiology, GBP = guided backpropagation, GCAM = gradient-weighted class activation mapping, 
GGCAM = guided GCAM, GRAD = gradient explanation, IG = integrated gradients, Orig = original, RSNA = Radiological Society of North America, SG = Smoothgrad, 
SIG = smooth IG, SIIM = Society for Imaging Informatics in Medicine.
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for all methods (P , .001). Overall, XRAI had the highest re-
peatability and reproducibility across different datasets. Figure 
E3 (supplement) shows additional examples for repeatability 

and reproducibility, and Table 4 demonstrates the overall results 
for each saliency map across all tests. A pass in Table 4 is de-
noted if the saliency method had a higher performance than the 

Figure 4: Comparison of repeatability and reproducibility scores for all saliency methods for (A) SIIM-ACR Pneumothorax Segmentation dataset and (B) RSNA 
Pneumonia Detection Challenge dataset. Each box plot represents the distribution of scores across the test datasets for each saliency map, with a solid line denoting the me-
dian and a dashed line denoting the mean. Results are compared with a low baseline of SSIM = 0.5 (light blue dashed line) and high baseline using U-Net or RetinaNet 
(dark blue box plot and dashed line). Two examples of repeatability (InceptionV3 replicates 1 and 2) and reproducibility (InceptionV3 and DenseNet-121) for the (C) 
SIIM-ACR pneumothorax dataset with transparent segmentations and (D) RSNA pneumonia dataset with yellow bounding boxes. The first two rows of (C) and (D) are 
saliency maps generated from two separately trained InceptionV3 models (replicates 1 and 2) to demonstrate repeatability, and the last row are saliency maps generated 
by DenseNet-121 to demonstrate reproducibility. GBP = guided backpropagation, GCAM = gradient-weighted class activation mapping, GGCAM = guided GCAM, 
GRAD = gradient explanation, IG = integrated gradients, RSNA = Radiological Society of North America, SG = Smoothgrad, SIG = smooth IG, SIIM = Society for Imag-
ing Informatics in Medicine, SSIM = structural similarity index measure.
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respective baseline, while a did not pass is denoted if the saliency 
method performed lower than the respective baseline (described 
further in Table 4).

Discussion
In this study, we evaluated the performance and robustness of 
several popular saliency maps on medical images. By consider-
ing saliency map utility with respect to localization, sensitivity 
to model weight randomization, repeatability, and reproduc-
ibility, we demonstrated that none of the saliency maps met all 
tested criteria, and their credibility should be critically evalu-
ated prior to integration into medical imaging pipelines. This 
is particularly important because many recent deep learning–
based clinical studies rely on saliency maps for interpretability 
of deep learning models without noting and critically evaluat-
ing their inherent limitations. A recent empirical study found 
that ophthalmologists and optometrists rated GBP highly as an 

explainability method, despite the limitations we note in this 
study (28). From Table 3 and Table 4, none of the maps pass all 
four defined trustworthiness criteria, and in fact, most of them 
perform lower than their corresponding baselines. For their 
high baseline methods, the utility, repeatability, and reproduc-
ibility tasks use networks that train specifically as localizers (ie, 
U-Net and RetinaNet). With the exception of XRAI on repeat-
ability in the pneumonia dataset, all the saliency maps had a 
lower performance than U-Net and RetinaNet. This highlights 
a severe limitation in the saliency maps as a whole and shows 
that using models trained directly on localization tasks (such as 
U-Net and RetinaNet) greatly improves the results. To inform 
future saliency map development, we can consider some as-
pects of the better-performing maps. In regard to utility, XRAI 
had the highest performance (in terms of AUPRC) for both 
segmentation and detection tasks. For each test image in the 
dataset, XRAI segments the image into small regions, itera-

Table 4: Summary of Main Results for Repeatability and Reproducibility Experiments 

Dataset and Saliency Method

Repeatability Reproducibility

SSIM P Value* P Value (Low) SSIM P Value* P Value (Low) 

SIIM-ACR pneumothorax segmenta-
tion

 U-Net 0.98 6 0.02 NA NA 0.98 6 0.02 NA NA
 LOW 0.5 NA NA 0.5 NA NA
 GRAD 0.22 6 0.04 ,.001† ,.001† 0.17 6 0.01 ,.001† ,.001†

 SG 0.18 6 0.03 ,.001† ,.001† 0.34 6 0.01 ,.001† ,.001†

 IG 0.22 6 0.05 ,.001† ,.001† 0.17 6 0.03 ,.001† ,.001†

 SIG 0.22 6 0.06 ,.001† ,.001† 0.35 6 0.04 ,.001† ,.001†

 GCAM 0.43 6 0.13 ,.001† ,.001† 0.37 6 0.12 ,.001† ,.001†

 XRAI 0.64 6 0.09 ,.001† ,.001‡ 0.49 6 0.08 ,.001† .12§

 GBP 0.32 6 0.07 ,.001† ,.001† 0.28 6 0.06 ,.001† ,.001†

 GGCAM 0.58 6 0.1 ,.001† ,.001‡ 0.44 6 0.11 ,.001† ,.001†

RSNA pneumonia detection
 RetinaNet 0.80 6 0.05 NA NA 0.80 6 0.05 NA NA
 GRAD 0.30 6 0.05 ,.001† ,.001† 0.24 6 0.05 ,.001† ,.001†

 SG 0.27 6 0.01 ,.001† ,.001† 0.18 6 0.01 ,.001† ,.001†

 IG 0.36 6 0.06 ,.001† ,.001† 0.27 6 0.06 ,.001† ,.001†

 SIG 0.38 6 0.06 ,.001† ,.001† 0.27 6 0.05 ,.001† ,.001†

 GCAM 0.68 6 0.16 ,.001† ,.001‡ 0.59 6 0.12 ,.001† ,.001‡

 XRAI 0.84 6 0.06 ,.001 ,.001‡ 0.75 6 0.06 ,.001† ,.001‡

 GBP 0.56 6 0.83 ,.001† ,.001‡ 0.32 6 0.07 ,.001† ,.001†

 GGCAM 0.71 6 0.1 ,.001† ,.001‡ 0.64 6 0.09 ,.001† ,.001‡

Note.—Data are presented as mean 6 standard deviation. P values are shown for the comparison of each map method to either the U-
Net, RetinaNet, or low values. AUPRC = area under the precision-recall curve, AVG = average mask of all ground truth segmentations 
or bounding boxes, GBP = guided backpropagation, GCAM = gradient-weighted class activation mapping, GGCAM = guided GCAM, 
GRAD = gradient explanation, IG = integrated gradients, LOW = low baseline, RSNA = Radiological Society of North America, SG = 
Smoothgrad, SIG = smooth IG, SIIM = Society for Imaging Informatics in Medicine, SSIM = structural similarity index measure.
*P values are for the comparison to the U-Net for the SIIM-ACR pneumothorax segmentation dataset and for RetinaNet in the RSNA 
pneumonia detection dataset.
†Saliency map did not pass the test.
‡Saliency map passed the test.
§The alternate hypotheses for pass or did not pass could not be significantly proven.
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tively evaluates the relevance of each region to the model pre-
diction, and aggregates the smaller regions into a larger region 
based on the relevance scores. The iterative evaluation of small 
patches within the image likely gives XRAI an advantage over 
other methods, as it results in maps with better fine-grained lo-
calization catering to the adjacent spatial neighborhoods, thus 
achieving a higher recall and precision than the other methods. 
In regard to cascading randomization across different layers 
of the InceptionV3 model, GCAM passed the randomization 
test, demonstrating a dependence of the map on the learned 
parameters. GCAM forward propagates test images through 
the model to obtain a prediction, then backpropagates the gra-
dient of the predicted class to the desired convolutional feature 
map (29). As a result, there is a high sensitivity to the value 
of the weights in the model. Finally, for both datasets, XRAI 
demonstrated the highest repeatability score between two sepa-
rately trained models with the same architecture and also the 
highest reproducibility between two separately trained models 
with different architectures. XRAI’s aggregation of smaller re-
gions into larger regions likely reduces the influence of variabil-
ity across trained models with similar architectures. Thus, the 
overall model weight distribution should remain the same in a 
specific area for a particular image even if the models are sepa-
rately trained. However, these properties have not yet been ex-
tensively studied because XRAI is a fairly new saliency method. 
Additional insights for the results of each task are provided in 
Appendix E1 (supplement).

Depending on the desired outcome of interpretability, there 
are alternative techniques besides saliency methods that can be 
employed. One approach would be to train CNNs that output 
traditional handcrafted features (such as shape and texture) 
as intermediates (30). This approach would provide some 
interpretability but is limited by the utility and reliability of the 
handcrafted features. Another approach may also be to use in-
terpretable models in the first place. Rudin argues that instead 
of creating methods to interpret black box models trained for 
high-stakes decision-making, we should instead put our focus 
on designing models that are inherently interpretable (31). 
Rudin further argues that there is not necessarily a tradeoff be-
tween accuracy and interpretability, especially if the input data 
are well structured (ie, features are meaningful). Thus, the data 
from our study support the use of multiple avenues to improve 
model interpretation.

There were a few limitations to our study. First, we only eval-
uated saliency maps for two medical datasets, both consisting 
of chest radiographs. Future studies will examine more medi-
cal imaging datasets, including different image modalities and 
diseases. Additionally, we only performed tests on two CNN 
architectures, though these are commonly used networks in the 
literature for chest radiograph analysis (32,33). As a next step, 
we can examine the effect of other CNN architectures to deter-
mine if they result in saliency maps that are more repeatable and 
reproducible. Third, we focused only on the ability of saliency 
maps to localize pathologic features and thus the utility metrics 
were calculated using the regions of interest specifically (bound-
ing boxes for pneumonia and segmentation maps for pneumo-
thorax). These regions of interest may not include other image 

features that can contribute to classification algorithm perfor-
mance, known as hidden stratification. For example, a chest tube 
in an image would imply the presence of a pneumothorax, but 
much of the chest tube may not be in the region of interest (34). 
More global features could also contribute to classification. For 
example, low lung volumes and portable radiograph technique 
may suggest that the patient is hospitalized, which could be asso-
ciated with likelihood of pneumonia. These features would also 
not be covered in the regions of interest. Future work can evalu-
ate the utility of saliency maps to localize these other features. 
We could also investigate incorporating saliency maps as a part 
of neural network training and evaluate if this type of approach 
results in maps that have higher utility than maps that are gener-
ated after model training (35).

The eight considered saliency maps studied are quantitatively 
shown to underperform in several key criteria including localiza-
tion utility, parameter sensitivity, repeatability, and reproducibil-
ity. This carries notable clinical importance, as saliency methods 
are widely used in medical studies for model interpretation and 
localization. We advocate that the inclusion of these methods 
into medical imaging projects be scrutinized and only take place 
with the knowledge of their shortcomings.
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